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Quantum vs Classical Query Algorithms

What is the maximal separation?Quantum Speedup 
Question [Buhrman-Fortnow-Newman-Röhrig ’03]

Randomized Query  
Algorithm

Choose bit to query at 
random

Probability Distribution 
over Decision Trees

Quantum Query 
Algorithm

Can query input bits in 
superposition

Objective(s) Minimize queries 

Input x

 bitsn

[Childs-Cleve-Deotto-Farhi-    
Gutmann-Spielman ’03]

[Beaudrap-Cleve-Watrous ’02]

  vs  O(log2 n) Ω̃(n1/2)

  vs  O(1) Ω̃(n2/3−ϵ) [Tal ’20] Non-explicit

  vs  1 Ω̃(n1/2)

  vs  1 Ω̃(n1/4)
[Aaronson-Ambainis ’14]

Partial functions

[Simon ’97]

Classical queries   = (Quantum queries)c
Total functions

c ≤ 6 [Beals-Buhrman-Cleve-Mosca-de Wolf ’98]

[Aaronson-Ben David-Kothari-Rao-Tal ’21]

[Aaronson-Ben David-Kothari ’16]

[Tal ’20]

c ≤ 4

c ≥ 5/2

c ≥ 8/3 − o(1) Non-explicit



 Maximal Separation?
Every -query quantum algorithm with error  can be 
simulated with error  with  classical queries

⌈k/2⌉ 1
2 − δ

1
2 − δ

2 2k ⋅ n1−1/k ⋅ δ−2[Aaronson-Ambainis ’14]

Theorem

Captures the maximal power of

BQP-complete for promise problems for k ≈ log n
• Quantum circuits

• Quantum query algorithms?

Conjecture

[Aaronson-Ambainis ’14]

-fold Forrelation problem gives a   vs   separationk ⌈k/2⌉ Ω̃(n1−1/k)

  classical queriesÕ(n0.999)
k = 1000

Is this optimal?
  classical queriesÕ(n1/2)

k = 2

What is the task where quantum 
algorithms have the maximal advantage?

[Aaronson-Ambainis ’14]



2-Fold Forrelation

Distinguish these cases

Promise Problem

⟨x1, Hx2⟩
n

≤ 0.01
⟨x1, Hx2⟩

n
≥ 0.1vs

Hadamard/Fourier matrixH =
Rotation

n

± 1

n

Each entry

Almost Orthogonal Far from Orthogonal

Fourier transform

H Query 
x2

H Query 
x1

|0⟩ H =
1
n

n

∑
i,j=1

x1(i)Hijx2( j)amplitude of  |0⟩ =
⟨x1, Hx2⟩

n

Can be solved 
with  query1

Input x := (x1, x2) ∈ {±1}n+n

[Aaronson ’10]



2-Fold Forrelation

Distinguish these cases

Promise Problem

|Forr2(x) | ≤ 0.01 vs Forr2(x) ≥ 0.1

Input x := (x1, x2) ∈ {±1}n+n

Forr2(x) =
1
n

n

∑
i,j=1

x1(i) ⋅ Hij ⋅ x2( j)

 Hij x1(i)

 x2( j)

Can be solved 
with  query1

Hadamard/Fourier matrixH =
Rotation

n

± 1

n

Each entry

=
⟨x1, Hx2⟩

n



-Fold Forrelationk

1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)

amplitude of  |0⟩

Forrk(x) =H Query 
xk

H Query 
x1

|0⟩ H

Can be solved with 
 queries⌈k/2⌉

Distinguish these cases

Promise Problem

|Forrk(x) | ≤ 0.01 vs Forrk(x) ≥ 0.1

Input x := (x1, …, xk) ∈ {±1}kn

Hadamard/Fourier matrixH =
Rotation

n

± 1

n

Each entry



Distinguish these cases

Promise Problem

|Forrk(x) | ≤ 0.01 vs Forrk(x) ≥ 0.1

1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)

Input x := (x1, …, xk) ∈ {±1}kn

Forrk(x) =

 Hi1i2 x1(i1)

 x2(i2)
 xk(ik)

 xk−1(ik−1)  Hik−1ik

Can be solved with 
 queries⌈k/2⌉

-Fold Forrelationk

Hadamard/Fourier matrixH =
Rotation

n

± 1

n

Each entry



  vs  500 Ω̃(n0.999)
k = 1000

Theorem -fold Forrelation problem gives a   vs   separation  between 

quantum and classical query algorithms for advantage 

k ⌈k/2⌉ Ω̃(n1−1/k)

δ = 2−O(k)

Our Results

Our proof also works for the non-explicit Rorrelation function introduced by [Tal ’20]

Main Contribution: classical lower bound

Replace Hadamard with a Random Orthogonal matrix

1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)Forrk(x) =

Previous lower bound: Ω̃(n1/2)
[Aaronson-Ambainis ’14]



  vs  500 Ω̃(n0.999)
k = 1000

Theorem -fold Forrelation problem gives a   vs   separation  between 

quantum and classical query algorithms for advantage 

k ⌈k/2⌉ Ω̃(n1−1/k)

