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Dichotomies

I quantum system with Hilbert space H

I pair of states (ρ, σ) on H

I interpretations:

1. “black-box”, possible preparations
2. ρ state, σ reference
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Pair transformations

I Let ρ1, σ1 ∈ S(H) and T a channel from H to K

I T transforms (ρ1, σ1) to (T (ρ1),T (σ1)) = (ρ2, σ2)

I T linear, convenient to allow trace 6= 1

T (ρ1) = ρ2 ⇐⇒ T (cρ1) = cρ2

T (σ1) = σ2 ⇐⇒ T (cσ1) = cσ2
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Example: majorization

Let p1, p2 ∈ Rd
≥0. p1 majorizes p2 if

k∑
i=1

(p↓1)i ≥
k∑

i=1

(p↓2)i for k = 1, 2, . . . , d , equality

if k = d .

I ρ1 = diag(p1,1, . . . , p1,d) ∈ Cd×d

I ρ2 = diag(p2,1, . . . , p2,d) ∈ Cd×d

I σ1 = σ2 = I ∈ Cd×d identity matrix

p1 majorizes p2 iff T (ρ1) = ρ2 and T (I ) = I for some channel T

Applications

I mixedness

I pure bipartite entanglement

I coherence
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Example: Gibbs preserving maps

I thermal operations model interaction with heat bath at temperature β−1

I T is Gibbs preserving if T (2−βH) = 2−βH

I (ρ1, 2
−βH)→ (ρ2, 2

−βH)

I thermal operations are Gibbs preserving

I classically ρ1 7→ ρ2 possible with Gibbs preserving T iff possible with thermal
operation
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Example: hypothesis testing

Box transformations

I “black-box” either containing ρ or σ

I apply completely positive trace preserving map T to unknown state: new pair
(T (ρ),T (σ))

I (ρ, σ) more distinguishable than (T (ρ),T (σ))

ρ

σ

T T (ρ)

T (σ)

(Π, I − Π)
?

(T ∗(Π),T ∗(I − Π))
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Relative submajorization

I allow unnormalized ρ2, σ2, traces represent probabilities

I T completely positive trace nonincreasing such that

T (ρ1) ≥ ρ2
T (σ1) ≤ σ2

relative submajorization [Ren16], notation: (ρ1, σ1) < (ρ2, σ2)

I interpretation: probabilistic transformations
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Example: hypothesis testing

I two-outcome measurement (Π, I − Π), probabilities Tr ρΠ, Tr ρ(I − Π)

I redundant: probabilities sum to 1

I test: T (ρ) = Tr(ρΠ) for some 0 ≤ Π ≤ I

I (ρ, σ) < (a, b) iff there is a test Π with

α(Π) = 1− Tr(ρΠ) ≤ 1− a type I error

β(Π) = Tr(σΠ) ≤ b type II error
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Tensor product

I (ρ1, σ1) and (ρ2, σ2) dichotomies on H1 and H2

I product
(ρ1, σ1) · (ρ2, σ2) = (ρ1 ⊗ ρ2, σ1 ⊗ σ2)

dichotomy on H1 ⊗H2
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Example: independent subsystems

I H1,H2 Hamiltonians and ρ1, ρ2 states

I (ρ1, 2
−βH1) and (ρ2, 2

−βH2)

I total Hamiltonian (no interaction): H = H1 ⊗ I + I ⊗ H2

I Gibbs state factorizes
2−βH = 2−βH1 ⊗ 2−βH2

I independent preparation, no interaction: (ρ1 ⊗ ρ2, 2−βH1 ⊗ 2−βH2)
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Example: asymptotic hypothesis testing

I discriminate ρ⊗n and σ⊗n, test Πn

I errors αn = 1− Tr(ρ⊗nΠn) and βn = Tr(σ⊗nΠn)

I quantum Stein’s lemma [HP91]: αn → 0 possible if βn ≥ 2−nD(ρ‖σ)+o(n)

Strong converse

I if βn → 0 faster, then αn → 1

I exponential convergence, βn = 2−rn+o(n) and αn = 1− 2−Rn+o(n)

R∗(r) = sup
α>1

α− 1

α

[
r − D̃α(ρ‖σ)

]
strong converse exponent [MO15]
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Asymptotic relative submajorization

I compare many copies (ρ⊗n1 , σ⊗n1 ) and (2−Rn+o(n)ρ⊗n2 , 2−rnσ⊗n2 )

I ordered by relative submajorization

I can be made exact in second component if Tr σ1 ≥ 2−r Tr σ2

Goal

Characterize trade-off between R and r .
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Result: characterization of asymptotic transformations

