

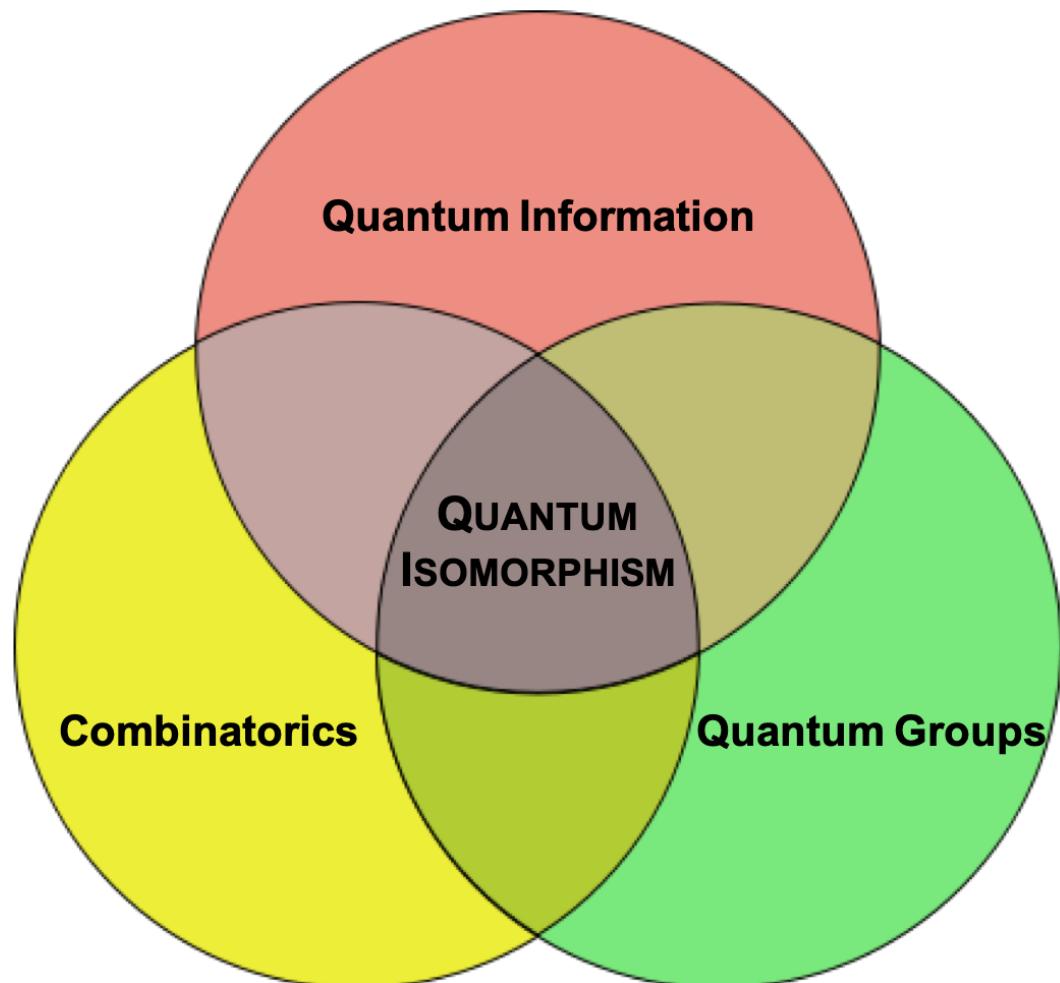
Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs

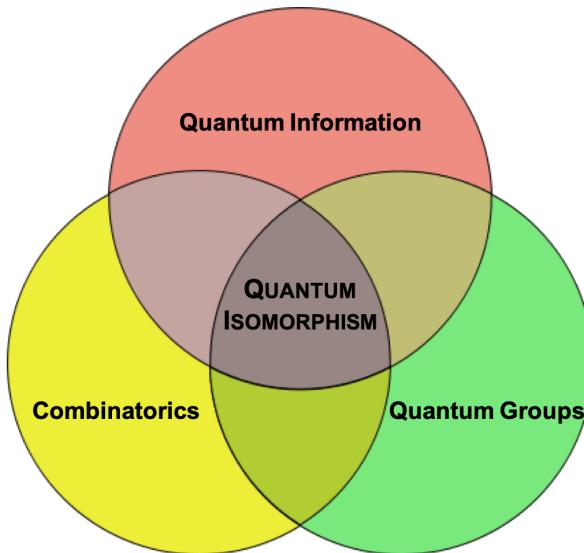
Laura Mančinska¹ David E. Roberson²

¹QMATH, University of Copenhagen

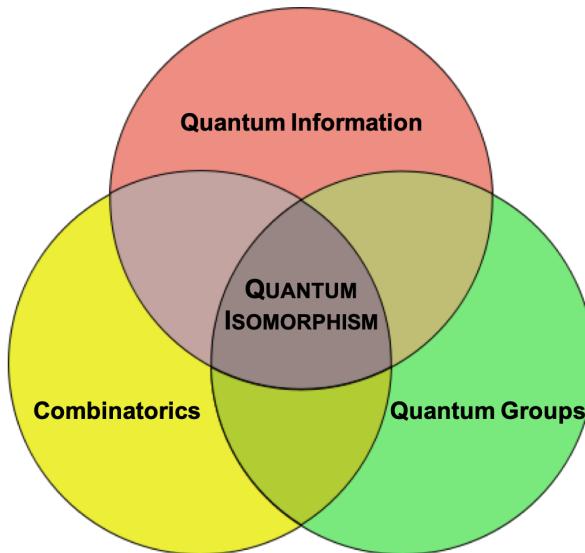
²Technical University of Denmark

QIP 2021
February 4, 2021

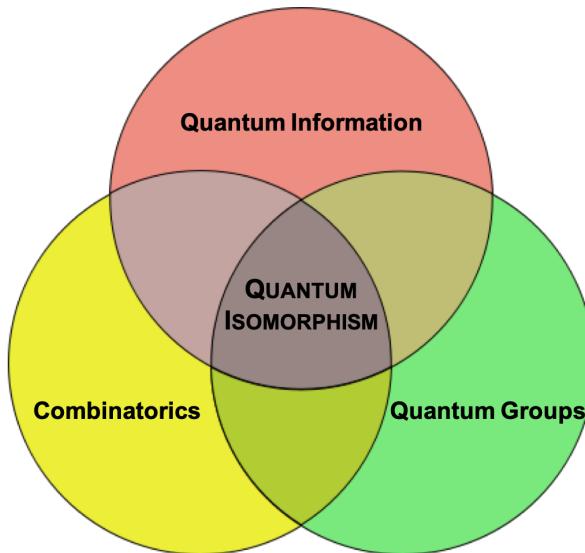




- **Nonlocal games** provide a general framework for studying entanglement



- **Nonlocal games** provide a general framework for studying entanglement
- **Problem:** Entanglement-assisted strategies for arbitrary nonlocal games are **hard to analyze**



- **Nonlocal games** provide a general framework for studying entanglement
- **Problem:** Entanglement-assisted strategies for arbitrary nonlocal games are **hard to analyze**
- **Line of attack:** Focus on a **well-behaved** class of games

This talk

PART I

Quantum isomorphism and different ways to think about it:

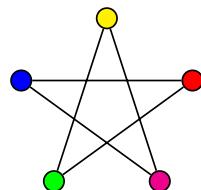
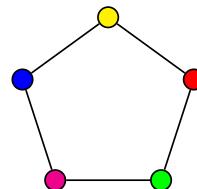
- Nonlocal games
- Matrix formulations
- Homomorphism counts

PART II

Elements of the proof:

- Intertwiners of quantum groups
- Bi-labeled graphs
- Homomorphism matrices

Graph isomorphism

 \approx 

Graph isomorphism

A map $f : V(G) \rightarrow V(H)$ is an **isomorphism** from G to H if

- f is a bijection and
- $g \sim g'$ if and only if $f(g) \sim f(g')$.

