

k -Forrelation Optimally Separates Quantum and Classical Query Complexity

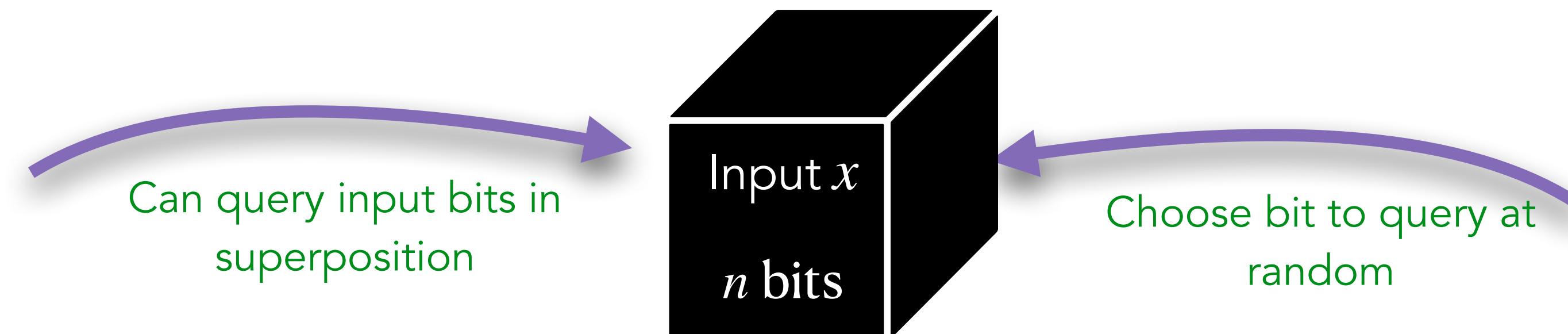
QIP 2021

Nikhil Bansal

Makrand Sinha

Quantum vs Classical Query Algorithms

Quantum Query Algorithm



Objective(s) Minimize queries

Quantum Speedup Question

What is the maximal separation?
[Buhrman-Fortnow-Newman-Röhrig '03]

Randomized Query Algorithm

Probability Distribution over Decision Trees

Total functions

Classical queries = (Quantum queries) c

$$c \leq 6$$

[Beals-Buhrman-Cleve-Mosca-de Wolf '98]

$$c \leq 4$$

[Aaronson-Ben David-Kothari-Rao-Tal '21]

$$c \geq 5/2$$

[Aaronson-Ben David-Kothari '16]

$$c \geq 8/3 - o(1)$$

[Tal '20] Non-explicit

Partial functions

$$O(\log^2 n) \text{ vs } \tilde{\Omega}(n^{1/2})$$

[Simon '97] [Childs-Cleve-Deotto-Farhi-Gutmann-Spielman '03]

$$1 \text{ vs } \tilde{\Omega}(n^{1/4})$$

[Beaudrap-Cleve-Watrous '02]

$$1 \text{ vs } \tilde{\Omega}(n^{1/2})$$

[Aaronson-Ambainis '14]

$$O(1) \text{ vs } \tilde{\Omega}(n^{2/3-\epsilon})$$

[Tal '20] Non-explicit

Maximal Separation?

Is this optimal?
- Theorem
[Aaronson-Ambainis '14]

Every $\lceil k/2 \rceil$ -query quantum algorithm with error $\frac{1}{2} - \delta$ can be simulated with error $\frac{1}{2} - \frac{\delta}{2}$ with $2^k \cdot n^{1-1/k} \cdot \delta^{-2}$ classical queries

$\tilde{O}(n^{1/2})$ classical queries
 $k = 2$

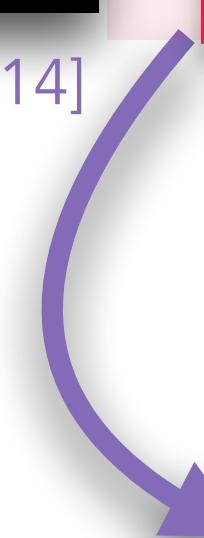
$\tilde{O}(n^{0.999})$ classical queries
 $k = 1000$

What is the task where quantum algorithms have the maximal advantage?

Conjecture

[Aaronson-Ambainis '14]

k -fold Forrelation problem gives a $\lceil k/2 \rceil$ vs $\tilde{\Omega}(n^{1-1/k})$ separation

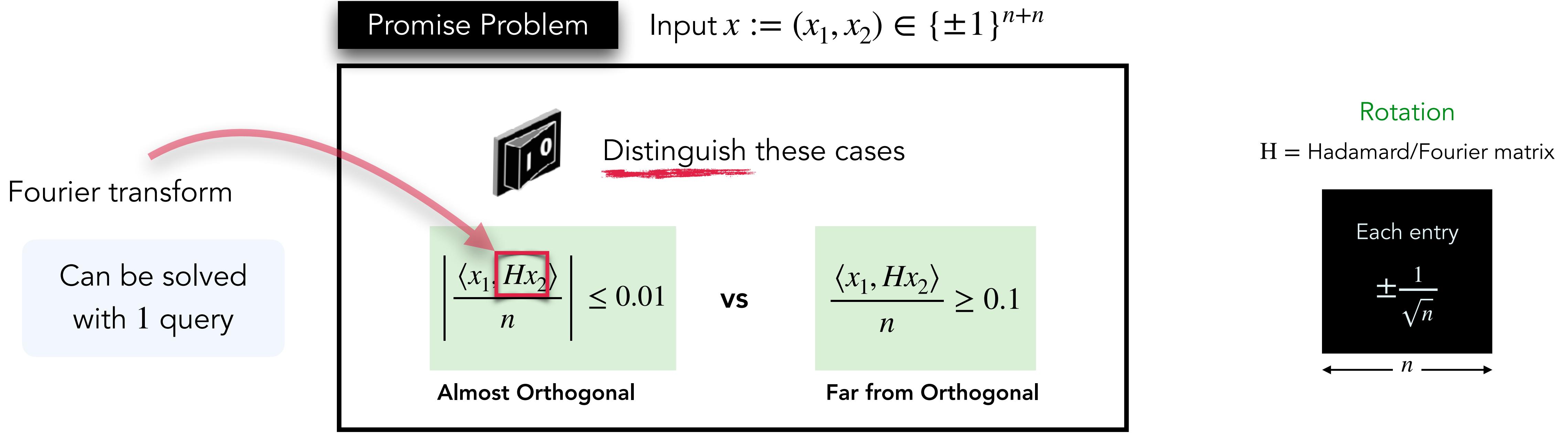
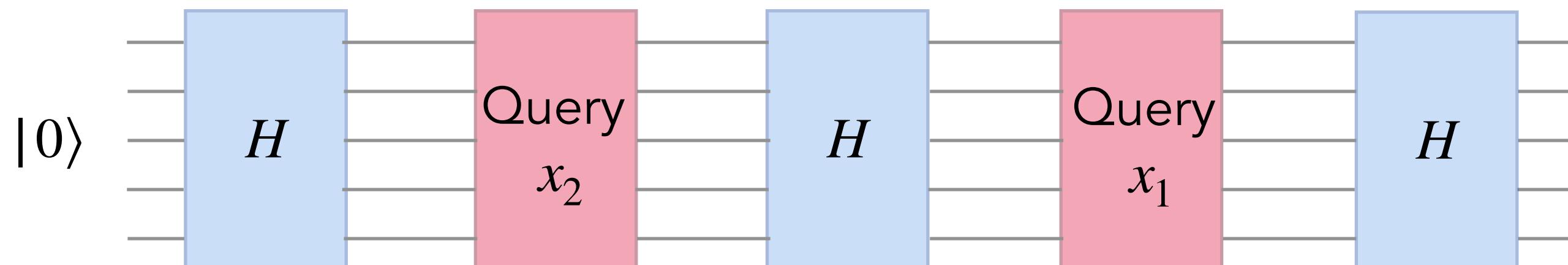


