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1 Motivations

The most prominent distinguishability measures between quantum states are the trace distance,
the quantum fidelity and the quantum relative entropy, and they all have in common the property
of being unitarily invariant [I-3]. A fundamental consequence of this property is that the distance
between any couple of quantum states with orthogonal supports is always maximal. However, this
property is not always desirable. For certain applications, it is natural to use a distance with respect
to which the state [0)®" is much closer to [1) ® |0)®(™~1) than to [1)®". Some desirable properties
can be recovering the Hamming distance for vectors of the canonical basis, and more generally
robustness against local perturbations on the input states. Such a distance may, for example,
provide better continuity bounds for the von Neumann entropy since the von Neumann entropy is
also robust against local perturbations. In particular, any operation on one qubit can change the
entropy of a state by at most In4, which does not depend on the number of qubits. Therefore,
the entropy of an n-qubit state with initial entropy O(n) remains O(n) after such an operation.
However, this continuity property cannot be captured by any unitarily invariant distinguishability
measure, since a one-qubit operation can bring the initial state into an orthogonal state, resulting
in a maximum possible change in the unitarily invariant measure.

In the setting of classical probability distributions on a metric space, the distances originating
from the theory of optimal mass transport have emerged as prominent distances with the properties
above. Their exploration has led to the creation of an extremely fruitful field in mathematical
analysis, with applications ranging from differential geometry and partial differential equations to
machine learning [1—(]. Given two mass or probability distributions on a metric space and given
the cost of moving a unit mass between each couple of points of the metric space, optimal mass
transport theory assigns a cost to each plan that transports the first distribution to the second
one. The minimum cost over all the possible transport plans defines the optimal transport distance
between the distributions [1]. One of the most prominent choices for the cost function is the distance
on the metric space, giving rise to the Wasserstein distance of order 1, or W distance.

2 Ouwur contribution

We propose a generalization of the W; distance to the set of the quantum states of n qudits. The
proposed quantum W; distance is based on the notion of neighboring states.

Definition 1 (Quantum W; distance). Two quantum states of n qudits are neighboring if they
coincide after a suitable qudit is discarded. The quantum Wj distance is the maximum distance
that is induced by a norm that assigns distance at most one to any couple of neighboring states.

We prove several properties of the proposed quantum W7 distance:



e It is invariant with respect to permutations of the qudits and unitary operations acting on one
qudit and additive with respect to the tensor product. Moreover, the Wi distance between
two quantum states which coincide after discarding k qudits is at most 2k. In particular, any
quantum operation on k£ qudits can displace the initial quantum state by at most 2k in the
proposed distance.

e It recovers the Hamming distance for vectors of the canonical basis, and more generally the
classical W7 distance for quantum states diagonal in the canonical basis.

e Its ratio with the trace distance lies between 1 and n.

We define a generalization to quantum observables of the Lipschitz constant of real-valued
functions on a metric space. We prove that, as in the classical case, the proposed quantum Wj
distance between two quantum states is equal to the maximum difference between the expectation
values of the two states with respect to an observable with Lipschitz constant at most one. This dual
formulation provides a recipe to calculate the proposed quantum Wj distance using a semidefinite
program.

Our main result is a continuity bound for the von Neumann entropy with respect to the pro-
posed quantum W7 distance. In the limit n — oo this bound implies that, if two quantum states
have distance o(n/Inn), their entropies can differ by at most o(n). The von Neumann entropy is
intimately linked to the entanglement properties of a quantum state, and our bound implies that
the entanglement of a quantum state is robust against perturbations with size o(n/Inn) in the
quantum W distance.

We explore the relation between the quantum Wj distance and the quantum relative entropy.
In particular, we prove a quantum generalization of Marton’s trasportation inequality, stating that
the square root of the relative entropy between a generic quantum state and a product quantum
state provides an upper bound to their quantum W; distance. We apply the quantum Marton’s
inequality to prove an upper bound to the partition function of a quantum Hamiltonian in terms of
its quantum Lipschitz constant. A fundamental consequence of this result is a quantum Gaussian
concentration inequality, stating that most of the eigenvalues of a quantum observable lie in a small
interval whose size depends on its Lipschitz constant.