Theorem

Let (ρ1, σ1), (ρ2, σ2) be pairs of states such that supp ρi ⊆ suppσi . Given R, r ,
(ρ⊗n1 , σ⊗n1 ) relative submajorizes (2−Rn+o(n)ρ⊗n2 , 2−rnσ⊗n2 ) for every n iff

R ≥ R∗(r) = sup
α>1

α− 1

α

[
r − D̃α(ρ1‖σ1) + D̃α(ρ2‖σ2)

]

D̃α(ρ‖σ) =
1

α− 1
log Tr(σ

1−α
2α ρσ

1−α
2α )α
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Overview of proof

Dual approaches:

I constructions: channels T such that T (ρ⊗n1 ) ≥ ρ⊗n2 and T (σ⊗n1 ) ≤ σ⊗n2

I obstructions: monotone quantities that disprove (ρ1, σ1) & (ρ2, σ2)

Strategy

1. show that special obstructions suffice

2. classify these obstructions
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Preordered semirings

I preordered semiring: (S ,+, ·, 0, 1,4), operations and preorder behave like in N
in detail:

I +,· associative, commutative, distributive
I 0 and 1 neutral elements for + and ·
I 4 reflexive, transitive
I x 4 y implies x + z 4 y + z and x · z 4 y · z

I asymptotic preorder &: for suitable u ∈ S , define x & y as uo(n) · xn < yn

I if f : S → R≥0 multiplicative, <-monotone, then also &-monotone:

uo(n) · xn < yn =⇒ f (uo(n) · xn) ≥ f (y) =⇒ f (u)o(1)︸ ︷︷ ︸
→1

f (x) ≥ f (y)
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Duality

I spectrum: ∆(S) = {f : S → R≥0|f monotone homomorphism}
in detail:

I f (1) = 1
I f (x + y) = f (x) + f (y)
I f (x · y) = f (x)f (y)
I x < y =⇒ f (x) ≥ f (y)

I x & y =⇒ ∀f ∈ ∆(S) : f (x) ≥ f (y)

Theorem (informal, see precise forms in [Str88] and [Vra20b])

Let S be preordered semiring satisfying additional conditions. Then

x & y ⇐⇒ ∀f ∈ ∆(S) : f (x) ≥ f (y)
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Examples of preordered semirings

semiring dual char spectrum

2-tensors yes trivial
k-tensors [Str88] yes hard (but see recent progress [CVZ18])
graphs [Zui19] yes hard (but see recent progress [Vra19])
graphs, q/ea [LZ20] yes hard
nc graphs [LZ20] ? hard
nc graphs, ea [LZ20] yes hard
bipartite LOCC [JV19] yes nontrivial but solved
k-partite LOCC [JV19] yes hard (but see recent progress [Vra20a])
dichotomies [PVW20] yes [Vra20b] nontrivial but solved (this talk)
multiple states [BV20] yes [Vra20b] nontrivial but solved (this talk)
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Semiring of dichotomies

I elements: (equivalence classes of) pairs (ρ, σ) where ρ, σ ≥ 0, supp ρ ⊆ suppσ

I operations: direct sum, tensor product

(ρ1, σ1) + (ρ2, σ2) =

([
ρ1 0
0 ρ2

]
,

[
σ1 0
0 σ2

])
(ρ1, σ1) · (ρ2, σ2) = (ρ1 ⊗ ρ2, σ1 ⊗ σ2)

I preorder: relative submajorization
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Characterization of sandwiched Rényi divergences

need to find spectrum, i.e. functions f (ρ, σ) that satisfy

(i) f (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = f (ρ1, σ1)f (ρ2, σ2) (multiplicativity)

(ii) f (ρ1 ⊕ ρ2, σ1 ⊕ σ2) = f (ρ1, σ1) + f (ρ2, σ2) (additivity)

(iii) f (In, In) = n (normalization)

(iv) f (T (ρ),T (σ)) ≤ f (ρ, σ) when T is a completely positive trace-nonincreasing
map (data processing inequality)

(v) f is increasing in the first and decreasing in the second argument (with respect to
the semidefinite partial order). (monotonicity)

Theorem

These are
fα(ρ, σ) = Q̃α(ρ, σ) = Tr(σ

1−α
2α ρσ

1−α
2α )α

with α ≥ 1.
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Summary

I characterization of asymptotic relative submajorization

I extends operational interpretation of sandwiched Rényi divergences

I axiomatic characterization of sandwiched Rényi divergences

I new technique for studying resource theories directly in the asymptotic regime

I robust tools, may be suitable for studying similar problems, e.g. channel
discrimination, restricted transformations

I would be interesting to extend method to different asymptotic regimes
(approximate, vanishing error, direct region, etc.)
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