Captures the maximal power of

- Quantum query algorithms?
- Quantum circuits

BQP-complete for promise problems for $k \approx \log n$
[Aaronson-Ambainis '14]

2-Fold Forrelation



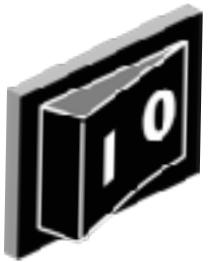
$$\text{amplitude of } |0\rangle = \frac{1}{n} \sum_{i,j=1}^n x_1(i) H_{ij} x_2(j) = \frac{\langle x_1, Hx_2 \rangle}{n}$$

2-Fold Forrelation

Promise Problem

Input $x := (x_1, x_2) \in \{\pm 1\}^{n+n}$

Can be solved
with 1 query



Distinguish these cases

$|\text{Forr}_2(x)| \leq 0.01$

vs

$\text{Forr}_2(x) \geq 0.1$

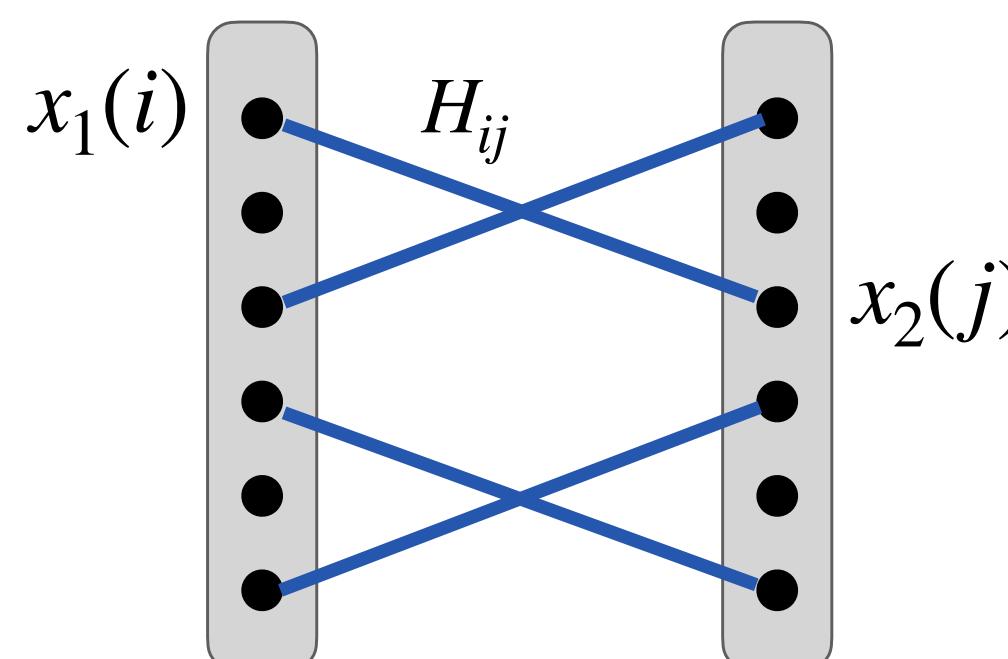
Rotation

H = Hadamard/Fourier matrix

Each entry

$$\pm \frac{1}{\sqrt{n}}$$

$\longleftrightarrow n \longleftarrow$



$$\text{Forr}_2(x) = \frac{1}{n} \sum_{i,j=1}^n x_1(i) \cdot H_{ij} \cdot x_2(j) = \frac{\langle x_1, Hx_2 \rangle}{n}$$

k -Fold Forrelation

Promise Problem

Input $x := (x_1, \dots, x_k) \in \{\pm 1\}^{kn}$

Can be solved with
 $\lceil k/2 \rceil$ queries

Distinguish these cases

$|\text{Forr}_k(x)| \leq 0.01$

vs

$\text{Forr}_k(x) \geq 0.1$

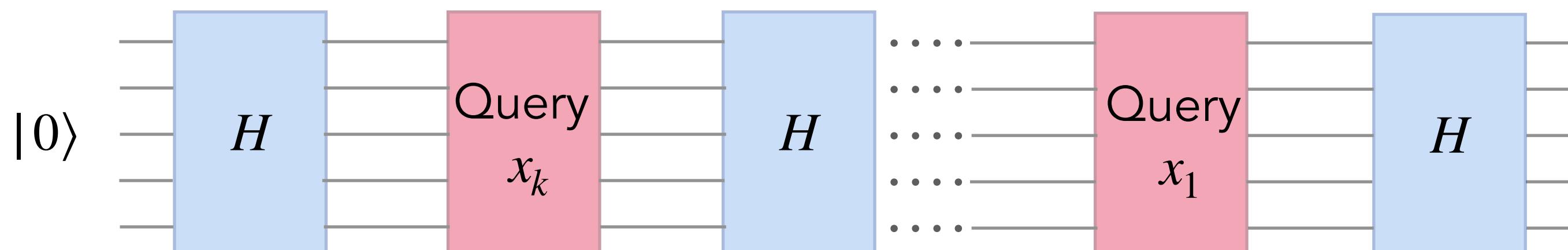
Rotation

H = Hadamard/Fourier matrix

Each entry

$$\pm \frac{1}{\sqrt{n}}$$

\xleftarrow{n}



$$\text{Forr}_k(x) = \frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

amplitude of $|0\rangle$

k -Fold Forrelation

Promise Problem

Input $x := (x_1, \dots, x_k) \in \{\pm 1\}^{kn}$

Can be solved with
 $\lceil k/2 \rceil$ queries

Distinguish these cases

$|\text{Forr}_k(x)| \leq 0.01$

vs

$\text{Forr}_k(x) \geq 0.1$

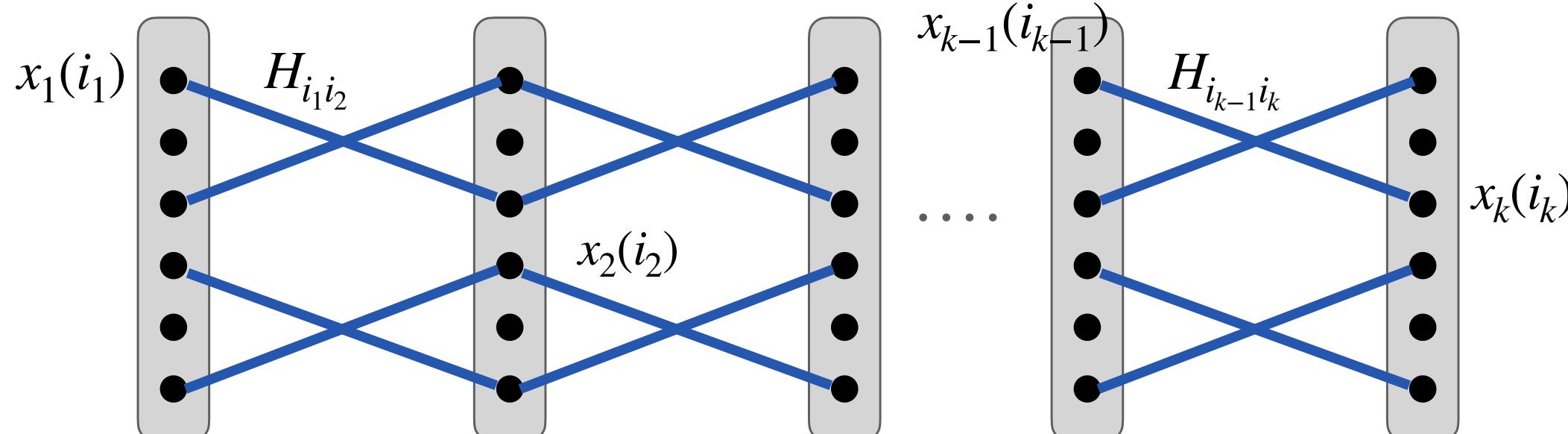
Rotation

H = Hadamard/Fourier matrix

Each entry

$$\pm \frac{1}{\sqrt{n}}$$

$\longleftrightarrow n$



$$\text{Forr}_k(x) = \frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

Our Results

Theorem

k -fold Forrelation problem gives a $\lceil k/2 \rceil$ vs $\tilde{\Omega}(n^{1-1/k})$ separation between quantum and classical query algorithms for advantage $\delta = 2^{-O(k)}$