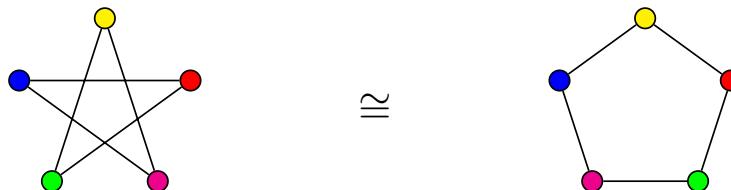
Graph isomorphism

A map $f : V(G) \rightarrow V(H)$ is an **isomorphism** from G to H if

- f is a bijection and
- $g \sim g'$ if and only if $f(g) \sim f(g')$.

If such a map exists, we say that G and H are **isomorphic** and write $G \cong H$.

Graph isomorphism



A map $f : V(G) \rightarrow V(H)$ is an **isomorphism** from G to H if

- f is a bijection and
- $g \sim g'$ if and only if $f(g) \sim f(g')$.

If such a map exists, we say that G and H are **isomorphic** and write $G \cong H$.

Matrix formulation: $PA_G P^\dagger = A_H$ for some **permutation** matrix P

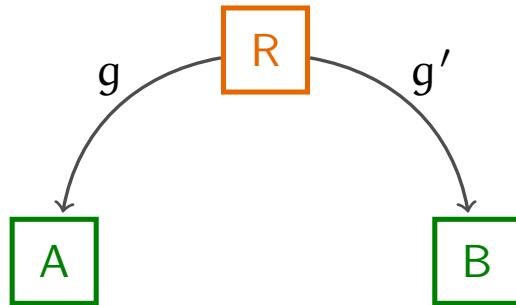
(G, H) -Isomorphism Game

(G, H) -Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.

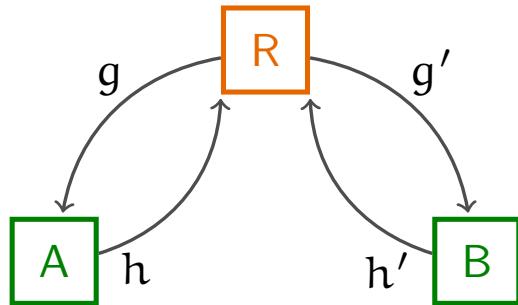
(G, H) -Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.



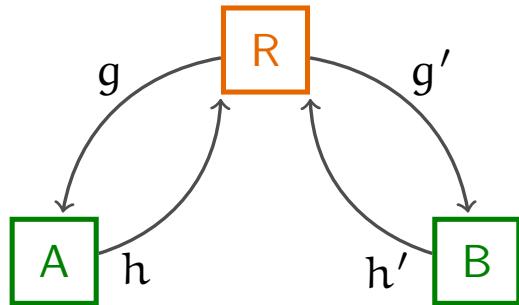
(G, H) -Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.



(G, H) -Isomorphism Game

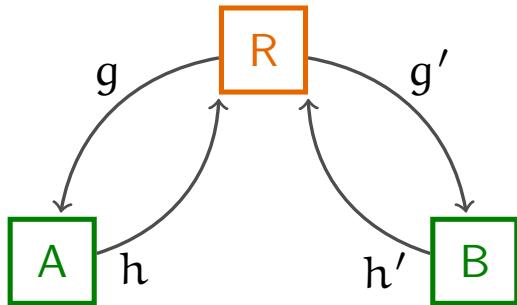
Intuition: Alice and Bob want to convince a referee that $G \cong H$.



- To win players must reply h, h' such that $\text{rel}(h, h') = \text{rel}(g, g')$

(G, H) -Isomorphism Game

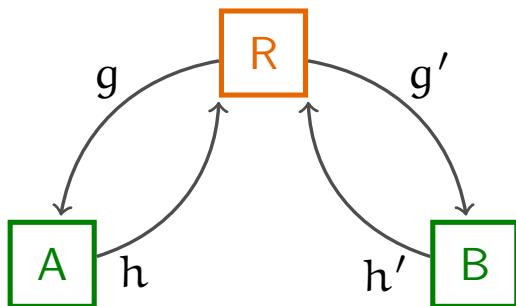
Intuition: Alice and Bob want to convince a referee that $G \cong H$.



- To win players must reply h, h' such that $\text{rel}(h, h') = \text{rel}(g, g')$
- No communication during game

(G, H) -Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.

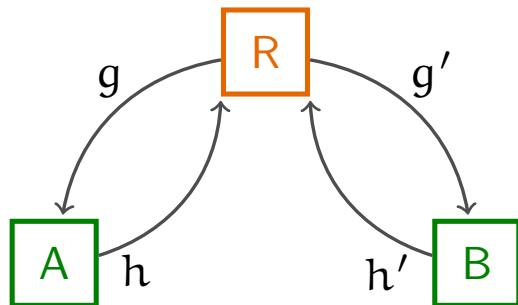


- To win players must reply h, h' such that $\text{rel}(h, h') = \text{rel}(g, g')$
- No communication during game

Fact. $G \cong H \Leftrightarrow$ **Classical** players can win the game with certainty

(G, H) -Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.



- To win players must reply h, h' such that $\text{rel}(h, h') = \text{rel}(g, g')$
- No communication during game

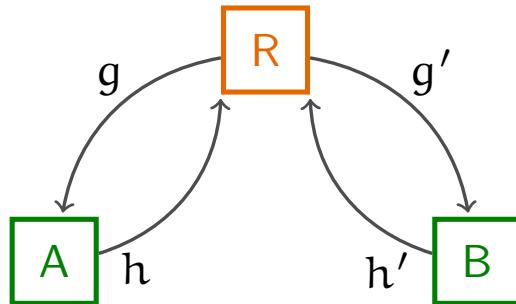
Fact. $G \cong H \Leftrightarrow$ **Classical** players can win the game with certainty

Def. (Quantum isomorphism)

We say that $G \cong_{qc} H$ if **quantum**¹ players can win the game with certainty.

(G, H) -Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.



