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Query complexity

Ddt(f ) = deterministic queries

Ddt(ORn) = n

Rdt(f ) = randomized queries, 1/3 error on all inputs

Rdt(ORn) = Θ(n)

Qdt(f ) = quantum queries, 1/3 error on all inputs

|i〉 Oz−→ (−1)zi |i〉

Qdt(ORn) = Θ(
√
n) (Grover search)

These are easy to prove!
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Communication complexity

Known two-party relation F : X × Y ×O

x ∈ X y ∈ Y

π1 = a1(x)

π2 = b2(y , π1)

...
πr = ar (y , . . . , πr−1)

o ∈ F (x , y)

In randomized protocols, Alice and Bob share random bits and πi -s depend
on them.
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Communication complexity

Quantum communication protocol

X XA1 = XA2 XA3 XAr = XAr+1

Y YB2 = YB3 YBr YGO

A0

B0

U1

C1

U2

C2

U3

C3

. . .

Cr

Ur+1
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Communication complexity

How many bits/qubits of communication is needed between Alice and Bob,
to compute F for the worst case inputs?

Dcc(F ) = deterministic communication

Rcc(F ) = randomized communication, 1/3 error on all inputs

Qcc(F ) = quantum communication, 1/3 error on all inputs

Communication is more powerful than querying:

Dcc(ORn) = Rcc(ORn) = Qcc(ORn) = 1

Also much harder to prove lower bounds!
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Query vs communication

Sometimes, communication is no more powerful than query:

F = Disjn = ORn ◦ ANDn
2

ORn

AND2

x1y1

AND2
. . .

x2y2 . . .

AND2

xnyn

Dcc(Disjn) = n Rcc(Disjn) = Θ(n) Qcc(Disjn) = Θ(
√
n)
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Composition with gadgets
Can f ◦ Gn be as hard for communication as a general f is for query?

f = ORn,G = AND2 3

f = ANDn,G = AND2 7

f = ANDn,G = OR2 3

f = ORn,G = OR2 7

G needs to contain both AND2 and OR2.

Eg - 1. VER : {0, 1, 2, 3} × {0, 1, 2, 3} → {0, 1}

b
a

0 1 2 3

0 0 0 1 1

1 0 1 1 0

2 1 1 0 0

3 1 0 0 1

2. Inner product, IPm(a, b) = a1b1 + . . .+ ambm mod 2
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Lifting theorems
With an appropriate gadget,

Ccc(f ◦ Gn) = Ω(Cdt(f )).

Lifting theorems via simulation:

Dcc(f ◦ Indn
m) = Ω(Ddt(f ) · logm), with m = nO(1) [RM99, GPW15]

Dcc(f ◦ IPn
m) = Ω(Ddt(f ) · logm), with m = O(log n) [WYY17]

Rcc(f ◦ Indn
m) = Ω(Rdt(f ) · logm), with m = nO(1) [GPW17]

Rcc(f ◦ IPn
m) = Ω(Rdt(f ) · logm), with m = O(log n) [CFKMP19]

Constant-sized gadget lifting theorems:

log r̃ank(f ◦ Gn)
↓

lower bound on Qcc(f ◦Gn)

= Ω(d̃eg(f ))
↓

lower bound on Qdt(f )

[She09]

Rcc(f ◦ VERn) = Ω(cbs(f ))
↓

lower bound on Rdt(f )

[GP13]
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Lifting theorems
Our results:

Rcc(f ◦ VERn) = Ω(CAdv(f ))
↓

stronger lower bound on Rdt(f )

Qcc
r (f ◦ VERn) = Ω

(
CAdv(f )

r2

)
Qcc(f ◦ Gn) = Ω(Adv1(f )

↓
lower bound on Qdt(f )

· QICZ(G ))

QICZ(G ) : (informally) related to secure 2-party computation

Comparison with previous results:

CAdv(f ) = Ω(cbs(f )) for all partial functions

CAdv(f ) = Ω(cbs(f )3/2) for a family of total functions

Adv1(f ) = O(d̃eg(f )) for all partial functions [ABK+20]

...but techniques may generalize!
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Adversary bounds (dual formulation)