We study the contraction coefficient with respect to the proposed quantum Wj distance of
the n-th tensor power of a one-qudit quantum channel. While the contraction coefficient of these
quantum channels with respect to the trace distance is trivial in the limit n — oo, we are able to
prove an upper bound to the contraction coefficient for the proposed quantum W distance which
does not depend on n. Moreover, we prove that the contraction coefficient of a generic n-qudit
quantum channel with respect to the proposed quantum Wj distance is upper bounded by the size
of the light-cones of the qudits.

3 Future perspectives

In the classical setting, the Wasserstein distances have a huge variety of applications ranging from
mathematical analysis to machine learning and information theory. We expect the proposed quan-
tum W7 distance to be a powerful tool with a broad range of applications in quantum information,
quantum computing and quantum machine learning. We propose a few of them in the following.



¢ Robustness of quantum machine learning: A fundamental desirable property of classi-
cal machine learning algorithms is the robustness with respect to small perturbations in the
input [7], and the same property should be desirable also when the machine learning algo-
rithm is quantum [8]. Quantum input: In the scenario with quantum input data, the size of
the perturbations in the input has so far been measured with the trace distance or with the
quantum fidelity [9], with respect to which any two perfectly distinguishable quantum states
are maximally far. On the contrary, in the classical setting any two different inputs are per-
fectly distinguishable. The proposed quantum Wj distance is a perfect candidate to measure
the size of the perturbations for quantum algorithms for machine learning with a quantum
input, and therefore provides a suitable quality factor for the robustness of the quantum
algorithms for machine learning. Classical input: In the scenario with classical input data,
choosing the right method to encode the input into quantum states is essential in the success
of any quantum algorithm for machine learning [3,10]. In particular, it is reasonable to require
the encoding to be robust with respect to small perturbations of the input. The proposed
quantum Wj distance provides a natural measure for the size of the input perturbations and
hence for the robustness of the encoding.

¢ Quantum Generative Adversarial Networks: In analogy to classical GANs, quantum
GANSs [11] are a paradigm for quantum machine learning where a generator tries to produce
quantum samples as close as possible to some true quantum data, and a discriminator tries to
discriminate the generated from the true data. For classical GANs, the Wasserstein distances
have turned out to be the right candidate for the loss function, since they solve the problem of
the vanishing gradient in the training that plagued the GANs trained with the total variation
distance or with the Jensen—Shannon divergence [12]. For this reason, quantum Wasserstein
distances have been proposed as cost function for the quantum GANs [13]. The proposed
quantum W7 distance recovers the classical Wy distance for states diagonal in the canonical
basis and satisfies most of its properties, and is therefore a good candidate for the loss function
of the quantum GANS.

e Quantum rate distortion theory: Rate-distortion theory addresses the problem of de-
termining the maximum compression rate of a signal if a certain level of distortion in the
recovered signal is allowed [14]. The measure employed to quantify the distortion plays a
fundamental role, and for a discrete alphabet the most prominent distortion measure is the
Hamming distance. Rate-distortion theory has been extended to the quantum setting in the
iid regime [15-22] with a symbol-wise entanglement fidelity as distortion measure. The limi-
tation to iid arises since such symbol-wise entanglement fidelity can be defined only when the
quantum state to be encoded is a tensor product of one-qudit states. The proposed quantum
W1 distance does not have this limitation, and is therefore a candidate to extend quantum
rate distortion theory beyond the iid regime.

e Shallow quantum circuits: The Hamming distance plays a key role in the study of the
computational capabilities of quantum circuits [23,24]. The proposed quantum W; distance
recovers the Hamming distance for vectors of the canonical basis and is stable with respect to
the action of local shallow quantum circuits. Therefore, the proposed quantum W; distance
can be useful in characterizing the states generated by constant depth circuits and therefore
in extending the current results on their computational capabilities.
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