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Quantum continuous variable (CV) systems

Quantum CV systems are candidates for many protocols of quantum computation and
communication

CV systems can be hard to analyse (infinite dimensional objects, unboundedness, etc...)

Important class of CV operations are Gaussian states, channels and measurements

Advantage: characterized by covariance matrices, i.c. admit a finite dimensional reduction

How can one construct a theory of approximation of quantum Gaussian circuits?



Outline and motivation

- From QIT/Resource theory: Can one quantify the amount of entanglement/energy needed
to distinguish quantum channels over arbitrary (separable) Hilbert spaces
-> Restriction over input states required: finite energy states.
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Outline and motivation

From QIT/Resource theory: Can one quantify the amount of entanglement/energy needed
to distinguish quantum channels over arbitrary (separable) Hilbert spaces
-> Restriction over input states required: finite energy states.

From quantum optics: Given two Gaussian channels, how well can one distinguish them in
terms of their defining properties?
-> Restriction over input states required: finite energy states.

From CV quantum computing: How can one efficiently approximate the action of a
Gaussian circuit on low energy states with precision from a given set of primitive gates?
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The diamond norm and its flaws

A2 Ti(H) — Ti(H) Hermitian preserving! ||Allo :=sup sup [[(A ®id)(|¥)(])]1
(< 2 for channel differences) R |y)eHar

Problem: The diamond norm is trivial in simple infinite dimensional situations

Example: Bosonic quantum limited attenuator: Vi) € L? (R) coherent state, Ay, (Ja)(al) = [na)(nal
n<l1

[Lemma [Winter 2017]||A, — Ay |lo =2,V # 77’} = P(e'a‘)(Am A =1

SUucCC

Proot: ||} (nal — [n'a) (n'alll, = 2v/1 — e 10-10aF 52 |a| - o

1+ %HNl _NQHQ

ala’ala) = |af’ P (Nh, ) = :

Physical interpretation: N = aa |

=> Perfect discrimination requires infinite average energy!

1 Aharonov et al 1998



Energy constrained diamond (ECD) norm

Fix a Hamiltonian H 4 which we assume grounded ( min Sp(Ha) =0 ) and average energy £/ > 0

4 N

Definition (ECD norm) [Shirokov 2017, Winter 2017, Pirandola et. Al. 2017]

AN =sup  sup I(A®id)(par)|

Tr HAIK<E
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(1) Energy constrained discrimination of unitaries



The ECD distance of unitaries 1s achieved on product states

[Aharonov, Kitaev, Nisan 1998] No entanglement needed to achieve EC distance between unitaries:

2\/1 —inf [TpUTVIP = U = Vo = [t = V] = 2\/1 —inf [(b|UTV )2

%)

U:=U(()U"
The result extends to the ECD norm: VoV (.)VT

Theorem: Let U, V' be two unitaries, £/ >0, H > 0

= |U=-V|?F =2 [1— inf UTV|))|?
N N ]

VE >0, POLE U, V) =P P U, V)
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Perfect discrimination with EC and multiple queries

2, /1= f [TlpUTV]E = U = V]o = [t = V|11 = 2%1 —inf [([UTV )

[Acin 2001] Given two unitaries U # V | there exists n € N such that ||/ o _Yer ||, =2

n
Again, the result extends to the ECD norm: denoting H (n) . — Z H; on HO™ |
j=1

/Theorem: Let U # V be two unitaries on H > 0, A

JF < oo, n € Ns.t. ||UP™ — V®”Hf(n)’E — 2
N /




(11) Discriminating Gaussian unitaries



Phase space formalism, quick recap

H = L*(R™), m € N : number of modes

a;, al] = ik 1,]a;,ar] = 0 : creation and annihilation operators,
_ Tj +ip; . B
a; = \/§ , L4, position/momentum operators, a = (a,l, ceey am)

m
R = (x1,p1, - T, Pm ) [Rj, Ry] = 1k, Q= @ (_01 (1)> : symplectic form
s=1
m
N = Z a; @5 : number operator
j=1



Gaussian unitary channels

Phase space representation: R > z — D(z) = eiZT'QR displacement operators

Gaussian unitary channel: characterized by their induced action on the phase space:

Sp,,, (R) := {S € My,,(R)] SQS* =0}

VS € Spy,, (R), z — Sz = UgD(Z)US — D(Sz) symplectic unitaries

Problem: How well can we distinguish S from S’ ?