- To win players must reply h, h' such that $\text{rel}(h, h') = \text{rel}(g, g')$
- No communication during game

Fact. $G \cong H \Leftrightarrow$ **Classical** players can win the game with certainty

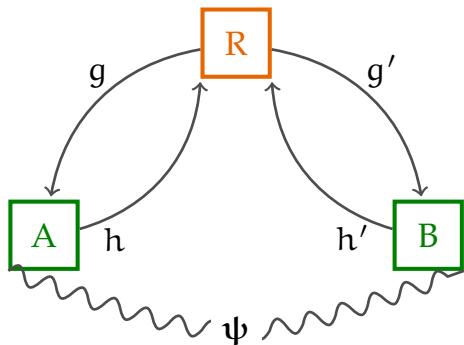
Def. (Quantum isomorphism)

We say that $G \cong_{qc} H$ if **quantum**¹ players can win the game with certainty.

¹We work in the **commuting** rather than the tensor-product model.

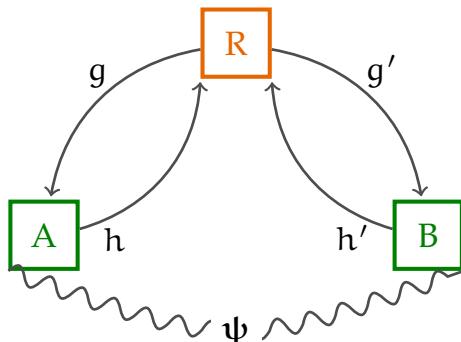
Quantum commuting strategies

$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



Quantum commuting strategies

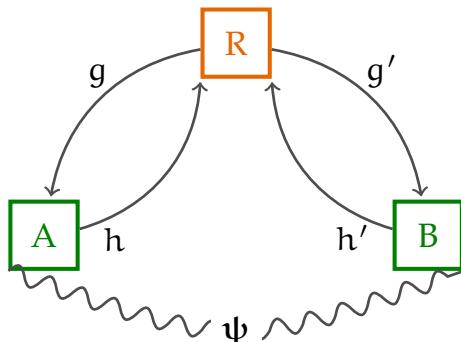
$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



- Alice and Bob share a quantum state ψ
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
- Bob measures with $\mathcal{F}_{g'}$

Quantum commuting strategies

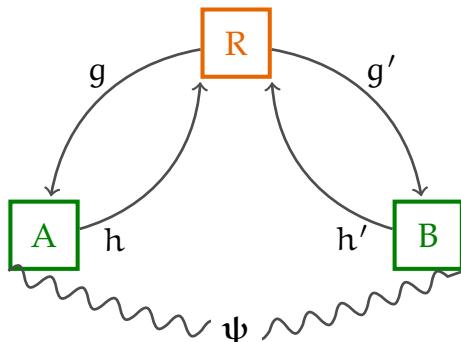
$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
- Bob measures with $\mathcal{F}_{g'}$

Quantum commuting strategies

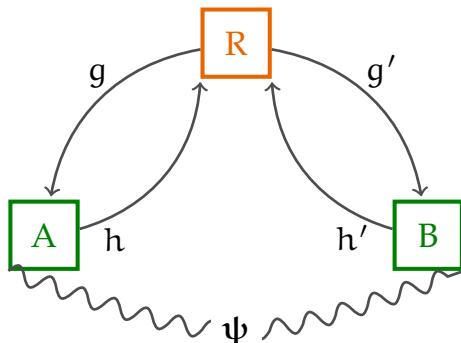
$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
 $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where
$$E_{gh} \succeq 0, \quad \sum_h E_{gh} = I.$$
- Bob measures with $\mathcal{F}_{g'}$

Quantum commuting strategies

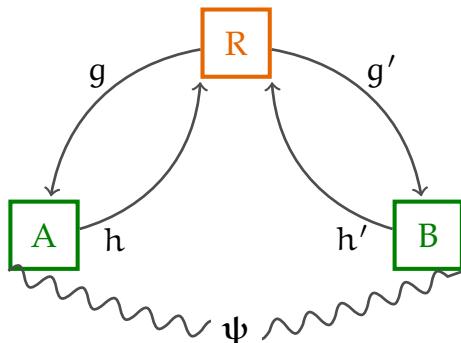
$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
 $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where
$$E_{gh} \succeq 0, \quad \sum_h E_{gh} = I.$$
- Bob measures with $\mathcal{F}_{g'}$
- E_{gh} and $\mathcal{F}_{g'h'}$ commute

Quantum commuting strategies

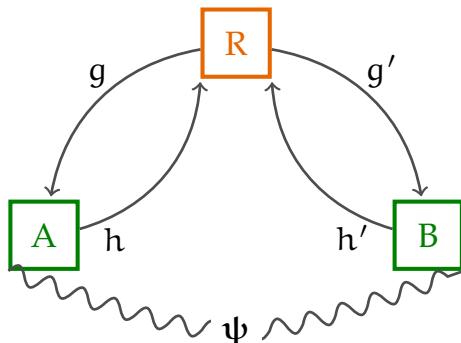
$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
 $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where
$$E_{gh} \succeq 0, \quad \sum_h E_{gh} = I.$$
- Bob measures with $\mathcal{F}_{g'}$
- E_{gh} and $F_{g'h'}$ commute

Quantum commuting strategies

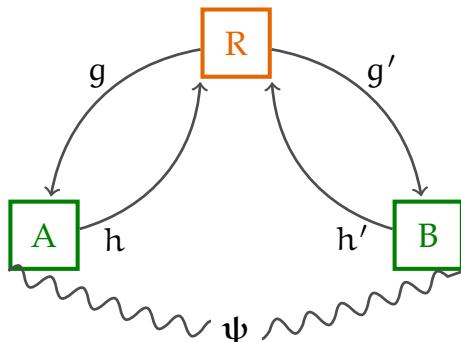
$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
 $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where
$$E_{gh} \succeq 0, \quad \sum_h E_{gh} = I.$$
- Bob measures with $\mathcal{F}_{g'}$
- E_{gh} and $F_{g'h'}$ commute

Quantum commuting strategies

$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game



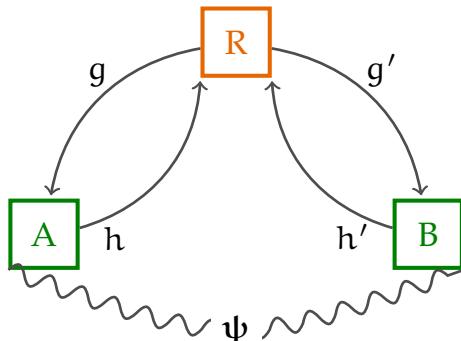
- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
 $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where
 $E_{gh} \succeq 0, \quad \sum_h E_{gh} = I.$
- Bob measures with $\mathcal{F}_{g'}$
- E_{gh} and $F_{g'h'}$ commute

