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Combinatorics

e Nonlocal games provide a general framework for studying
entanglement

e Problem: Entanglement-assisted strategies for arbitrary
nonlocal games are hard to analyze

e Line of attack: Focus on a well-behaved class of games



This talk

PART I

Quantum isomorphism and different ways to think about it:
e Nonlocal games
e Matrix formulations

e Homomorphism counts

PART Il

Elements of the proof:
e Intertwiners of quantum groups
e Bi-labeled graphs

e Homomorphism matrices
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e f is a bijection and

e g~g’if and only if f(g) ~ f(g’).

If such a map exists, we say that G and H are isomorphic and
write G = H.
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(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G = H.

R / e To win players must reply h, h’
such that rel(h, h/) =rel(g, g’)

e No communication during game

ATh h'| B

Fact. G = H < Classical players can win the game with certainty

Def. (Quantum isomorphism)
We say that G = H if quantum? players can win the game with

certainty.

1We work in the commuting rather than the tensor-product model.
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Quantum isomorphism and quantum groups

Def. A matrix P = (pi;j) whose entries are elements of a
C*-algebra is a quantum permutation matrix (QPM), if

® Dij Is a projection, i.e., p%j = pij = py; forall i, ]

® kaik = ]. = Zﬂpej fOI’ all 1,)

Remark. A QPM with entries from C is a permutation matrix.

Thm. (Lupini, M., Roberson)

=qcH & PAPT = Ay for some quantum

permutation matrix P
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Can we describe quantum
iIsomorphism in
combinatorial terms?

Combinatorics
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Graph homomorphisms

Def. A map ¢ : V(F) — V(G) is a homomorphism from F to G if
@(u) ~ @(v) whenever u ~v.

Example

(:7 — (:5

hom(F, G) := # of homomorphisms from F to G.
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Context: Homomorphism counting

Thm. (Lovész, 1967)
G=H < hom(F, G) = hom(F, H) for all graphs F

Thm. (M., Roberson, 2019)
=qc H & hom(F, G) = hom(F, H) for all planar graphs F

Folklore.
G and H cospectral < hom(F, G) = hom(F, H) for all cycles F

Thm. (Dvordk, 2010; Dell, Grohe, Rattan, 2018)
G=fH < hom(F, G) = hom(F, H) for all trees F
G =< H < hom(F, G) = hom(F, H) for all F of treewidth < k

Complexity: Except for the class of planar graphs, equality of
homomorphism counts from all of the above graph classes can be
tested in at worst quasi-polynomial time.
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Application: Certificate for G 4. H

Are these two graphs quantum isomorphic?

Rook graph Shrikhande graph

Before: Difficult to prove that they are not quantum isomorphic.

Now: Only one (the Rook graph) contains Kj.

15/ 23
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The starting point

Thm. (Lupini, M., Roberson)
Quantum isomorphism can be characterized in terms of the
quantum automorphism group of a graph, denoted Qut(G).

Main component of our proof: Provide a combinatorial
description of the intertwiners of Qut(G).

Intertwiners of Qut(G) = (U, M, AG)o . «.lin, Where

U= Z ei, M(ei®ej) =dijei Vi,j € V(G).
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Let G be a graph and F = (F, (a), (b)) an (1, 1)-bi-labeled graph.
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For u,v € V(G), the uv-entry of the homomorphism matrix TF
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Homomorphism matrices

Let G be a graph and F = (F, (a), (b)) an (1, 1)-bi-labeled graph.

Def. (G-homomorphism matrix of ﬁ)

For u,v € V(G), the uv-entry of the homomorphism matrix TF

S fhoms @ : F — G | @(a) =, o(b)=v)|.

Example. A = (Ko, (1),(2)) T
(T;\) _ 1 ifu~v
u,v 0 otherwise

So TA = Ag. Similarly, TY = U, T =M.
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Operations on bi-labeled graphs: Products

Thm. For a graph G and bi-labeled graphs Fi, F5,
T]_flT]_f2 — T]_flo]_f2’

where I?l o ]?2 is defined as
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Planar bi-labeled graphs

Recall: Intertwiners of Qut(G) = (U, M, AG)o.®,x lin

—

So we want to know what bi-labeled graphs are in (U, M, A)q  ».

Def.

P = {F : F° has planar embedding w/ enveloping cycle bounding outer face}

Thm. (informal) Intertwiners of Qut(G) are given by the span of
homomorphism matrices of planar bi-labeled graphs.

22 /23
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Summary

Graph isomorphism can be formulated in terms of a nonlocal game.

R
g9 g

/

e G =4 H:= Quantum players can win the isomorphism game

e Thm. G=4.H <« PAcPT = Ay for some quantum
permutation matrix P

e Thm. G=4cH < hom(F,G) = hom(F, H) for all planar F

Thank you!
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