500 vs $\tilde{\Omega}(n^{0.999})$
 $k = 1000$

Main Contribution: classical lower bound

Previous lower bound: $\tilde{\Omega}(n^{1/2})$
[Aaronson-Ambainis '14]

Our proof also works for the non-explicit Rorrelation function introduced by [Tal '20]

Replace Hadamard with a Random Orthogonal matrix

$$\text{Forr}_k(x) = \frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

Our Results

Theorem

k -fold Forrelation problem gives a $\lceil k/2 \rceil$ vs $\tilde{\Omega}(n^{1-1/k})$ separation between quantum and classical query algorithms for advantage $\delta = 2^{-O(k)}$

500 vs $\tilde{\Omega}(n^{0.999})$
 $k = 1000$

Main Contribution: classical lower bound

Previous lower bound: $\tilde{\Omega}(n^{1/2})$
[Aaronson-Ambainis '14]

Our proof also works for the non-explicit Rorrelation function introduced by [Tal '20]

Consequences

- ▶ **Query Complexity of Partial Functions with standard error**

$O_\epsilon(1)$ vs $n^{1-\epsilon}$ separation for error 1/3

- ▶ **Query Complexity of Total Functions with standard error**

$\exists_{\text{total } f}$ Classical queries $\geq (\text{Quantum queries})^{3-o(1)}$

- ▶ Analogous separations in **Communication**

[SSW '21] + [Tal '20] rely on strong properties of random orthogonal matrices that do not hold for Hadamard matrix

Independent Work

Analogous results for Rorrelation [Sherstov-Storozhenko-Wu '21] building on [Tal '20]

Different Techniques

} Explicit

High-level Overview

Quantum vs Classical Query Algorithms

Fact

Success probability of any d -query **quantum** or **randomized** algorithm is a degree $O(d)$ multilinear polynomial

$$f(z) = \sum_{S \subseteq [N]} \hat{f}(S) \cdot z_S \quad \text{where } z \in \{\pm 1\}^N \text{ and } z_S = \prod_{i \in S} z_i$$



Quantum Query Algorithm

Extremely good at computing **dense** polynomials with few queries

$$\text{Forr}_k(x) = \frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

Rest of the talk

Multilinear polynomial p of degree $d \ll n^{1-1/k}$ **with small derivatives** cannot compute k -Fold Forrelation

We only need bound on derivatives of order $\leq k^2$ which follow from [Tal '20]



Randomized Query Algorithm

Can only compute **weakly-sparse** polynomials

[Tal '20]
[SSW '21]

L_1 -norm of coefficients of degree ℓ monomials
 \ll number of degree ℓ monomials

$$\sum_{|S|=\ell} |\partial_S f(0)| = \sum_{|S|=\ell} |\hat{f}(S)| \leq \sqrt{\binom{d}{\ell}} \ll \binom{d}{\ell} \quad \text{for all } \ell \leq d$$

↔ **Observation**
 [This Work]

$$\sum_{|S|=\ell} |\partial_S f(x)| \leq \sqrt{\binom{d}{\ell}} \quad \text{for any } \ell \text{ and } \text{any } x \in [-1,1]^N$$

Degree Lower Bounds

Multilinear polynomial p of degree $d \ll n^{1-1/k}$ **with small derivatives** cannot compute k -Fold Forrelation

Input $(x_1, \dots, x_k) \in \{\pm 1\}^{kn}$

$$\frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

$\text{Forr}_k(x)$

Show that such polynomials cannot distinguish distributions on 0 vs 1 inputs

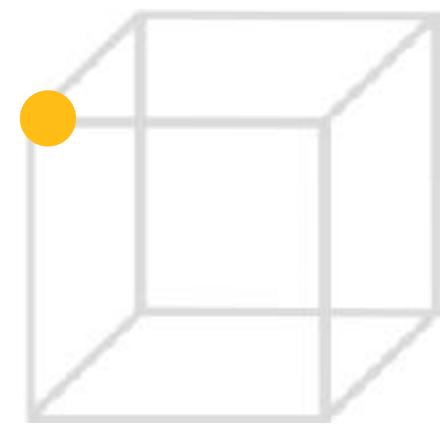
$$|\text{Forr}_k(x)| \leq 0.01$$

vs

$$\text{Forr}_k(x) \geq 0.1$$

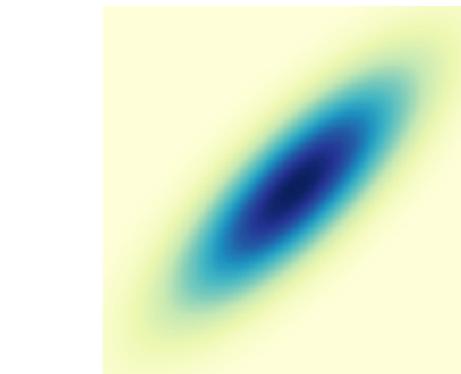
$$\mathbb{E}[p(\mathcal{F}_k)] - \mathbb{E}[p(\mathcal{U})] \approx 0$$

Uniform Distribution \mathcal{U}



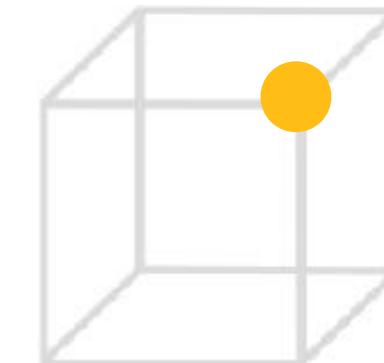
Uniform Distribution on $\{\pm 1\}^{kn}$

Pseudorandom Distribution \mathcal{F}_k



Sample from some distribution \mathcal{P}_k over \mathbb{R}^{kn}

Rounding
e.g. take sign



Distribution on $\{\pm 1\}^{kn}$

Degree Lower Bounds via Interpolation

Multilinear polynomial p of degree $d \ll n^{1-1/k}$ **with small derivatives** cannot compute k -Fold Forrelation

Input $(x_1, \dots, x_k) \in \{\pm 1\}^{kn}$

$$\frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

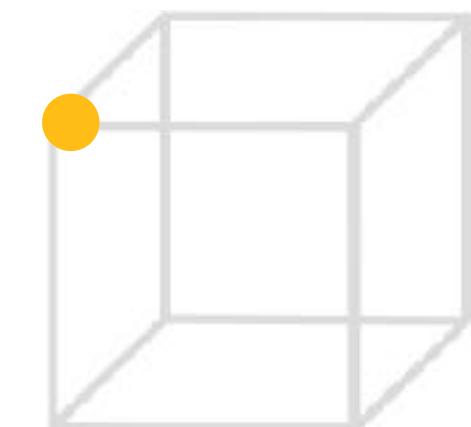
Forr _{k} (x)

$$\mathbb{E}[p(\mathcal{F}_k)] - \mathbb{E}[p(\mathcal{U})] \approx 0$$

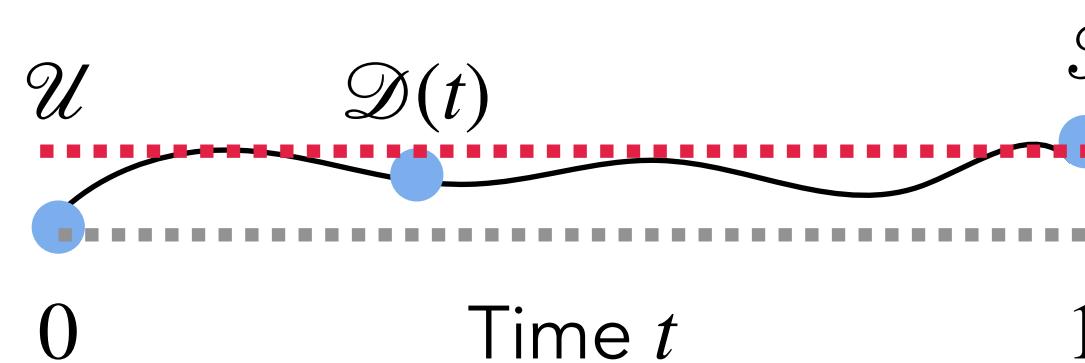
Labeled “Smart Path method” by Talagrand

Many applications in statistical physics,
probability, convex geometry,...