Toolbox: Quantum speed limits

Quantum speed limits: How long does it take for [1/,) = e’ |yhg) to satisfy (1]1p) =0 2

U, — ¢ tH Conditions (relative boundedness):
t =

Vi m e—itH (Y|[H|[p) < o (Y|Holp) + BllI¥)I*,  VI¢) € dom(y/Ho)
I(H — B < v I )| + 6l V]) € dom(Ho)

[Theorem: Uy — Vi||HoF < 2v2\/aE + B/yt + 6t }

Recall:

led = V]

E’Ezzw— o IV ]) 2

Y| H[Y)<E



Back to symplectic unitaries

Quantum speed limits can certainly be used to distinguish symplectic unitaries Ug, Ug for S ~ S’
S~1 =Ug= et2(R)

Problem: Sp,, (R) non-compact = exp : sp,,,(R) — Sp,, . (R) non-surjective

Polar decomposition:

S = PO, P € Posy,, (R) Nexp(sps,, (R)), O € O, (R) Nexp(sp,y,, (R))

4 )
Slloos 15 loo < 7

Theorem: For any two symplectic unitaries Ug, Ug/ ,
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Maximum squeezing



(111) A Gaussian Solovay-Kitaev theorem



Quantum computing with qubits

Universal gate set: ex: G = {H, /8, CNOT} [Boykin et. Al 1999]
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Quantum computing with qubits

Universal gate set: ex: § = {H, /8, CNOT} [Boykin et. Al 1999]

b—e—F --
H N
U ~ 0 0--O
B A S
] 0---- O
O 0-----1

Efficiency: Assume G is closed under taking inverses.

/Theorem [Solovay 1995, Kitaev 1997]

For any U € SU(2), and all 6 > 0, there exists a finite concatenation U’ of

polylog(6—1!) elements from a universal gate set G, which can be found in time
polylog(6—1) and such that

N U —U'|oo <6

/




Quantum computing with continuous variables

Universality:

[Lloyd & Braunstein 1999] : Universalitg in the sense of approximations of unitaries
U = e PoYR) - of finite degree d.

G2 = {translations, phase shifts, squeezers} generates all quadratic Hamiltonians
+ 1 Q3 }: any higher degree achievable.

[Barlett, Sanders, Braunstein & Nemoto 2002] d=2? “Gaussian circuits are classically simulatable”

Efficiency?




The Gaussian Solovay-Kitaev theorem

Here we are interested in efficiently approximating symplectic unitaries Ug where

S € Spa, = {5 € Spy(R), [[S]lec < 1}
Physical interpretation: ||.S||,, measures the amount of squeezing induced by S
Fix G to be any finite generating subset of SPam containing inverses of its elements.

In practice, any gate set generating the group of passive Gaussian unitary and an arbitrary
non-passive Gaussian unitary will do.

/" Theorem [Becker, Datta, Lami, CR 2020]

For any S € Sp,,, and all 6 > 0, there exists a finite concatenation S’ of
polylog(6~1) elements from G, which can be found in time polylog(d—!) and

uch that [Us — Us/ |E < e /mrs VEVS

N




Gaussian SV theorem: proot idea

ﬂl’ heorem [Becker, Datta, .ami. CR 2020]

For any S € Sps,,, and all § > 0, there exists a finite concatenation S’ of
polylog(6—1!) elements from G, which can be found in time polylog(d—!) and

such that [Us — Us/|NE < cv/mrE VE VG

N

Proof: 2 ingredients:

1) Extension of the original SV theorem to! { X € Sp,. (R), || X ||cc < 7}

2) Use of our bounds on energy constrained diamond norm in order to reduce to 1)

[Us —Us 1577 < eVm Er/][(8")71S = I|2

1. [Aharonov, Arad, Eban, Landau 2008] Extension of SV to {X ~ SLd(R)a HX — 1 Hoo < 7"}



Conclusions

Summary of results:
(i) Entanglement is not necessary when EC discriminating between unitaries

(ii) Perfect discrimination between unitaries possible at finite energy and with finite number
of copies

(iif) New quantum speed limits measuring the drift between two unitaries of unbounded
Hamiltonians

(iv) A Solovay-Kitaev theorem for symplectic unitaries

Future direction:

Necessary and sufficient conditions for perfect EC discrimination of non-unitary channels?

Bounds for Gaussian non-unitary (noisy) channels?
Etc...



Thank you for your attention!



H, dim(H) > 3 = |lu - VH({{,E

2 /1 — inf Utv 2
¢ i @IV

Proof: By Schmidt decomposition,

— HvE— _ 1 2
u-vl —2% Lt T pUTVIE ()

Remains to prove that infimum is achieved on pure states.

Theorem (Au-Yeung, Poon 1979) For d > 3 and 241, 42, Z3 S.A.

Fy = {($|Z1[0), (6] Za|p), (| Zs]0)); [4) € T4 s convex.
Use it for (Z1, o, Zg) — (RG(UTV), Im(UTV), H),and conclude by (*) and

inf T2 4 y? = inf 2 + 3% (Au-Yeung, Poon)
(xz,y,2)EConv(R3) (z,y,2)€(R3)
z<E z<E



JE < 0o, n € Ns.t. |[U®" — V®”Hf(n)’E = 2

Proof: By the previous theorem, we need to prove that there exists an energy such that

0 € {(|(UTV)®" ), (|H™|y) < E}

O O

UTV ®2 (UTv)®3

Take tensor products of three eigenvectors of [/ TV whose eigenvalues triangularize (), approximate
them by vectors in the domain of H . Conclude by Toeplitz-Hausdorff theorem.



