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Motivations

- Hamming distance ubiquitous in classical probability,
information theory, machine learning

- Yet no quantum version for qudits!!

- Bit flip small change wrt Hamming distance, but can
generate orthogonal state

- Orthogonal states maximally far for any unitarily invariant
distance

- Desired properties:
- Recovery of Hamming distance for canonical basis states
- One-qudit channels induce small changes
- Global quantities (e.g., entropy) continuous
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The classical Wasserstein distance

- Probability distributions on metric space interpreted as
distributions of unit amount of mass

- Moving unit mass from x to y has cost d(x,y)
- W.,(p,q): minimum cost to transport p onto g
- Induced by a norm

- Countless applications in geometric analysis, probability,
information theory, machine learning

- We consider bit strings (strings of symbols from finite
alphabet) with Hamming distance



Quantum W, norm

- Neighboring states: coincide after discarding one qudit
- Require: neighboring states have distance at most one

- Minimum unit ball: convex hull of differences between
neighboring states

B, = {sz (p(i) — a(i)) - Tr; plY) = Tr@-a(i)}
i=1

- Maximum norm

Hp—anl =min(t>0:p—0€th,)



Properties

- Recovers classical W, distance for states diagonal in
canonical basis, Hamming distance for canonical basis

vectors
- Symmetries: local unitaries, qudit permutations

- Contractive wrt one-qudit quantum channels
- Additive wrt tensor product

lp@p =@y, =lp—0clw, + 10" = llw,
- Relation with trace distance

1 n
o=l <llp=ollw, <5 o= ol

- Local operations: if @ acts on k qudits,

[2(p) = plly, <2k
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Contraction coefficient

- Contraction of trace distance
d(p) — P
77<(I)) —  max H (:0) (O-)Hl
ptocs,  |lp—oll;

- Trivial for n— for tensor power channels
1
d(p) #P(0c) = = lim Hq)@m (p®”) — PO (0®”)

) n—oo

= lim 7 (@@m) =1

H1 N—00

- Contraction of quantum W, distance

4l = max 1217) = 2(0)lw,
Wi —W; p;égESn H,O o O-HW1




Contraction coefficient
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- At most twice the size of the largest light-cone
of a qudit >
- Tensor power channels: ® one-qudit channel =B .
with fixed point w, € replaces input with w W

o
|

]
|

N O
H(I) HW1—>W1 < H(I) _EHO
- Amplitude damping channel (decay probability 7-p)
n p
H(I)z(? HW1_>W1 <2 ﬂ

- Depolarizing channel (input replaced with probability 7-p)

ng§§m||wl_>wl =P



Continuity of the von Neumann entropy

- Continuity bounds wrt trace distance / fidelity void for
orthogonal states, but one-qudit channel can turn state
iInto orthogonal state with entropy change at most 2 In d

- Continuity bound wrt quantum W, distance

S(p) = S(o) < g(llp—ollw,) +llp = ollw, In (d*n)
gt)=t+1In(t+1)—tlnt<ln(t+1)+1

lo=aly, =o(=) = IS(p)=S()| = oln)
- In n not present for classical W, distance

n



The quantum Lipschitz constant

- Quantum Lipschitz constant

1H|; = 2m?>]<min(HH — H;|| : H; does not act on i-th qudit)
en

- Recovers classical Lipschitz constant for operators
diagonal in canonical basis

- Quantum W, distance as SDP

— 0 — max Ir|H (p—o0
o —olw, hax H(p—0)



Relation with relative entropy

- Pinsker’s inequality

1 1
5 lp—ol; < \/5 S(pllo)

- Improvement to quantum Marton’s transportation
iInequality

n
HIO_Ul@"'@UnHWl S\/§S(p|\01®...®an)



Quantum Gaussian concentration inequality

- In high dimension, smooth functions are essentially
constant

- Bound on partition function

1 t°
—lnTretHglnd—l—gﬂHHQL TrH=0
n

- Spectrum of H lies in interval with size O (\/ﬁ HHHL)

TrH 2
dim (H > ( ;n | 5\/E\|H\|L> ]1) < dre 2




Perspectives

- Robustness of quantum machine learning

- Quantum Generative Adversarial Networks
(arXiv:2101.03037)

- Quantum rate-distortion theory

- Mixing time of quantum Markov semigroups
- Shallow quantum circuits

- Quantum spin systems on infinite lattices
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