CAdv(f ) = min
{q(z,i)}

max
z

n∑
i=1

q(z , i)

s.t.
∑

i :zi 6=wi

min{q(z , i), q(w , i)} ≥ 1 ∀z ,w s.t. f (z) ∩ f (w) = ∅

Adv(f ) = min
{q(z,i)}

max
z

n∑
i=1

q(z , i)

s.t.
∑

i :zi 6=wi

√
q(z , i)q(w , i) ≥ 1 ∀z ,w s.t. f (z) ∩ f (w) = ∅

Adv1(f ) = min
{q(z,i)}

max
z

n∑
i=1

q(z , i)

s.t.
√

q(z , i)q(w , i) ≥ 1 ∀z ,w , i s.t. f (z) ∩ f (w) = ∅,
z and w differ only on i
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Showing an adversary lower bound

Given an algorithm/protocol

q(z , i) ∼ how much it learns zi

In query complexity, q(z , i) = probability algorithm queries i on z (scaled)

1.
n∑

i=1

q(z , i) ≤ number of queries by A ∀z

2. CAdv(f ):
∑

i :zi 6=wi

min{q(z , i), q(w , i)} ≥ 1 ∀z ,w s.t. f (z) ∩ f (w) = ∅

2’. Adv(f ):
∑

i :zi 6=wi

√
q(z , i)q(w , i) ≥ 1 ∀z ,w s.t. f (z) ∩ f (w) = ∅
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Information complexity of communication protocols

Distribution µ on inputs X ,Y of a classical communication protocol with
shared randomness R

⇒ Induced distribution on the transcript Π.

IC(Π, µ) = I (X : Π|YR)µ + I (Y : Π|XR)µ

CC(Π) ≥ IC(Π, µ) ∀µ
Chain rule for X1 . . .Xn:

I (X : Π|YR) =
n∑

i=1

I (Xi : Π|X<iYR)

QIC: quantum analogue (defined round-by-round) [Tou15]
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Information complexity lower bounds

µ0: uniform distribution on 0-inputs of AND2

µ1: uniform distribution on 1-inputs of OR2

[BJKS04]: For any classical protocol Π for AND2, IC(Π, µ0) = Ω(1).

Similarly, for any classical protocol Π′ for OR2, IC(Π′, µ1) = Ω(1).

[BGK+18]: For any r -round quantum protocol Πr , QIC(Πr , µ0) =
Ω̃(1r ).

For any r -round quantum protocol Π′r , QIC(Π′r , µ1) = Ω̃(1r ).

I Optimal up to logarithmic factors.
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The VER gadget

VER(a, b) =

{
1 if a + b = 2 or 3 mod 4

0 otherwise.

1. Flippability: Given (a, b) Alice and Bob can locally generate (a′, b′)
such that VER(a′, b′) = 1− VER(a, b).

2. Random self-reducibility: Given (a, b) Alice and Bob can use shared
randomness to uniformly sample from VER−1(VER(a, b)).

3. Non-triviality: VER contains AND2 and OR2 as subfunctions.

1.+2.⇒ Distinguishing m inputs to VER evaluating to 0m vs 1m on average
⇒ Computing VER

3.⇒ Protocol that computes VER has

IC(Π, µ0), IC(Π, µ1) = Ω(1)
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Rcc(f ◦ VERn) = Ω(CAdv(f ))

q(z , i) = info(Π, z , i) w.r.t. uniform X1 . . .Xn,Y1 . . .Yn evaluating to z

∼ information about Xi ,Yi conditioned on other variables

Chain rule:
∑

i info(Π, z , i) ≤ CC(Π)

Π for f ◦ VERn

X1 . . .Xn Y1 . . .Yn

...

z ,w differing on B, f (z) ∩ f (w) = ∅∑
i∈Bmin{info(Π, z , i), info(Π,w , i)}

⇒

Π′ for VER

A B

...

≥ IC(Π′, µ0) or IC(Π′, µ1) = Ω(1)
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Qcc
r (f ◦ VERn) = Ω(CAdv(f )

r2 )

Same proof gives Ω(CAdv(f )r )?

I Problems with chain rule /
Use measure HQIC rather than QIC:

1

r
HQIC(Πr , µ) ≤ QIC(Πr , µ) ≤ log |Πr |

Corollary: CC(Πr ) ≥ max{r ,CAdv(f )/r2} ≥ CAdv(f )1/3

I New for relations
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Future directions

Solve chain rule issue: Ω(CAdv(f )/r), Ω(sAdv(f ) · QICZ(G )) lower
bounds for Qcc(f ◦ Gn)?

Unconditionally lower bound QICZ(G ) helpful: techniques from cryp-
tography helpful?

Adv±(f ) lower bound? For Rcc(f ◦ Gn)?
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