Uniform Distribution \mathcal{U}

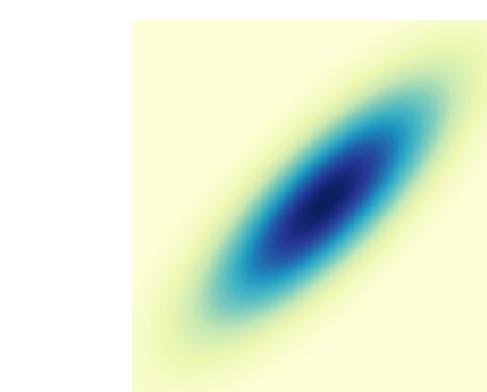


Uniform Distribution on $\{\pm 1\}^{kn}$



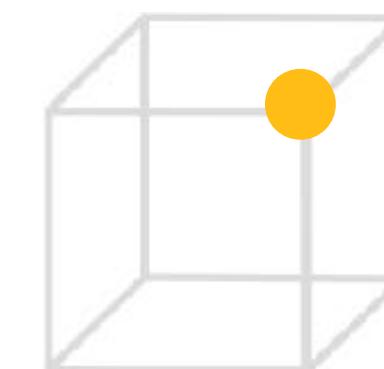
Choose smart path to control
time derivative of $\mathbb{E}[p(\mathcal{D}(t))]$

Pseudorandom Distribution \mathcal{F}_k



Sample from some
distribution \mathcal{P}_k over \mathbb{R}^{kn}

Rounding
e.g. take sign

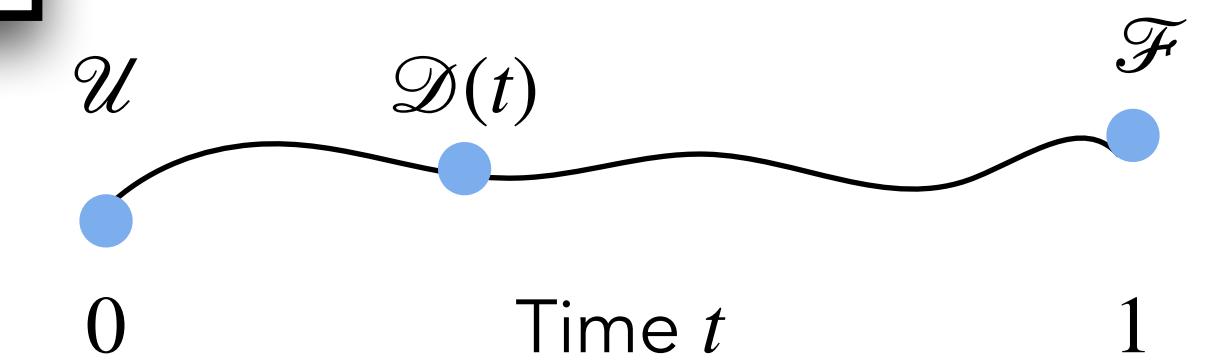


Distribution on $\{\pm 1\}^{kn}$

Our Main Technical Contribution

Multilinear polynomial p of degree $d \ll n^{1-1/k}$ with small derivatives cannot compute k -Fold Forrelation

Choose smart path to control time derivative of $\mathbb{E}[p(\mathcal{D}(t))]$



Lemma

For every "time" t

$$\text{"Time derivative"} \leq \max_{x \in [-1,1]^{kn}} \sum_{\ell=k}^{k(k-1)} \left(\frac{1}{\sqrt{n}} \right)^{\ell(1-1/k)} \sum_{|S|=\ell} |\partial_S p(x)|$$

Recall bound on derivatives

[Tal '20]

[SSW '21]

+ Our Observation

2-Fold
[Raz-Tal '18]
[Wu '19]

$$\leq \max_{x \in [-1,1]^{kn}} \frac{1}{\sqrt{n}} \sum_{|S|=2} |\partial_S p(x)| \leq \frac{d}{\sqrt{n}} \quad \boxed{\text{Choose } d \approx n^{1/2}}$$

2nd order

3-Fold
[This Work]

$$\leq \max_{x \in [-1,1]^{kn}} \frac{1}{n} \sum_{|S|=3} |\partial_S p(x)| + \frac{1}{n^2} \sum_{|S|=6} |\partial_S p(x)| \leq \frac{d^{3/2}}{n} + \frac{d^3}{n^2} \quad \boxed{\text{Choose } d \approx n^{2/3}}$$

}

Relies on stochastic calculus tools

- ▶ Gaussian Interpolation
- ▶ Gaussian Integration by Parts
- ▶ **Develop new Integration by Parts identities** for rounding

Proof Ideas

Degree Lower Bounds via Interpolation

Multilinear polynomial p of degree $d \ll n^{1-1/k}$ with small derivatives cannot compute k -Fold Forrelation

Input $(x_1, \dots, x_k) \in \{\pm 1\}^{kn}$

$$\frac{1}{n} \sum_{i_1, \dots, i_k=1}^n x_1(i_1) H_{i_1 i_2} x_2(i_2) H_{i_2 i_3} \dots H_{i_{k-1} i_k} x_k(i_k)$$

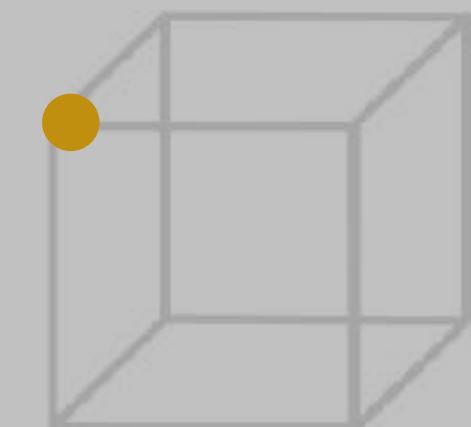
Forr _{k} (x)

$$\mathbb{E}[p(\mathcal{F}_k)] - \mathbb{E}[p(\mathcal{U})] \approx 0$$

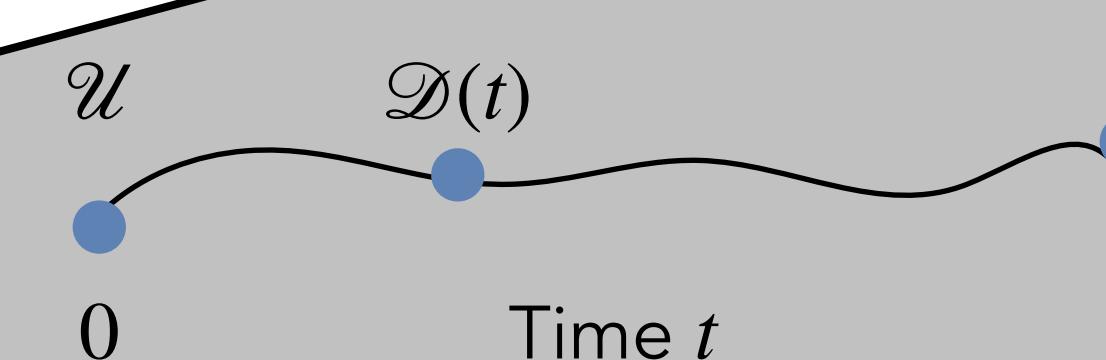
Recall

Small Value

Uniform Distribution \mathcal{U}



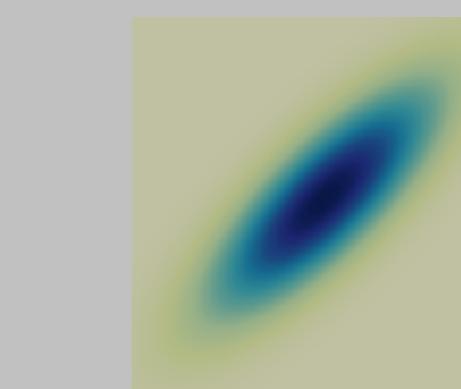
Uniform Distribution on $\{\pm 1\}^{kn}$