δ = 2−O(k)

Our Results

Main Contribution: classical lower bound 

Consequences

 vs  separation for error Oϵ(1) n1−ϵ 1/3

‣  Query Complexity of Partial Functions with standard error

‣ Query Complexity of Total Functions with standard error

 Classical queries   ∃total f ≥ (Quantum queries)3−o(1)

‣ Analogous separations in Communication Complexity by Lifting

Independent Work          Analogous results for Rorrelation [Sherstov-Storozhenko-Wu ’21] building on [Tal ’20] Different Techniques

{
Explicit 

[SSW ’21] + [Tal ’20] rely on strong properties of random 
orthogonal matrices that do not hold for Hadamard matrix

Our proof also works for the non-explicit Rorrelation function introduced by [Tal ’20]

Previous lower bound: Ω̃(n1/2)
[Aaronson-Ambainis ’14]



High-level Overview



Quantum vs Classical Query Algorithms

Fact Success probability of any -query quantum or randomized 
algorithm is a degree  multilinear polynomial

d
O(d)

-norm of coefficients of degree  monomials 
           number of degree  monomials
L1 ℓ

≪ ℓ

Quantum Query Algorithm
Extremely good at computing dense 
polynomials with few queries

1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)Forrk(x) =

Randomized Query Algorithm
Can only compute weakly-
sparse polynomials 

[Tal ’20]

[SSW ’21]

f(z) = ∑
S⊆[N]

̂f(S) ⋅ zS  where z ∈ {±1}N  and  zS = ∏
i∈S

zi

∑
|S|=ℓ

| ̂f(S) | ≤ (d
ℓ) ≪ (d

ℓ)  for all ℓ ≤ d
Rest of the talk

We only need bound on derivatives of order  which follow from [Tal ’20]≤ k2

[This Work]

∑
|S|=ℓ

|∂S f(x) | ≤ (d
ℓ) for any  and 

any 
ℓ

x ∈ [−1,1]N

Observation
Multilinear polynomial  of degree  with small 

derivatives cannot compute -Fold Forrelation
p d ≪ n1−1/k

k

∑
|S|=ℓ

|∂S f(0) | =



Degree Lower Bounds

Uniform Distribution on  {±1}kn

Uniform Distribution 𝒰

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)

Forrk(x)

Input (x1, …, xk) ∈ {±1}kn

Show that such polynomials cannot distinguish 
distributions on 0 vs 1 inputs

|Forrk(x) | ≤ 0.01 vs Forrk(x) ≥ 0.1 𝔼[p(ℱk)] − 𝔼[p(𝒰)] ≈ 0

Multilinear polynomial  of degree  with small 
derivatives cannot compute -Fold Forrelation

p d ≪ n1−1/k

k



1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)

Forrk(x)

Input (x1, …, xk) ∈ {±1}kn

Multilinear polynomial  of degree  with small 
derivatives cannot compute -Fold Forrelation

p d ≪ n1−1/k

k

Degree Lower Bounds via Interpolation

Uniform Distribution on  {±1}kn

Uniform Distribution 𝒰

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

Choose smart path to control 
time derivative of  𝔼[p(𝒟(t))]

Time t

𝒟(t)

0 1

ℱ𝒰

Labeled “Smart Path method” by Talagrand

Many applications in statistical physics, 
probability, convex geometry,…

𝔼[p(ℱk)] − 𝔼[p(𝒰)] ≈ 0



Multilinear polynomial  of degree  with small 
derivatives cannot compute -Fold Forrelation

p d ≪ n1−1/k

k

Our Main Technical Contribution
Choose smart path to control 
time derivative of  𝔼[p(𝒟(t))]

Time t

𝒟(t)

0 1

ℱ𝒰
𝔼[p(ℱk)] − 𝔼[p(𝒰)] ≈ 0

Lemma

"Time derivative" ≤ max
x∈[−1,1]kn

k(k−1)

∑
ℓ=k ( 1

n )
ℓ(1−1/k)

∑
|S|=ℓ

|∂S p(x) |

For every “time”  t
Recall bound on derivatives [Tal ’20]

[SSW ’21]ℓth-order ≤ dℓ/2
+ Our Observation

≤
d

n
≤ max

x∈[−1,1]kn

1

n ∑
|S|=2

|∂S p(x) |2-Fold

[Raz-Tal ’18]
[Wu ’19]

3-Fold ≤ max
x∈[−1,1]kn

1
n ∑

|S|=3

|∂S p(x) | +
1
n2 ∑

|S|=6

|∂S p(x) |
[This Work]