The probability that players respond with h, h' on questions g, g' is

$$p(h, h' | g, g') = \langle \psi, (E_{gh} F_{g'h'}) \psi \rangle$$

Quantum commuting strategies

$G \cong_{qc} H$:= **Quantum** players can win the (G, H) -isomorphism game

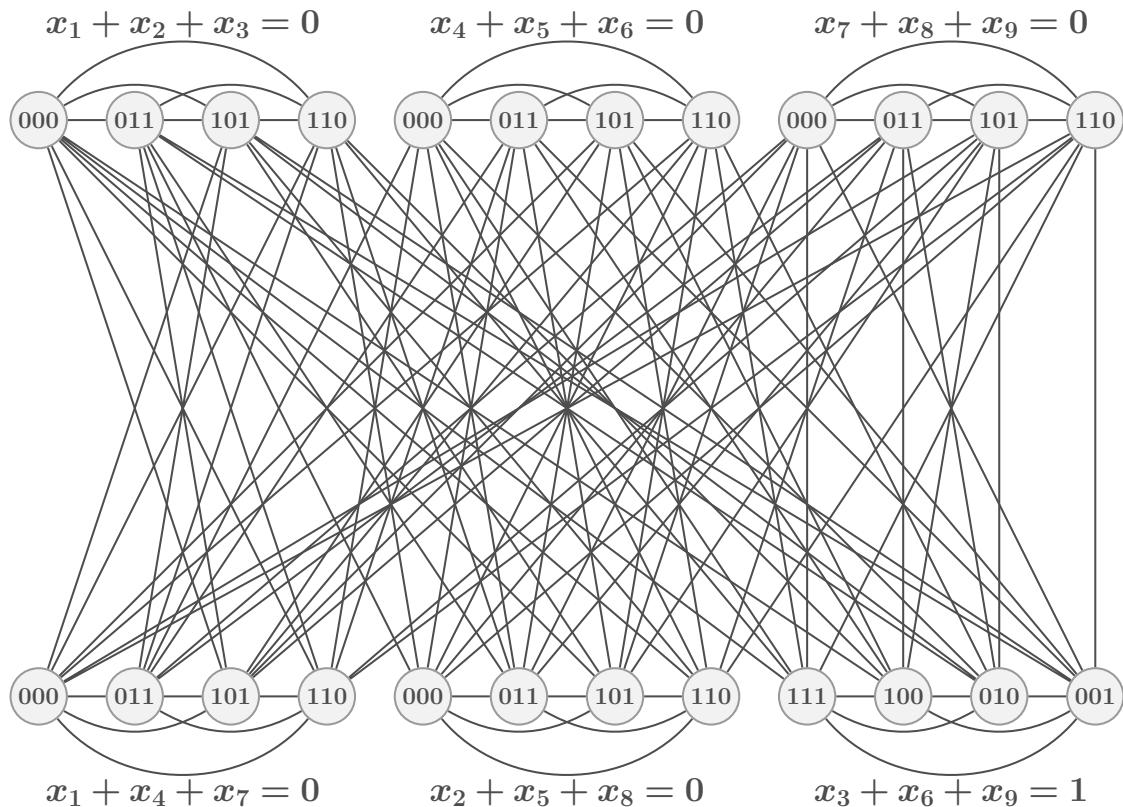


- Alice and Bob share a quantum state ψ
 ψ is a unit vector in a Hilbert space \mathcal{H}
- Upon receiving g , Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$
 $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where
 $E_{gh} \succeq 0, \quad \sum_h E_{gh} = I.$
- Bob measures with $\mathcal{F}_{g'}$
- E_{gh} and $F_{g'h'}$ commute

The probability that players respond with h, h' on questions g, g' is

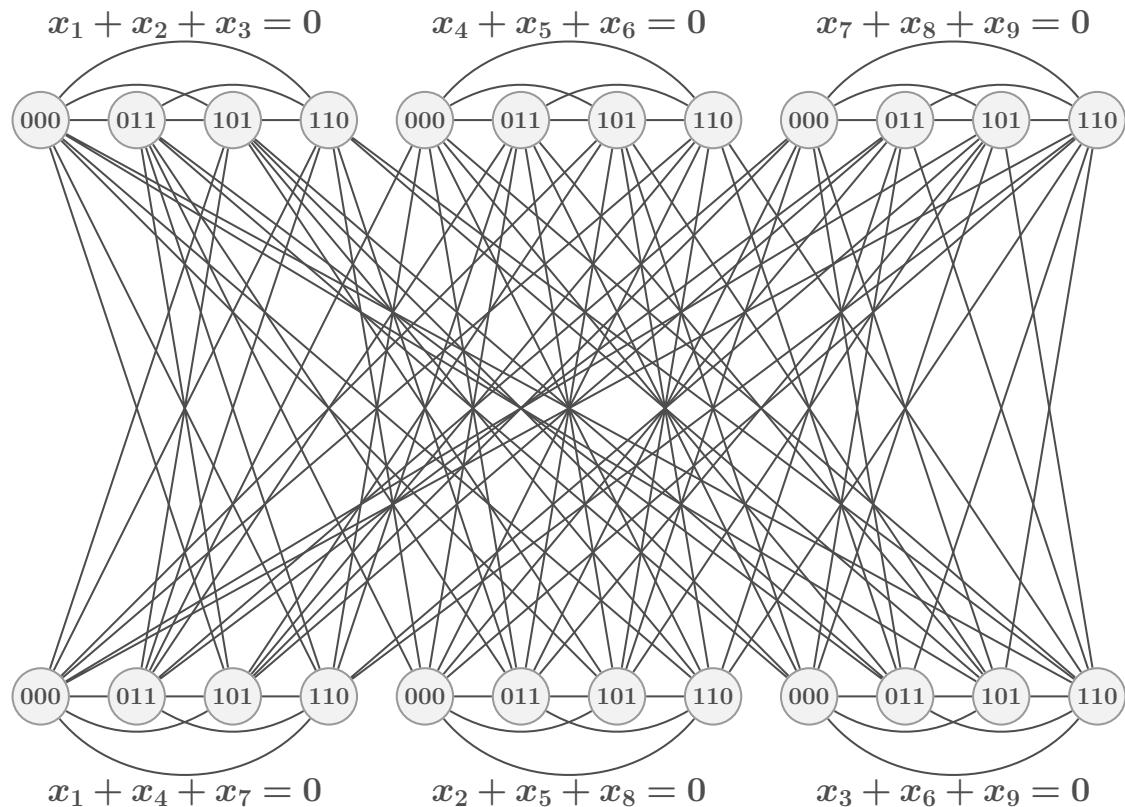
$$p(h, h' | g, g') = \langle \psi, (E_{gh} F_{g'h'}) \psi \rangle$$

Example: $G \not\cong H$ but $G \cong_{qc} H$



Construction based on reduction from linear system games.

Example: $G \not\cong H$ but $G \cong_{qc} H$



Construction based on reduction from linear system games.

Quantum isomorphism and quantum groups

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C^* -algebra is a **quantum permutation matrix** (QPM), if

Quantum isomorphism and quantum groups

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C^* -algebra is a **quantum permutation matrix** (QPM), if

- p_{ij} is a projection, i.e., $p_{ij}^2 = p_{ij} = p_{ij}^*$ for all i, j

Quantum isomorphism and quantum groups

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C^* -algebra is a **quantum permutation matrix** (QPM), if

- p_{ij} is a projection, i.e., $p_{ij}^2 = p_{ij} = p_{ij}^*$ for all i, j
- $\sum_k p_{ik} = \mathbf{1} = \sum_\ell p_{\ell j}$ for all i, j

Quantum isomorphism and quantum groups

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C^* -algebra is a **quantum permutation matrix** (QPM), if

- p_{ij} is a projection, i.e., $p_{ij}^2 = p_{ij} = p_{ij}^*$ for all i, j
- $\sum_k p_{ik} = \mathbf{1} = \sum_\ell p_{\ell j}$ for all i, j

Remark. A QPM with entries from \mathbb{C} is a **permutation matrix**.