Choose smart path to control time derivative of $\mathbb{E}[p(\mathcal{D}(t))]$

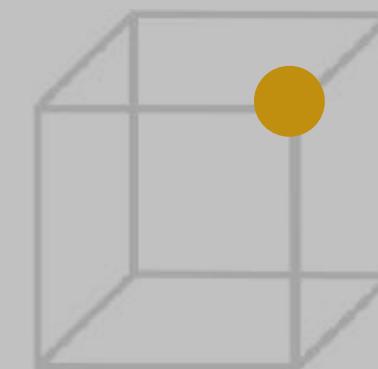
Large Value

Pseudorandom Distribution \mathcal{F}_k



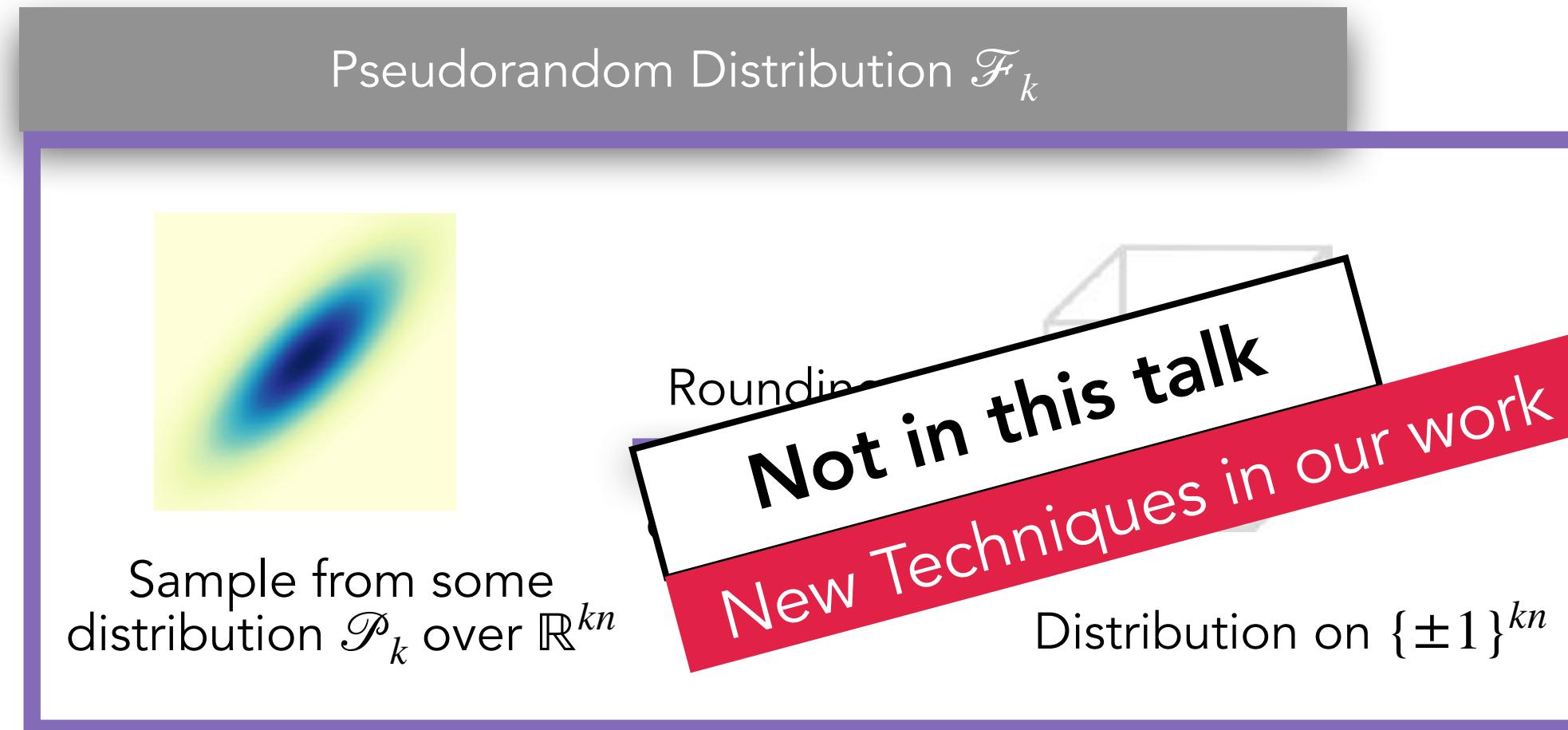
Sample from some distribution \mathcal{P}_k over \mathbb{R}^{kn}

