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Query complexity

o D9(f) = deterministic queries

DU(OR,) = n

o RY(f) = randomized queries, 1/3 error on all inputs

RY(OR,) = ©(n)

o Q¥(f) = quantum queries, 1/3 error on all inputs
\ O, .
1) == (=1)%]i)

QY(OR,) = ©(v/n) (Grover search)

@ These are easy to prove!
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Communication complexity

Known two-party relation F : X x Y x O

2NN
‘\fi’ m1 = ai(x)

|

‘W‘\ o = bo(y, 1)

S~ T = ar(}/a“-yﬂ'r—l)
_

o€ F(x,y)

In randomized protocols, Alice and Bob share random bits and 7;-s depend
on them.
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Communication complexity

Quantum communication protocol

X XA = XA, XAz XA, = XA 11
» [ 7
fﬁ! Uy U3
G G G
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U2 Ur+1
Y YB, = YB3 YB, veo
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Communication complexity

How many bits/qubits of communication is needed between Alice and Bob,
to compute F for the worst case inputs?

e D°(F) = deterministic communication
@ R(F) = randomized communication, 1/3 error on all inputs

e Q°(F) = quantum communication, 1/3 error on all inputs

Communication is more powerful than querying:
D“(OR;) = R*(OR,) = Q*(OR,) =1

Also much harder to prove lower bounds!
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Query vs communication

Sometimes, communication is no more powerful than query:

F = Disj, = OR, o AND?

OR,

AND> AND; AND,

X1Y1 X2Y2 s XnYn

D*(Disj,) =n  R<(Disj,) = ©(n)  Q(Disj,) = (V)
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Composition with gadgets
Can f o G" be as hard for communication as a general f is for query?

f = OR,, G = AND; ~/
f = AND,,, G = AND, X
f = AND,, G = ORy /
f = OR,, G = OR; X

G needs to contain both AND> and OR>.

Eg- 1. VER:{0,1,2,3} x {0,1,2,3} — {0,1}
a
b

1]2

3
1
0
0
1

== OO O
([IN AN N

1
1
0
0

WIN |+~ O

2. Inner product, IP(a, b) = a1b; + ...+ amb, mod 2
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Lifting theorems
With an appropriate gadget,
C(f o0 G™) = Q(C*(F)).
Lifting theorems via simulation:
o D(f olInd™) = Q(D(f) - log m), with m = n®®) [RM99, GPW15]
o D(f o IP1) = Q(DY(f) - log m), with m = O(log n) [WYY17]
o R(f oInd™) = Q(RY(f) - log m), with m = n°1) [GPW17]
o R(f o IP™) = Q(RY(f) - log m), with m = O(log n) [CFKMP19]

Constant-sized gadget lifting theorems:

o logrank(foG") =  Q(deg(f))  [She09]
lower bound in Q(foG™) lower bounﬁ on QU (f)
o RE(foVER") =  Q(cbs(f))  [GP13]
1

lower bound on Rdt(f)
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Lifting theorems
Our results:
e R(f o VER") = Q(CAdv(f))
stronger lower l;Lound on RY(f)
o Q¥(f o VER") = @ (A41)
0o QC(fo G = Q(Advi(f) - QICZ(G))

lower bound on Q9(f)
QICZ(G) : (informally) related to secure 2-party computation

Comparison with previous results:
o CAdv(f) = Q(cbs(
CAdv(f) = Q(cbs(f

e Advy(f) = (deg(f)) for all partial functions [ABK+20]

...but techniques may generalize!

f)) for all partial functions

)3/2) for a family of total functions
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Adversary bounds (dual formulation)

CAdv(f) = mln maxz z,10)

{q(z,i)}

s.t. Z mln{q(z7 N,q(w,)} >1Vz,wst f(z)Nfw)=10

iiziF#w;
Adv(f) = min max z,i
(F) {a(z,)} z ‘= a(z.)
st. > Valz,a(w,i) > 1Vz,w st. f(z) N F(w) =0
iizj#w;
Advi(f) = min max z, i
() = min, max 3 (=)

q(z,Ng(w, i) > 1Yz, w,ist. f(z)Nf(w) =10,

z and w differ only on i

Srijita Kundu Query-to-Communication Lifting Theorems for Adversary Bounds Slide 10



Showing an adversary lower bound

Given an algorithm /protocol
q(z, i) ~ how much it learns z;

In query complexity, q(z, /) = probability algorithm queries i on z (scaled)

1. Z q(z,i) < number of queries by A Vz

2. CAdv(f): > min{q(z,i),q(w,i)} >1Vz,wst f(z)Nf(w)=10
iizi#w;
2'. Adv(f): Z Va(z,g(w,i) >1Vz,wst. f(z)Nf(w)=10
i:zi#w;
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Information complexity of communication protocols

Distribution p on inputs X, Y of a classical communication protocol with
shared randomness R

= Induced distribution on the transcript 1.

IC(M, pu) = I(X :NYR), + (Y : N|XR),

o CC(M) >1C(N,u) Yu
@ Chain rule for X7 ... Xy:

(X :O[YR) = > I(X; : N|X<; YR)
i=1

QIC: quantum analogue (defined round-by-round) [Toul5]
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Information complexity lower bounds

po: uniform distribution on O-inputs of AND,
p1: uniform distribution on 1-inputs of OR>

[BJKSO04]: For any classical protocol I for ANDy, IC(I, o) = (1).
Similarly, for any classical protocol M for ORy, IC(I, 1) = Q(1).

[BGK+18]: For any r-round quantum protocol M", QIC(M", ug) =
Q(L).

r

For any r-round quantum protocol M7, QIC(N', y1) = Q(2).

» Optimal up to logarithmic factors.
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The VER gadget

1 fat+b=20r3 mod4
0 otherwise.

VER(a, b) = {

1. Flippability: Given (a, b) Alice and Bob can locally generate (&', b')
such that VER(&’, b’') = 1 — VER(a, b).

2. Random self-reducibility: Given (a, b) Alice and Bob can use shared
randomness to uniformly sample from VER™Y(VER(a, b)).

3. Non-triviality: VER contains AND, and OR; as subfunctions.

1.4-2.= Distinguishing m inputs to VER evaluating to 0™ vs 1™ on average
= Computing VER

3.= Protocol that computes VER has
IC(, 10), IC(M, 1) = (1)
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Re(f o VER") = Q(CAdv(f))

q(z,i) =info(M,z,i) w.r.t. uniform Xi... Xy, Y1...Y, evaluating to z

~ information about X;, Y; conditioned on other variables

Chain rule: Y info(M, z, i) < CC(M)

M for f o VER" M’ for VER

z, w differing on B, f(z) N f(w) =10
> icgmin{info(M, z,i),info(M, w, )} > IC(M, o) or IC(M", 1) = Q(1)
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QS°(f o VER") = QA1)

Same proof gives Q(M)?
» Problems with chain rule ®

Use measure HQIC rather than QIC:

THQIC(N 1) < QIC(N'. 1) < log ]

Corollary: CC(M") > max{r, CAdv(f)/r?} > CAdv(f)/3

» New for relations
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Future directions

@ Solve chain rule issue: Q(CAdv(f)/r), Q(sAdv(f) - QICZ(G)) lower
bounds for Q<¢(f o G")?

@ Unconditionally lower bound QICZ(G) helpful: techniques from cryp-
tography helpful?

o AdvE(f) lower bound? For R(f o G")?
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