Quantum isomorphism and quantum groups

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C^* -algebra is a **quantum permutation matrix** (QPM), if

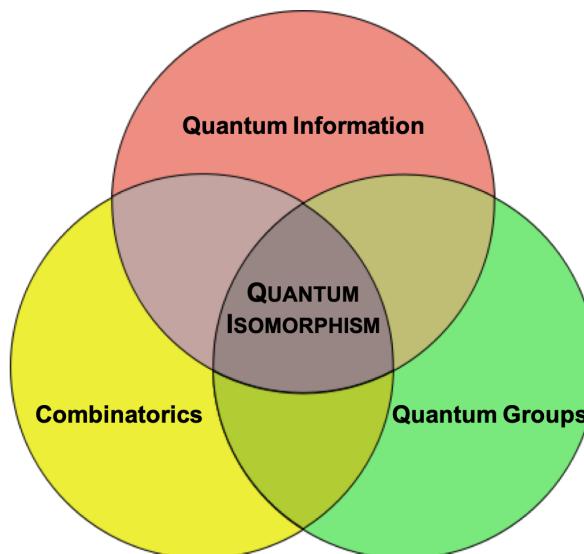
- p_{ij} is a projection, i.e., $p_{ij}^2 = p_{ij} = p_{ij}^*$ for all i, j
- $\sum_k p_{ik} = \mathbf{1} = \sum_\ell p_{\ell j}$ for all i, j

Remark. A QPM with entries from \mathbb{C} is a **permutation matrix**.

Thm. (Lupini, M., Roberson)

$$G \cong_{qc} H \iff \mathcal{P} A_G \mathcal{P}^\dagger = A_H \text{ for some quantum permutation matrix } \mathcal{P}$$

Can we describe quantum isomorphism in combinatorial terms?



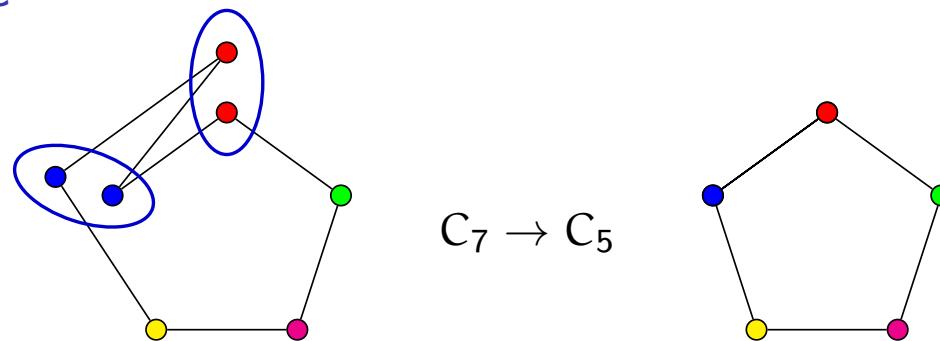
Graph homomorphisms

Def. A map $\varphi : V(F) \rightarrow V(G)$ is a **homomorphism** from F to G if $\varphi(u) \sim \varphi(v)$ whenever $u \sim v$.

Graph homomorphisms

Def. A map $\varphi : V(F) \rightarrow V(G)$ is a **homomorphism** from F to G if $\varphi(u) \sim \varphi(v)$ whenever $u \sim v$.

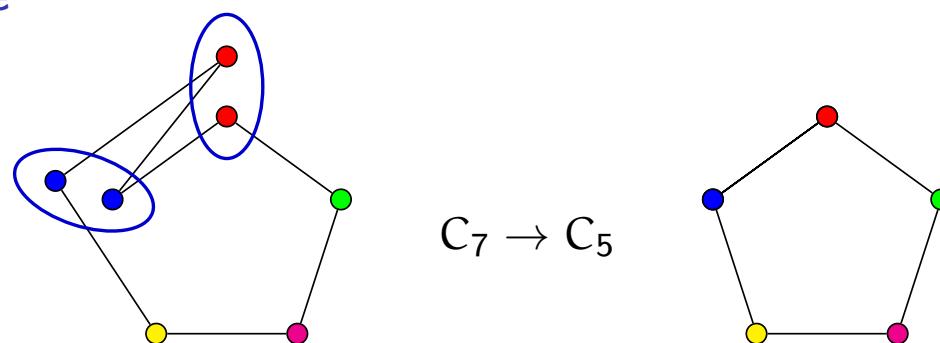
Example



Graph homomorphisms

Def. A map $\varphi : V(F) \rightarrow V(G)$ is a **homomorphism** from F to G if $\varphi(u) \sim \varphi(v)$ whenever $u \sim v$.

Example



hom(F, G) := # of homomorphisms from F to G .

Counting homomorphisms

Counting homomorphisms

Theorem. (Lovász, 1967)

Homomorphism counts determine a graph up to isomorphism, i.e.

$$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H) \text{ for all graphs } F.$$

Counting homomorphisms

Theorem. (Lovász, 1967)

Homomorphism counts determine a graph up to isomorphism, i.e.

$$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H) \text{ for all graphs } F.$$

Theorem. (M., Roberson)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F .

Context: Homomorphism counting

Thm. (Lovász, 1967)

$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

Context: Homomorphism counting

Thm. (Lovász, 1967)

$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

Folklore.

G and H cospectral $\Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **cycles** F

Context: Homomorphism counting

Thm. (Lovász, 1967)

$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

Folklore.

G and H cospectral $\Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **cycles** F

Thm. (Dvořák, 2010; Dell, Grohe, Rattan, 2018)

$G \cong_f H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **trees** F

Context: Homomorphism counting

Thm. (Lovász, 1967)

$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

Folklore.

G and H cospectral $\Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **cycles** F

Thm. (Dvořák, 2010; Dell, Grohe, Rattan, 2018)

$G \cong_f H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **trees** F

$G \cong_k H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all F of **treewidth** $\leq k$

Context: Homomorphism counting

Thm. (Lovász, 1967)

$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

Folklore.

G and H cospectral $\Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **cycles** F

Thm. (Dvořák, 2010; Dell, Grohe, Rattan, 2018)

$G \cong_f H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **trees** F

$G \cong_k H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all F of **treewidth** $\leq k$

Complexity

Context: Homomorphism counting

Thm. (Lovász, 1967)

$G \cong H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019)

$G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

Folklore.