Rounding
e.g. take sign



Distribution on $\{\pm 1\}^{kn}$

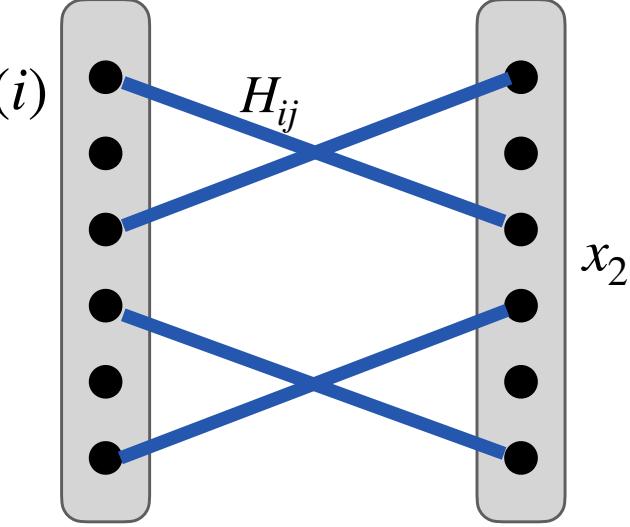
2-Fold Case: Pseudorandom Distribution



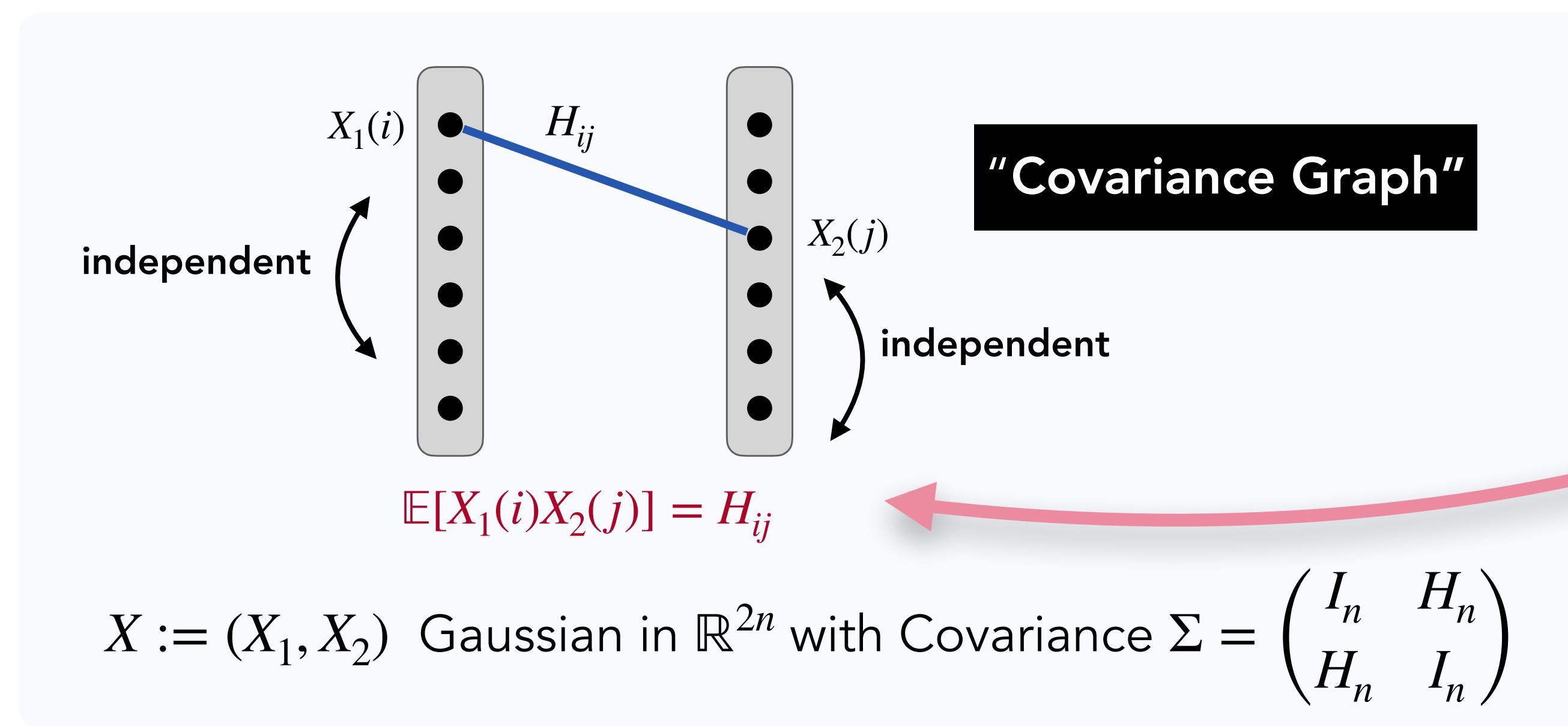
$$\text{Forr}_k(x) \geq 0.1$$

$$k = 2$$

Input $(x_1, x_2) \in \{\pm 1\}^{2n}$



$$\text{Forr}_2(x) = \frac{1}{n} \sum_{i,j=1}^n x_1(i) \cdot H_{ij} \cdot x_2(j)$$



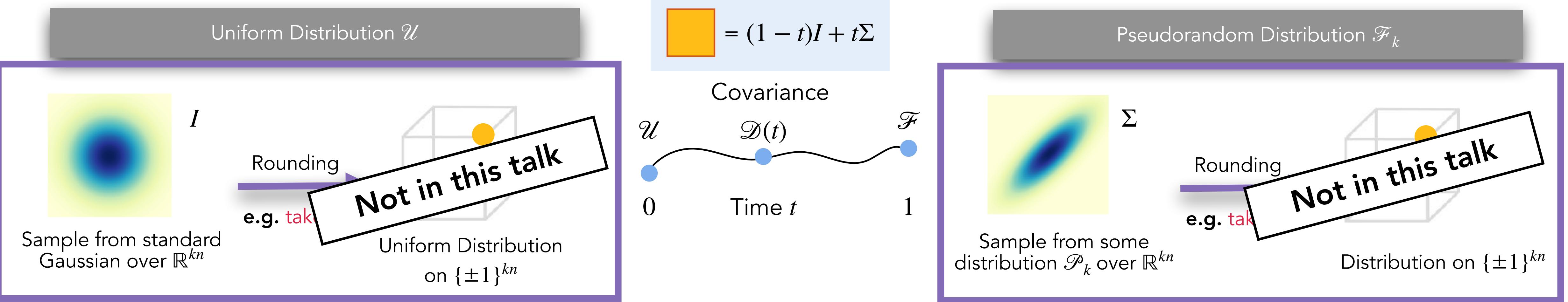
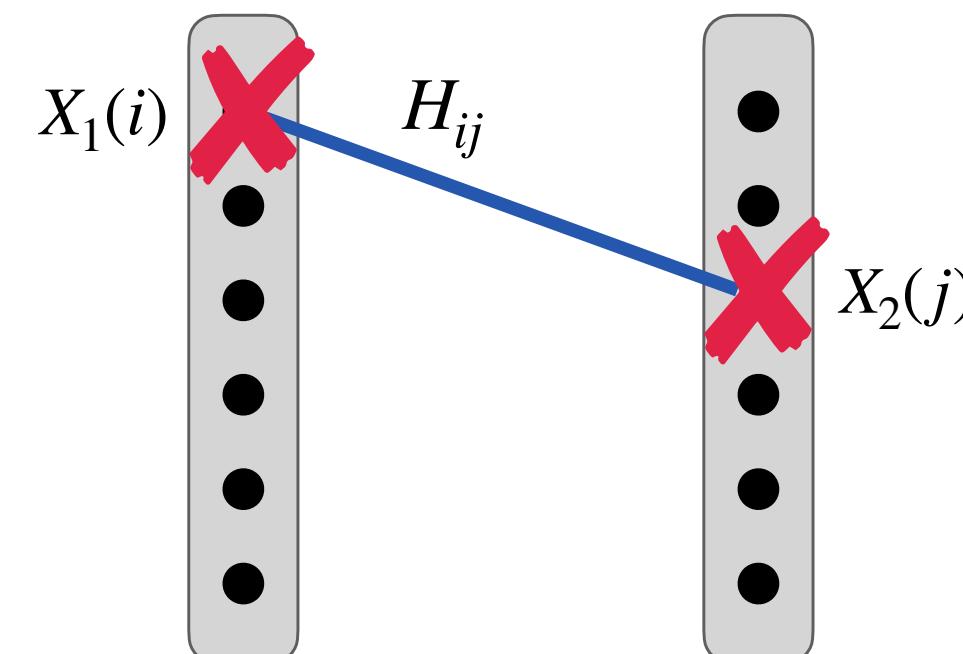
Intuition

Decision tree or multilinear polynomial needs to compute all 2-wise correlations

$$H_{ij} = \pm \frac{1}{\sqrt{n}}$$

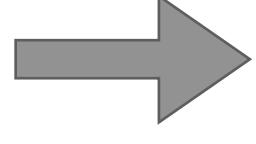
$$\mathbb{E}[\text{Forr}_2(X)] = \frac{1}{n} \sum_{ij} H_{ij}^2 = 1$$