≤
d3/2

n
+

d3

n2

{

‣   Gaussian Integration by Parts

‣   Gaussian Interpolation

‣  Develop new Integration by  
Parts identities for rounding

Relies on stochastic calculus toolsChoose d ≈ n1/2

Choose d ≈ n2/3

2nd order

3rd order 6th order



Proof Ideas



Degree Lower Bounds via Interpolation

Uniform Distribution on  {±1}kn

Uniform Distribution 𝒰

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

Choose smart path to control 
time derivative of  𝔼[p(𝒟(t))]

Time t

𝒟(t)

0 1

ℱ𝒰

1
n

n

∑
i1,…,ik=1

x1(i1)Hi1i2x2(i2)Hi2i3…Hik−1ikxk(ik)

Forrk(x)

Input (x1, …, xk) ∈ {±1}kn

Multilinear polynomial  of degree  with small 
derivatives cannot compute -Fold Forrelation

p d ≪ n1−1/k

k

𝔼[p(ℱk)] − 𝔼[p(𝒰)] ≈ 0

Small Value Large ValueRecall



2-Fold Case: Pseudorandom Distribution 

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

Forr2(x) =
1
n

n

∑
i,j=1

x1(i) ⋅ Hij ⋅ x2( j)

 Hij x1(i)

 x2( j)

Input (x1, x2) ∈ {±1}2n

  Gaussian in  with Covariance X := (X1, X2) ℝ2n Σ = ( In Hn

Hn In )

“Covariance Graph”
 Hij X1(i)

 X2( j)

independent

𝔼[X1(i)X2( j)] = Hij

independent

𝔼[Forr2(X)] =
1
n ∑

ij

H2
ij = 1

Forrk(x) ≥ 0.1

Not in this talk

[Aaronson-Ambainis ’14]

New Techniques in our work

k = 2

Hij = ± 1

n

Decision tree or multilinear polynomial 
needs to compute all 2-wise correlations

Intuition



2-Fold Case: The Smart Path

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

Rounding

Uniform Distribution 
on  {±1}kn

Sample from standard 
Gaussian over ℝkn

e.g. take sign

Uniform Distribution    𝒰

Time t

𝒟(t)

0 1

ℱ𝒰

= (1 − t)I + tΣ

Covariance
I Σ

Can be directly handled using Gaussian 
Interpolation Formula Hij X1(i)

 X2( j)

"Time derivative" ≤ max
x∈[−1,1]kn

1

n ∑
ij

|∂ijp(x) |
 corresponds to removing  e.g. ∂ij xixj x1x2x3⋯xixj

Not in this talk

Not in this talk

Bound in terms of  and final 
covariance entries 

∂ijp(x)
Hij = ± 1

n

Multilinear 
polynomial p



3-Fold Case: Pseudorandom Distribution 

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

Forrk(x) ≥ 0.1

1
n

n

∑
i,j,l

x1(i)Hijx2( j)Hjlx3(l)Forr3(x) =

 Hi1i2 x1(i1)

 x2(i2)

Input (x1, x2, x3) ∈ {±1}3n

 Hij G1(i)

 G2( j)

 Hjl

 B1( j)  B2(l)

Take product of these random variables 

X := (G1, G2 ⊙ B1, B2) ∈ ℝ3n

 independent Gaussians in  with covariance  G, B ℝ2n Σ = ( In Hn

Hn In )

Decision tree or multilinear polynomial needs 
to compute all three-wise correlations now

Intuition

k = 3

Entry-wise product

[Tal ’20]

Not in this talk

𝔼[Forr3(X)] = 1



3-Fold Case: The Smart Path

Rounding

Distribution on  {±1}kn
Sample from some 

distribution  over 𝒫k ℝkn

e.g. take sign

Pseudorandom Distribution    ℱk

Rounding

Uniform Distribution 
on  {±1}kn

Sample from standard 
Gaussian over ℝkn

e.g. take sign

Uniform Distribution    𝒰

Time t

𝒟(t)

0 1

ℱ𝒰

Not in this talk

Not in this talk

 Hij G1(i)

 G2( j)

 Hml

 B1(m)

 B2(l)

Take product of these random variables 

X := (G1, G2 ⊙ B1, B2) ∈ ℝ3n

Other stochastic calculus tools e.g. Gaussian Integration 
by Parts to relate derivatives after substitution

Interpolate  and  separatelyG B

Want bounds in terms of  
and sixth order derivatives

∂ijℓp
p(z) = ⋯ + ⋯ z1z2z3 ⋯ + ⋯

z1 = g1, z2 = g2 ⋅ b2, z3 = b3

g1g2 ⋅ b2b3

=

Multilinear polynomial p



Summary and Open Problems

‣   Gaussian Integration by Parts

‣   Gaussian Interpolation

‣  Develop new Integration by Parts identities for rounding

Relies on stochastic calculus tools

Theorem -fold Forrelation problem gives a   vs   separation  between 

quantum and classical query algorithms for advantage 

k ⌈k/2⌉ Ω̃(n1−1/k)

δ = 2−O(k)

Optimal 
Separation

Quantum vs Classical Communication Complexity of Total Functions

Are these polynomially related?

Open 
Problem