G and H cospectral $\Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **cycles** F

Thm. (Dvořák, 2010; Dell, Grohe, Rattan, 2018)

$G \cong_f H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **trees** F

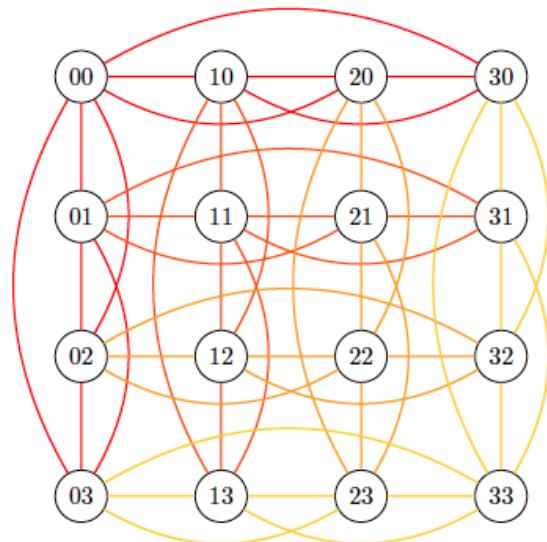
$G \cong_k H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all F of **treewidth** $\leq k$

Complexity: Except for the class of planar graphs, equality of homomorphism counts from all of the above graph classes can be tested in at worst quasi-polynomial time.

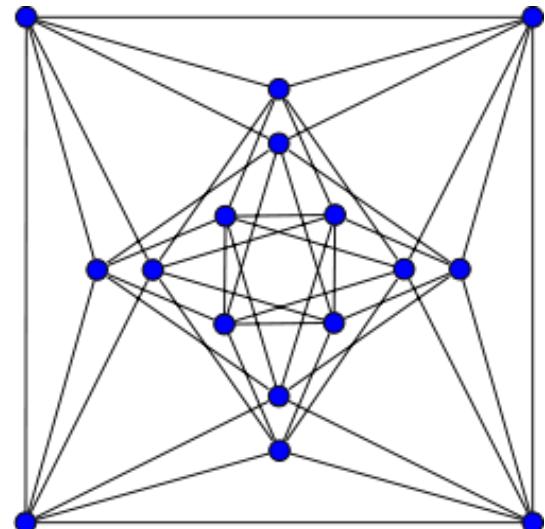
Application: Certificate for $G \not\cong_{qc} H$

Are these two graphs quantum isomorphic?

Rook graph



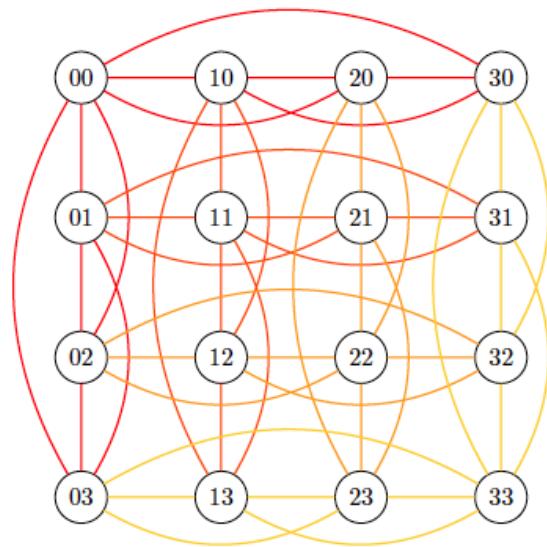
Shrikhande graph



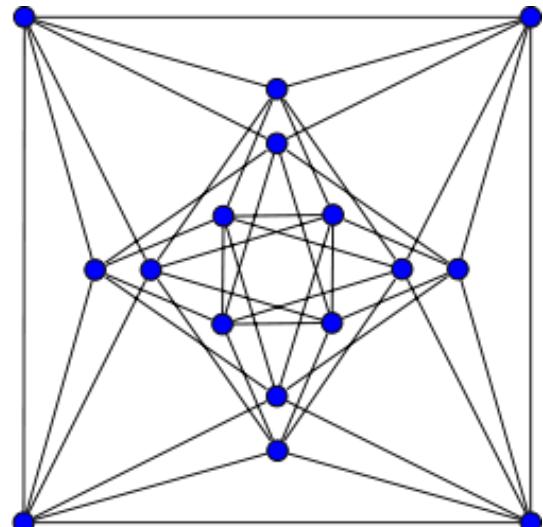
Application: Certificate for $G \not\cong_{qc} H$

Are these two graphs quantum isomorphic?

Rook graph



Shrikhande graph

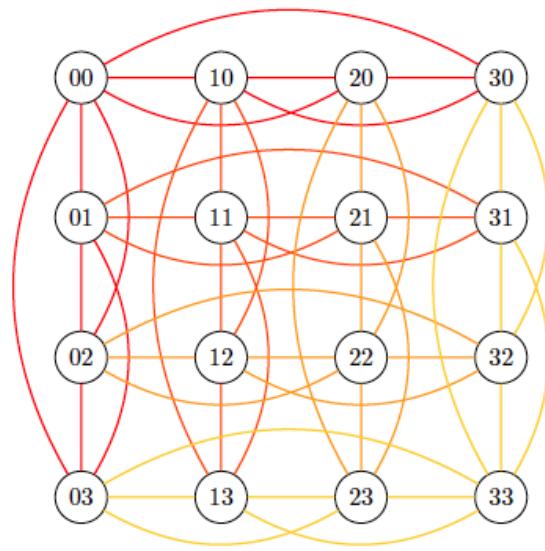


Before: Difficult to prove that they are not quantum isomorphic.

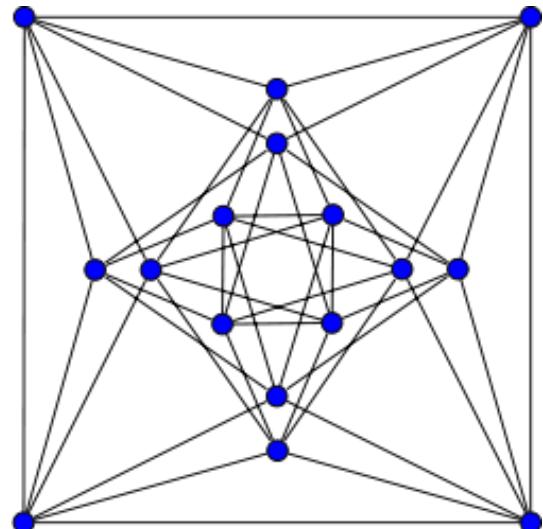
Application: Certificate for $G \not\cong_{qc} H$

Are these two graphs quantum isomorphic?

Rook graph



Shrikhande graph



Before: Difficult to prove that they are not quantum isomorphic.

Now: Only one (the Rook graph) contains K_4 .

Part II

Elements of the proof

Thm. $G \cong_{qc} H \Leftrightarrow \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** graphs F

The starting point

Thm. (Lupini, M., Roberson)

Quantum isomorphism can be characterized in terms of the **quantum automorphism group of a graph**, denoted $\text{Qut}(G)$.

The starting point

Thm. (Lupini, M., Roberson)

Quantum isomorphism can be characterized in terms of the **quantum automorphism group of a graph**, denoted $\text{Qut}(G)$.

Main component of our proof: Provide a *combinatorial description* of the **intertwiners** of $\text{Qut}(G)$.

The starting point

Thm. (Lupini, M., Roberson)

Quantum isomorphism can be characterized in terms of the **quantum automorphism group of a graph**, denoted $\text{Qut}(G)$.