2-Fold Case: The Smart Path



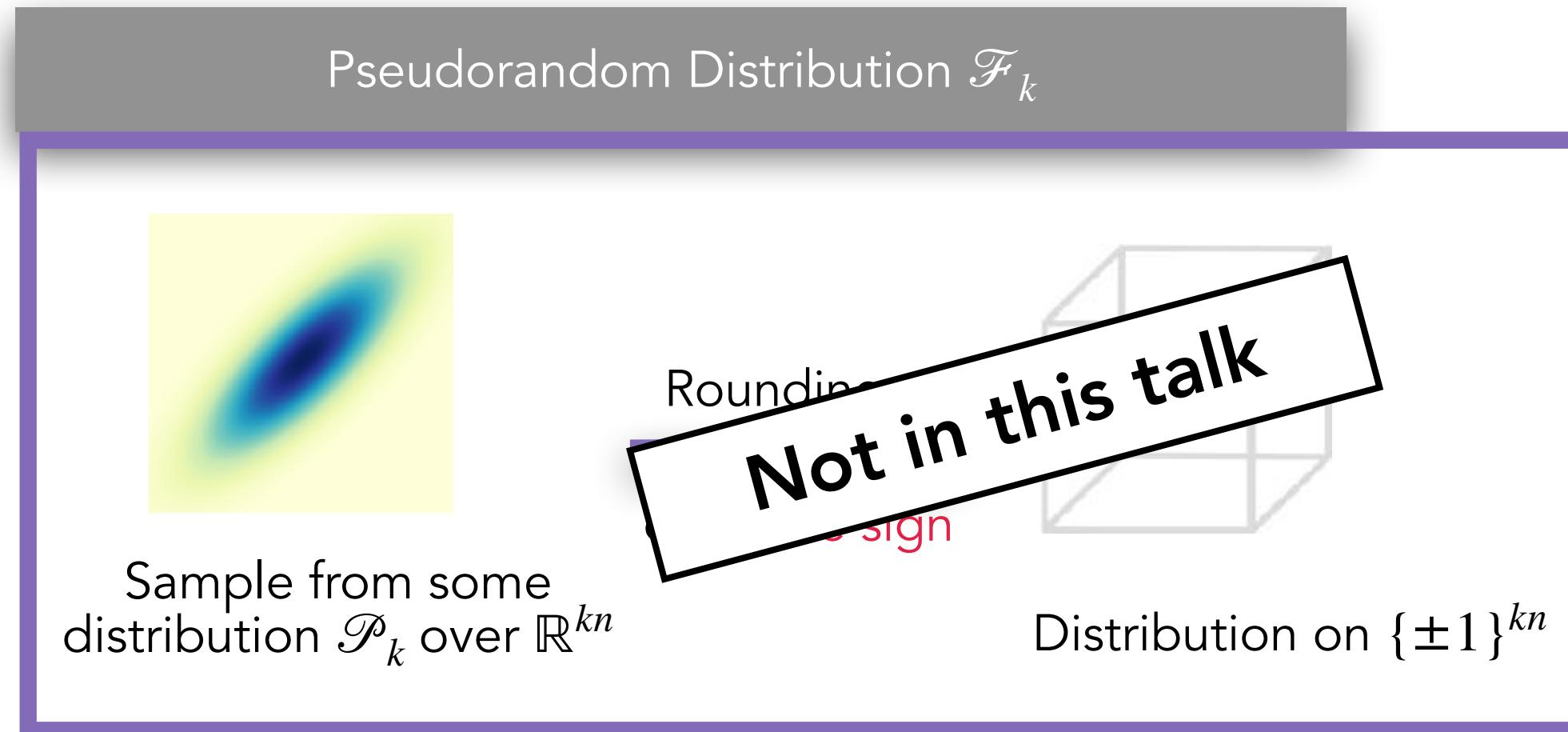
∂_{ij} corresponds to removing $x_i x_j$ e.g. $x_1 x_2 x_3 \cdots x_i x_j$

Can be directly handled using **Gaussian Interpolation Formula**

Multilinear polynomial p  Bound in terms of $\partial_{ij} p(x)$ and final covariance entries $H_{ij} = \pm \frac{1}{\sqrt{n}}$

"Time derivative" $\leq \max_{x \in [-1,1]^{kn}} \frac{1}{\sqrt{n}} \sum_{ij} |\partial_{ij} p(x)|$

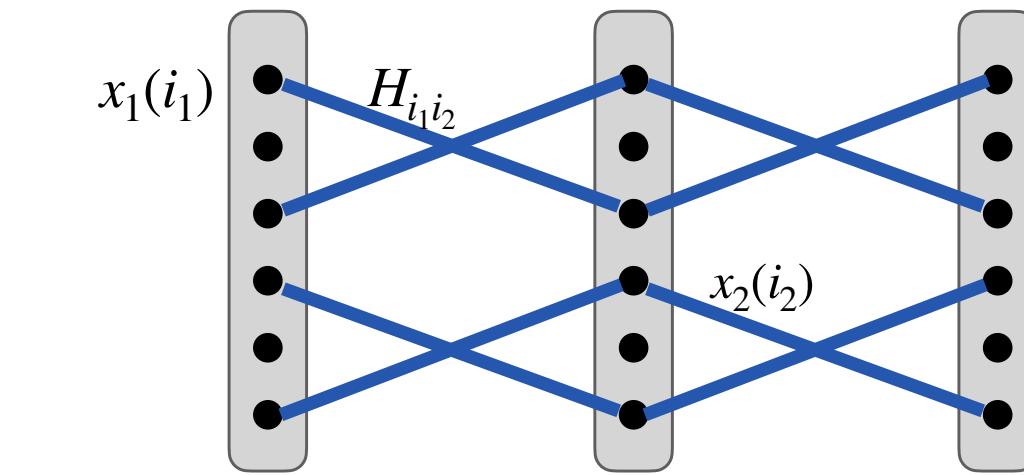
3-Fold Case: Pseudorandom Distribution



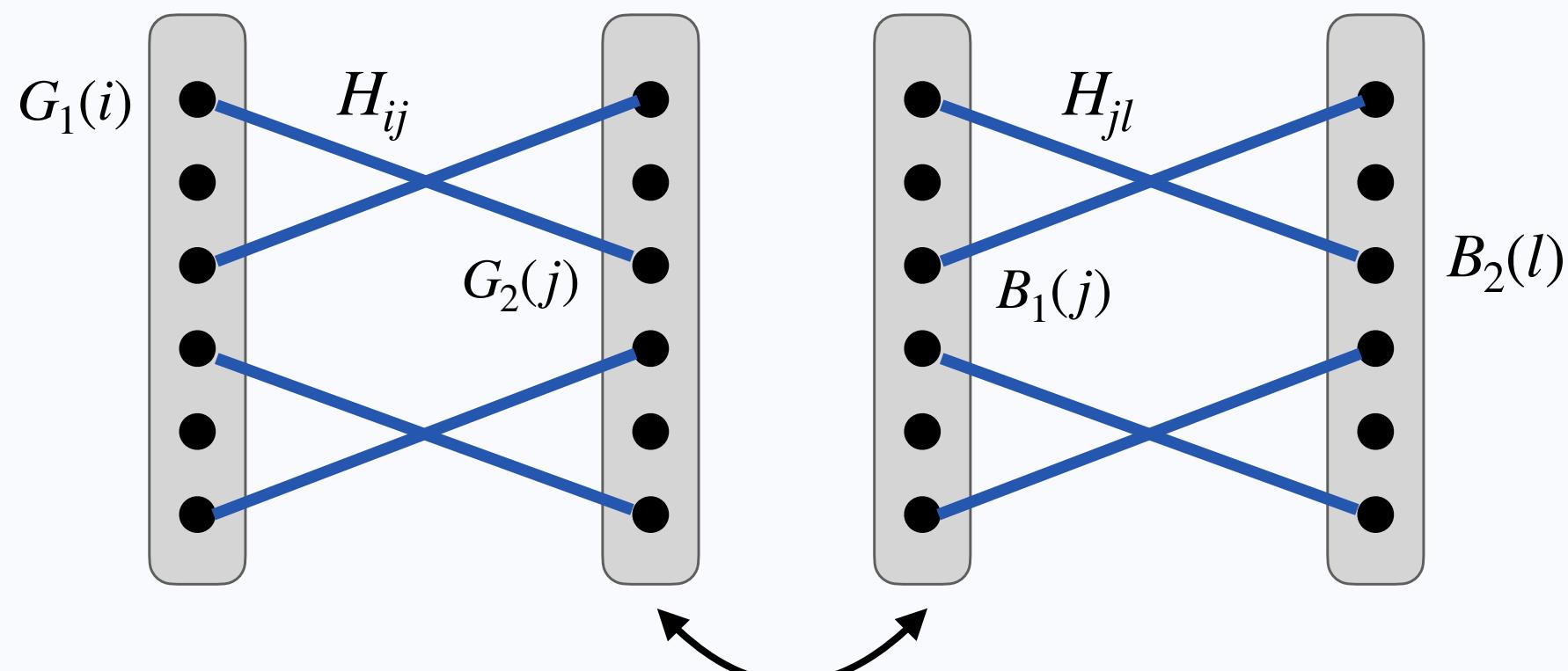
Forr $_k(x) \geq 0.1$

$$k = 3$$

Input $(x_1, x_2, x_3) \in \{\pm 1\}^{3n}$



G, B independent Gaussians in \mathbb{R}^{2n} with covariance $\Sigma = \begin{pmatrix} I_n & H_n \\ H_n & I_n \end{pmatrix}$



$$X := (G_1, G_2 \odot B_1, B_2) \in \mathbb{R}^{3n} \quad \text{Entry-wise product}$$

