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Introduction. Distinguishing objects is a critically important task in experimental science. The
recent approaches in quantum information theory advocate the fundamental status of quantum
channels rather than quantum states; far from being a merely abstract consideration, this also re-
flects our technological effort to build quantum circuits that implement desired operations. In this
context, binary channel discrimination is thus to be regarded as a basic primitive. While most of the
recent literature on the topic has focused primarily on finite-dimensional systems, the continuous-
variable platforms that are playing a major role in the field of quantum communication (typically,
electromagnetic modes travelling along optical fibers) are intrinsically infinite-dimensional. How-
ever, from an experimental point of view, we can only probe the unknown channel by means of
finite-energy states. Adding a mean energy bound with respect to some reference Hamiltonian
singles out the energy-constrained (EC) diamond norm distance as the relevant figure of merit for
binary channel discrimination [58? ]. In this article, we investigate the EC diamond norm dis-
tance between two unitary channels, and apply our findings to a wealth of operationally relevant
scenarios.

Main results. First, we establish quantitative bounds on the EC diamond norm distance between
the unitary time evolution channels generated by any two different Hamiltonians

Theorem 1. Let H,H 1 be self-adjoint operators. Without loss of generality, assume that 0 is in
the spectrum of H. Let the ‘relative boundedness’ inequality }pH ´H 1q |ψy} ď α }H |ψy} ` β hold
for some constants α, β ą 0 and for all (normalised) states |ψy. Then the unitary channels

Utp¨q
..“ e´iHtp¨qeiHt, Vtp¨q

..“ e´iH
1tp¨qeiH

1t (1)

satisfy the following: for all t ě 0 and E ą 0, }Ut ´Vt}
|H|,E
˛ ď 2

?
2
?
αEt`

?
2βt.

We also show a similar result for a unitary time evolution channel and an open-system quantum
dynamical semigroup with generator L whose action on a trace class operator X is given as follows:

LpXq “ ´irH,Xs `
1

2

ÿ

`

´

2L`XL
:

`´L
:

`L`X´XL
:

`L`

¯

.

Here, H is the internal Hamiltonian, while the Lindblad operators L` (` “ 1, 2, . . .) model dissipative
processes. In our approach these can be unbounded, and hence our results significantly generalise
previous works on quantum speed limits in open systems [? ].

Theorem 2. Let H be a self-adjoint operator with 0 in its spectrum, and set Utp¨q
..“ e´iHtp¨qeiHt.

Let pΛtqtě0 be a QDS whose generator L is of GKLS-type and satisfies the relative boundedness
condition

1

2

›

›

›

ÿ

`
L:`L` |ψy

›

›

›
ď α }H |ψy} ` β (2)

for all (normalised) states |ψy, where β ě 0 and 0 ď α ă 1 are two constants. Then it holds that

}Ut ´ Λt}
|H|,E
˛ ď 4

ˆ
b

?
2αEt` βt

˙

(3)

for all t ě 0 and E ą 0.
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Notably, both theorems above can be recast in the form of new quantum speed limits.

We then prove that optimal discrimination between two unitaries can be achieved without
the need for entangled ancillary systems, which greatly simplifies the experimentalists’ task. In
addition, we show that perfect (i.e., zero-error) discrimination can be realized even in this EC
setting by invoking a finite number of parallel queries of the unknown unitary channel. This
extends a celebrated result by Aćın [1] (subsequently improved by Duan et al. [20]).

Theorem 3. Let U, V be two unitaries acting on a Hilbert space of dimension dimH ě 3, and call
Up¨q ..“ Up¨qU :, Vp¨q ..“ V p¨qV : the associated channels. Let H be a grounded Hamiltonian, and fix
E ą 0. There exists a positive integer n such that n parallel uses of U and V can be discriminated
perfectly using inputs of finite total energy E, i.e.

›

›Ubn ´Vbn
›

›

Hpnq, E

˛
“ 2 , (4)

where Hpnq
..“

řn
j“1Hj is the n-copy Hamiltonian, and Hj

..“ I b ¨ ¨ ¨ I bH b I ¨ ¨ ¨ b I, with the H

in the jth location.

Applications of our results: Our discrimination results bear an immediate impact on the ex-
perimentally relevant problem of benchmarking a quantum system whose internal dynamics is
unknown. Our final application concerns quantum computation with continuous-variable systems.
In this setting, Gaussian unitaries, that is, unitaries induced by Hamiltonians that are quadratic
in the canonical operators, are of outstanding technological relevance. For example, together with
single-photon sources and photodetectors, they are known to enable universal quantum compu-
tation via the so-called KLM scheme [? ]. Here, we extend a fundamental result of quantum
computation, the Solovay-Kitaev theorem [? ] to the case of Gaussian unitary channels, estab-
lishing that any finite set of Gaussian unitaries (gates) that is sufficiently powerful to generate
arbitrarily accurate approximations of any desired Gaussian unitary does that efficiently, i.e., by
means of short gate sequences. In our result, the approximation error is quantified in an opera-
tionally meaningful way by means of the EC diamond norm. Like the standard Solovay-Kitaev
theorem, our Gaussian extension is potentially useful because it guarantees that quantum algo-
rithms can be efficiently compiled, i.e., simplified so as to include only gates from a fixed base
set.

Theorem 4. Let m P N, r ą 0, E ą 0 and define ĂSp
r

2mpRq to be the set of all symplectic
transformations S such that }S}8 ď r. Then, given a set G of gates that is closed under inverses

and generates a dense subset of ĂSp
r

2mpRq, there exists a constant C “ Cprq ă p3`rqp47r2̀ 198r̀ 203q

such that, for any symplectic transformation S P ĂSp
r

2mpRq and every 0 ă δ, there exists a finite
concatenation S1 of polyplog δ´1q elements from G, which can be found in time polyplog δ´1q and
such that

}US ´US1}N,E
˛ ď F pmqGprq

?
E ` 1

?
δ , (5)

where USp¨q
..“ USp¨qU

:

S, and F and G are explicit functions.

Conclusion. In this article, we uncovered useful properties of the EC diamond norm distance
between unitary channels, and applied our results to establish new quantum speed limits, study
channel discrimination under energy constraints, and to extend the important Solovay-Kitaev the-
orem to the Gaussian unitary setting.
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