Main component of our proof: Provide a *combinatorial description* of the **intertwiners** of $\text{Qut}(G)$.

Intertwiners of $\text{Qut}(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$, where

$$U = \sum_{i \in V(G)} e_i, \quad M(e_i \otimes e_j) = \delta_{ij} e_i \quad \forall i, j \in V(G).$$

Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits)

An (ℓ, k) -**bi-labeled graph** is a triple $\vec{F} = (F, \vec{a}, \vec{b})$ where

- F is a graph
- $\vec{a} = (a_1, \dots, a_\ell)$ and $\vec{b} = (b_1, \dots, b_k)$ are tuples of vertices of F .

Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits)

An (ℓ, k) -**bi-labeled graph** is a triple $\vec{F} = (F, \vec{a}, \vec{b})$ where

- F is a graph
- $\vec{a} = (a_1, \dots, a_\ell)$ and $\vec{b} = (b_1, \dots, b_k)$ are tuples of vertices of F .

Example. $\vec{F} = (K_4, (2, 1), (2, 2))$

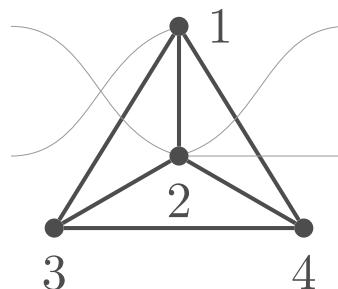
Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits)

An (ℓ, k) -**bi-labeled graph** is a triple $\vec{F} = (F, \vec{a}, \vec{b})$ where

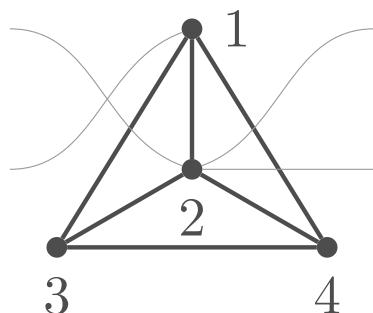
- F is a graph
- $\vec{a} = (a_1, \dots, a_\ell)$ and $\vec{b} = (b_1, \dots, b_k)$ are tuples of vertices of F .

Example. $\vec{F} = (K_4, (2, 1), (2, 2))$



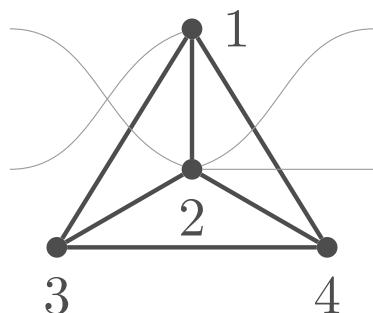
How to draw bi-labeled graphs

How to draw bi-labeled graphs

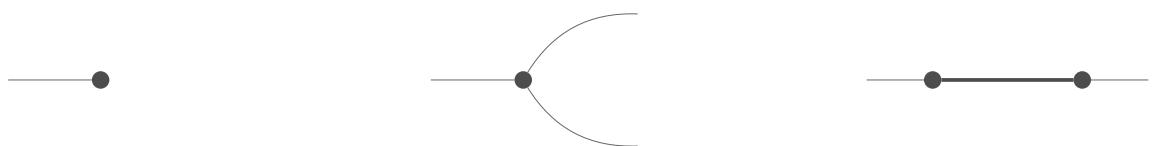


$$\vec{F} = (K_4, (2, 1), (2, 2))$$

How to draw bi-labeled graphs



$$\vec{F} = (K_4, (2, 1), (2, 2))$$



$$\vec{U} = (K_1, (1), \emptyset) \quad \vec{M} = (K_1, (1), (1, 1)) \quad \vec{A} = (K_2, (1), (2))$$

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an $(1, 1)$ -bi-labeled graph.

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an $(1, 1)$ -bi-labeled graph.

Def. (G -homomorphism matrix of \vec{F})

For $u, v \in V(G)$, the uv -entry of the **homomorphism matrix** $T^{\vec{F}}$ is

$$|\{\text{homs } \varphi : F \rightarrow G \mid \varphi(a) = u, \varphi(b) = v\}|.$$

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an $(1, 1)$ -bi-labeled graph.

Def. (G -homomorphism matrix of \vec{F})

For $u, v \in V(G)$, the uv -entry of the **homomorphism matrix** $T^{\vec{F}}$ is

$$|\{\text{homs } \varphi : F \rightarrow G \mid \varphi(a) = u, \varphi(b) = v\}|.$$

Example. $\vec{A} = (K_2, (1), (2))$

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an $(1, 1)$ -bi-labeled graph.

Def. (G -homomorphism matrix of \vec{F})

For $u, v \in V(G)$, the uv -entry of the **homomorphism matrix** $T^{\vec{F}}$ is

$$|\{\text{homs } \varphi : F \rightarrow G \mid \varphi(a) = u, \varphi(b) = v\}|.$$

Example. $\vec{A} = (K_2, (1), (2))$

$$(T^{\vec{A}})_{u,v} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$$

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an $(1, 1)$ -bi-labeled graph.

Def. (G -homomorphism matrix of \vec{F})

For $u, v \in V(G)$, the uv -entry of the **homomorphism matrix** $T^{\vec{F}}$ is

$$|\{\text{homs } \varphi : F \rightarrow G \mid \varphi(a) = u, \varphi(b) = v\}|.$$

Example. $\vec{A} = (K_2, (1), (2))$

$$(T^{\vec{A}})_{u,v} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$$

So $T^{\vec{A}} = A_G$.

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an $(1, 1)$ -bi-labeled graph.

Def. (G -homomorphism matrix of \vec{F})

For $u, v \in V(G)$, the uv -entry of the **homomorphism matrix** $T^{\vec{F}}$ is

$$|\{\text{homs } \varphi : F \rightarrow G \mid \varphi(a) = u, \varphi(b) = v\}|.$$

Example. $\vec{A} = (K_2, (1), (2))$

$$(T^{\vec{A}})_{u,v} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$$

So $T^{\vec{A}} = A_G$. Similarly, $T^{\vec{U}} = U$, $T^{\vec{M}} = M$.

