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Motivations
• Hamming distance ubiquitous in classical probability, 

information theory, machine learning
• Yet no quantum version for qudits!!
• Bit flip small change wrt Hamming distance, but can 

generate orthogonal state
• Orthogonal states maximally far for any unitarily invariant 

distance
• Desired properties:

• Recovery of Hamming distance for canonical basis states
• One-qudit channels induce small changes
• Global quantities (e.g., entropy) continuous
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The classical Wasserstein distance
• Probability distributions on metric space interpreted as 

distributions of unit amount of mass
• Moving unit mass from x to y has cost d(x,y)
• W1(p,q): minimum cost to transport p onto q
• Induced by a norm
• Countless applications in geometric analysis, probability, 

information theory, machine learning
• We consider bit strings (strings of symbols from finite 

alphabet) with Hamming distance
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Quantum W1 norm
• Neighboring states: coincide after discarding one qudit
• Require: neighboring states have distance at most one
• Minimum unit ball: convex hull of differences between 

neighboring states

• Maximum norm
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Properties
• Recovers classical W1 distance for states diagonal in 

canonical basis, Hamming distance for canonical basis 
vectors

• Symmetries: local unitaries, qudit permutations
• Contractive wrt one-qudit quantum channels
• Additive wrt tensor product

• Relation with trace distance

• Local operations: if Φ acts on k qudits,
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Contraction coefficient
• Contraction of trace distance

• Trivial for n→∞ for tensor power channels

• Contraction of quantum W1 distance
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Contraction coefficient
• At most twice the size of the largest light-cone
of a qudit

• Tensor power channels: Φ one-qudit channel
with fixed point ω, ℰ replaces input with ω

• Amplitude damping channel (decay probability 1-p)

• Depolarizing channel (input replaced with probability 1-p)
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Continuity of the von Neumann entropy
• Continuity bounds wrt trace distance / fidelity void for 

orthogonal states, but one-qudit channel can turn state 
into orthogonal state with entropy change at most 2 ln d

• Continuity bound wrt quantum W1 distance

• ln n not present for classical W1 distance
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The quantum Lipschitz constant
• Quantum Lipschitz constant

• Recovers classical Lipschitz constant for operators 
diagonal in canonical basis

• Quantum W1 distance as SDP
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Relation with relative entropy
• Pinsker’s inequality

• Improvement to quantum Marton’s transportation 
inequality
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Quantum Gaussian concentration inequality
• In high dimension, smooth functions are essentially 

constant
• Bound on partition function

• Spectrum of H lies in interval with size
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Perspectives
• Robustness of quantum machine learning
• Quantum Generative Adversarial Networks 

(arXiv:2101.03037)
• Quantum rate-distortion theory
• Mixing time of quantum Markov semigroups
• Shallow quantum circuits
• Quantum spin systems on infinite lattices
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