[Tal '20]

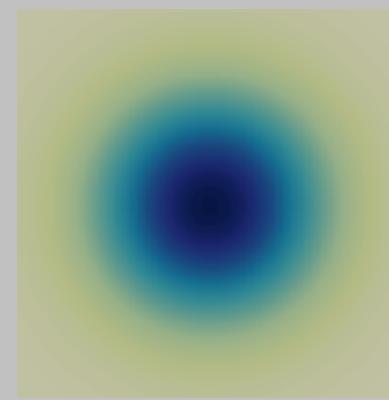
Intuition

Decision tree or multilinear polynomial needs to compute all three-wise correlations now

$$\mathbb{E}[\text{Forr}_3(X)] = 1$$

3-Fold Case: The Smart Path

Uniform Distribution \mathcal{U}



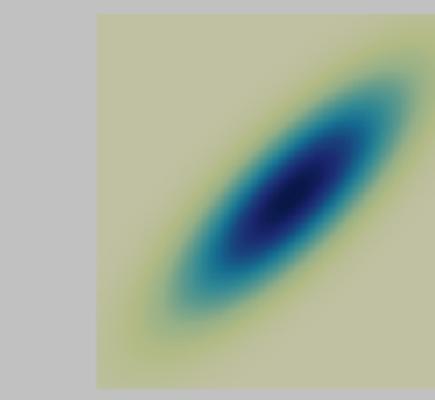
Sample from standard Gaussian over \mathbb{R}^{kn}

Rounding
e.g. tak

Not in this talk

Uniform Distribution on $\{\pm 1\}^{kn}$

Pseudorandom Distribution \mathcal{F}_k

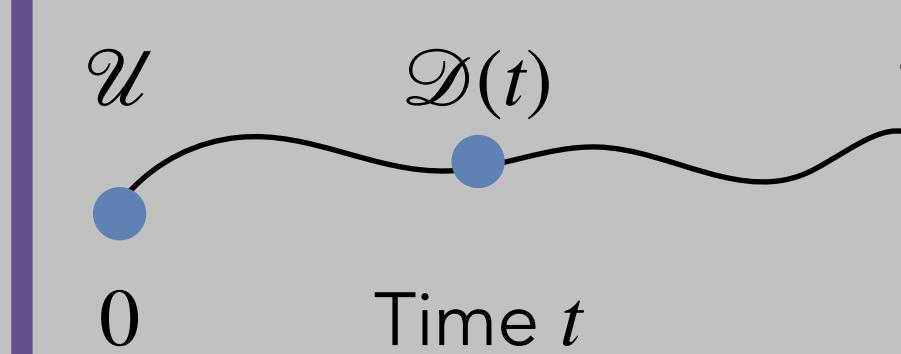
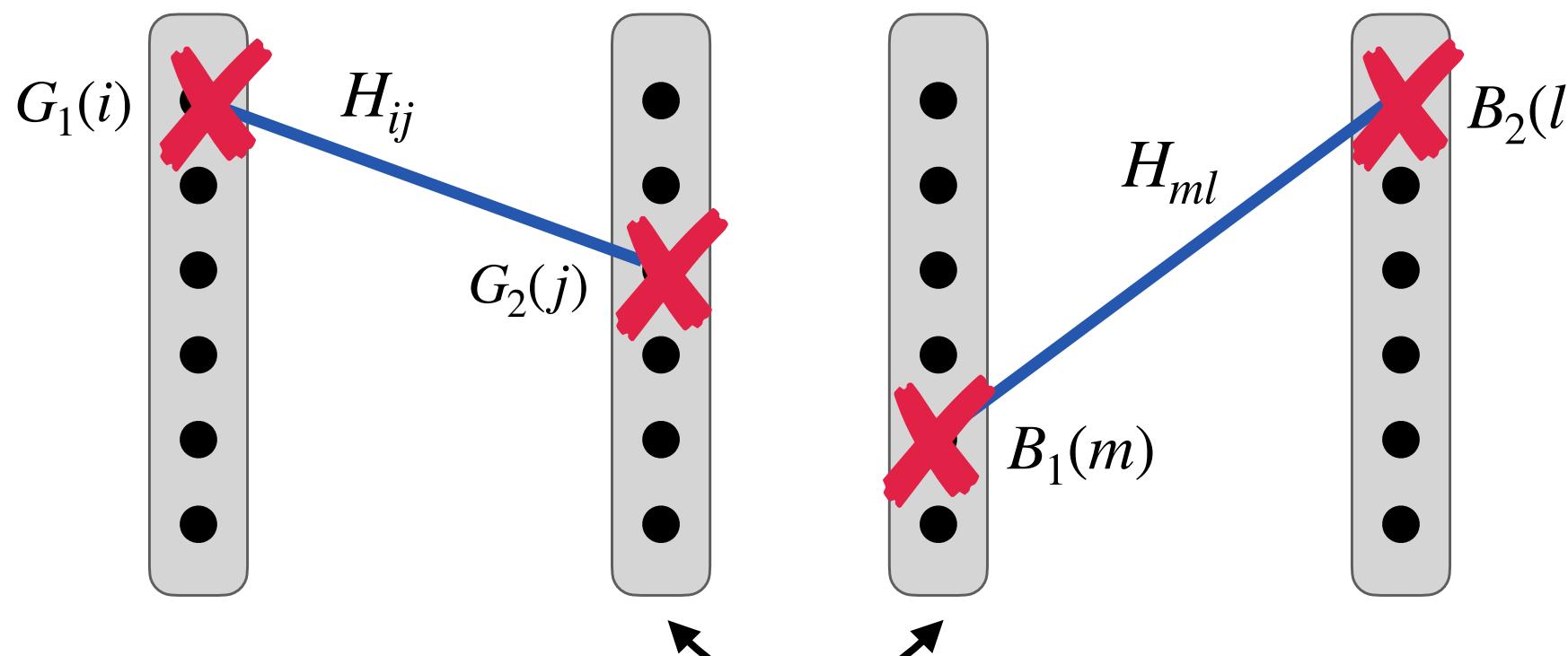


Sample from some distribution \mathcal{P}_k over \mathbb{R}^{kn}

Rounding
e.g. $\text{tak} \circ \text{sign}$

Not in this talk

Distribution on $\{\pm 1\}^{kn}$



Take product of these random variables

$$X := (G_1, G_2 \odot B_1, B_2) \in \mathbb{R}^{3n}$$

Interpolate G and B separately

Want bounds in terms of $\partial_{ij\ell} p$ and sixth order derivatives

$$\begin{aligned} z_1 &= g_1, z_2 = g_2 \cdot b_2, z_3 = b_3 \\ p(z) &= \dots + \dots z_1 z_2 z_3 \dots + \dots \\ &\quad \parallel \\ &\quad g_1 g_2 \cdot b_2 b_3 \end{aligned}$$

Multilinear polynomial p

Other stochastic calculus tools e.g. **Gaussian Integration by Parts** to relate derivatives after substitution

Summary and Open Problems

Theorem

k -fold Forrelation problem gives a $\lceil k/2 \rceil$ vs $\tilde{\Omega}(n^{1-1/k})$ separation between quantum and classical query algorithms for advantage $\delta = 2^{-O(k)}$

Optimal Separation

Relies on stochastic calculus tools

- ▶ Gaussian Interpolation
- ▶ Gaussian Integration by Parts
- ▶ **Develop new Integration by Parts identities** for rounding

Open Problem

Quantum vs Classical Communication Complexity of **Total Functions**

Are these polynomially related?