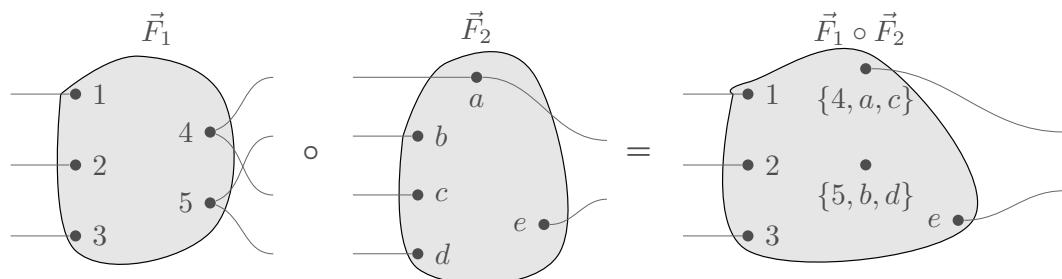
Operations on bi-labeled graphs: Products

Operations on bi-labeled graphs: Products

Thm. For a graph G and bi-labeled graphs \vec{F}_1, \vec{F}_2 ,

$$T^{\vec{F}_1} T^{\vec{F}_2} = T^{\vec{F}_1 \circ \vec{F}_2},$$

where $\vec{F}_1 \circ \vec{F}_2$ is defined as



Planar bi-labeled graphs

Recall: Intertwiners of $Qut(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

Planar bi-labeled graphs

Recall: Intertwiners of $Qut(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

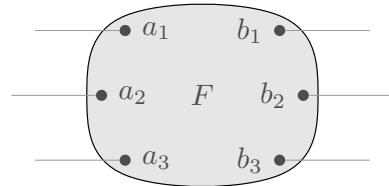
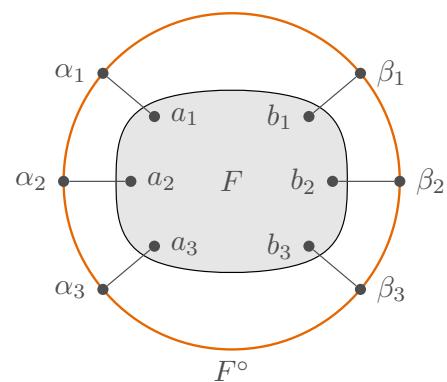
So we want to know what bi-labeled graphs are in $\langle \vec{U}, \vec{M}, \vec{A} \rangle_{\circ, \otimes, *}$.

Planar bi-labeled graphs

Recall: Intertwiners of $\text{Qut}(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

So we want to know what bi-labeled graphs are in $\langle \vec{U}, \vec{M}, \vec{A} \rangle_{\circ, \otimes, *}$.

Def.

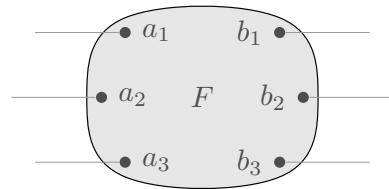
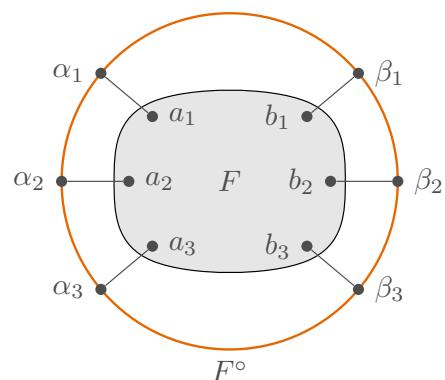


Planar bi-labeled graphs

Recall: Intertwiners of $\text{Qut}(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

So we want to know what bi-labeled graphs are in $\langle \vec{U}, \vec{M}, \vec{A} \rangle_{\circ, \otimes, *}$.

Def.



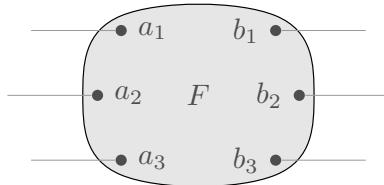
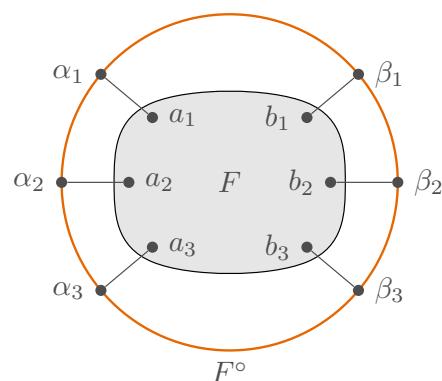
$\mathcal{P} = \{ \vec{F} : F^\circ \text{ has planar embedding w/ } \text{enveloping cycle} \text{ bounding outer face} \}$

Planar bi-labeled graphs

Recall: Intertwiners of $\text{Qut}(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

So we want to know what bi-labeled graphs are in $\langle \vec{U}, \vec{M}, \vec{A} \rangle_{\circ, \otimes, *}$.

Def.

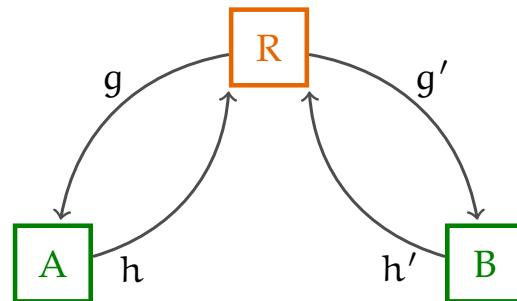


$\mathcal{P} = \{ \vec{F} : F^\circ \text{ has planar embedding w/ } \text{enveloping cycle} \text{ bounding outer face} \}$

Thm. (informal) Intertwiners of $\text{Qut}(G)$ are given by the span of homomorphism matrices of planar bi-labeled graphs.

Summary

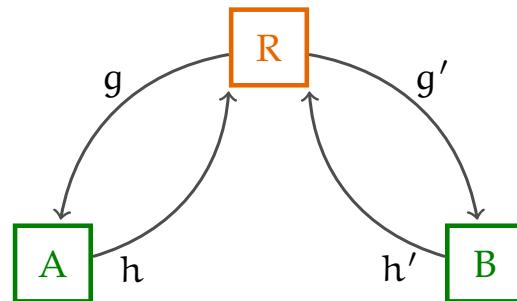
Graph isomorphism can be formulated in terms of a **nonlocal game**.



- $G \cong_{qc} H :=$ **Quantum** players can win the isomorphism game
- **Thm.** $G \cong_{qc} H \iff \mathcal{P}A_G\mathcal{P}^\dagger = A_H$ for some **quantum permutation matrix** \mathcal{P}
- **Thm.** $G \cong_{qc} H \iff \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** F

Summary

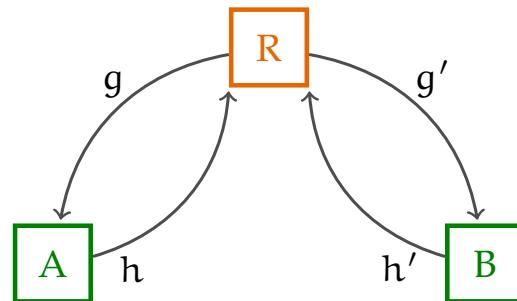
Graph isomorphism can be formulated in terms of a **nonlocal game**.



- $G \cong_{qc} H :=$ **Quantum** players can win the isomorphism game
- **Thm.** $G \cong_{qc} H \iff \mathcal{P}A_G\mathcal{P}^\dagger = A_H$ for some **quantum permutation matrix** \mathcal{P}
- **Thm.** $G \cong_{qc} H \iff \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** F

Summary

Graph isomorphism can be formulated in terms of a **nonlocal game**.



- $G \cong_{qc} H :=$ **Quantum** players can win the isomorphism game
- **Thm.** $G \cong_{qc} H \iff \mathcal{P}A_G\mathcal{P}^\dagger = A_H$ for some **quantum permutation matrix** \mathcal{P}
- **Thm.** $G \cong_{qc} H \iff \text{hom}(F, G) = \text{hom}(F, H)$ for all **planar** F

Thank you!