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Quantum vs Classical Query Algorithms
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Ol JJElanEIB] Minimize queries Randomized Query
Algorithm

Can query input bits in Choose bit to query at

random

superposition

Quantum Query
Algorithm

OIVENN[a RS el=Elellle®  \\hat is the maximal separation? Probability Distribution

over Decision Trees

Question [Buhrman-Fortnow-Newman-Rohrig ‘03]

Total functions Partial functions

Classical queries = (Quantum queries)*

[Simon '97] [Childs-Cleve-Deotto-Farhi-

c <6 [Beals-Buhrman-Cleve-Mosca-de Wolf ‘98] 0(]()g2 n) VS Q(n 1/2) Gutmann-Spielman ‘03]
c < 4 [Aaronson-Ben David-Kothari-Rao-Tal '21] 1 vs Q(Ifl 1/4) [Beaudrap-Cleve-Watrous ‘02]
c > 5/2 [Aaronson-Ben David-Kothari '16] 1 vs Q(Ifl 1/2) [Aaronson-Ambainis ‘14]

¢ > 8/3—0(1) [Tal'20] Non-explicit O(1) vs Q(n*>=¢) [1al'20] Non-explicit



Maximal Separation?

Every |k/2]|-query quantum algorithm with error L _ §can be O(n'’?) classical qgueries

2
.pl=lk. classical queries k=2

simulated with error ; g with

O classical queries
k = 1000

What is the task where quantum
algorithms have the maximal advantage?

k-fold Forrelation problem|gives a [k/2] vs Q(n'~'*) separation

[Aaronson-Ambainis "14]

Captures the maximal power of e Quantum query algorithms?

e Quantum circuits

BQP-complete for promise problems for k = log n

[Aaronson-Ambainis '14]



2-Fold Forrelation
Input x := (x;,X,) € {£1}"™"

Rotation

ﬁ Distinguish these cases H = Hadamard/Fourier matrix
Fourier transform S
Each entry
Can be solved (x4 Hx) x;, Hx
| 1 S 001 VS < 1 2> Z 01 i_
with 1 query n n

Almost Orthogonal Far from Orthogonal

[Aaronson "10]
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2-Fold Forrelation
|nputx = (xl,xz) c {il}n+n
Rotation

ﬁ Distinguish these cases H = Hadamard/Fourier matrix

Each entry

Can be solved 41

| Forry(x) | < 0.01 Forry(x) > 0.1

with 1 query

X1 (1) T>H,]<T
® [ n
° ® %())  Forr(x) = l Z x1(1) - Hyj - xy(J) = o, )
° =1 L
°

o0

:



k-Fold Forrelation
Inputx = (xl, '°°’xk) = {il}kn
Rotation

ﬁ D‘istinu"ish these cases H = Hadamard/Fourier matrix

Each entry

Can be solved with

|k/2] queries

| Forry(x)| < 0.01 Forry(x) > 0.1 +

n

| O> H H v e Query H Forrk(X) — il i2i3° . .Hlk—llkxk(lk)

amplitude of |0)



k-Fold Forrelation
Inputx = (xl, '°°’xk) = {il}kn
Rotation

ﬁ D‘istinu"ish these cases H = Hadamard/Fourier matrix

Each entry

Can be solved with

|k/2]| queries

e —

| Forr(x) | < 0.01 Forry(x) > 0.1

c C ) X (l Qﬁ\ S
x| el H,; k—1 kT H .
° ® .... ® X (i) Forr(x) = _ : : .
o x2(i2) ® o k( ) n Z xl(ll)Hlll2x2(12)lel3°"Hlk_llk'xk(lk)
® o ® ® ® I]5---s=1
®




Our Results

k-fold Forrelation problem gives a [k/2] vs Q(n'~1*%) separation between 500 vs Q(n%9%%)
quantum and classical query algorithms for advantage 6 = 279® k= 1000
Main Contribution: classical lower bound Previous lower bound: Q(n'/?)

[Aaronson-Ambainis '14]

Our prooft also works for the non-explicit Rorrelation function introduced by [Tal '20]

Replace Hadamard with a Random Orthogonal matrix

n

Forri(x) = l Z
n

il,. . ,lk=1




Our Results

k-fold Forrelation problem gives a [k/2] vs Q(n'~!%) separation between 500 vs Q(n%9%%)
quantum and classical query algorithms for advantage 6 = 279® k= 1000
Main Contribution: classical lower bound Previous lower bound: Q(n'/?)

[Aaronson-Ambainis ‘14]

Our prooft also works for the non-explicit Rorrelation function introduced by [Tal '20]

» Query Complexity of Partial Functions with standard error

O.(1) vs nl=¢ separation for error 1/3

» Query Complexity of Total Functions with standard error Explicit

Jtotal f Classical queries > (Quantum sl

[SSW '21] + [Tal '20] rely on strong properties of random
orthogonal matrices that do not hold for Hadamard matrix

Different Techniques

» Analogous separations in Communicatic

Independent Work Analogous results for Rorrelation [Sherstov-Storozhenko-Wu '21] building on [Tal "20]



High-level Overview



Quantum vs Classical Query Algorithms

Success probability of any d-query quantum or randomized

algorithm is a degree O(d) multilinear polynomial

f(z) = Z f(S)°ZS where z € {£1}" and ZS:HZi

SC[N] ieS

C‘fb Quantum Query Algorithm Randomized Query Algorithm
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s y good ing ¢
Extremely good at computing dense Can only compute weakly- [Tal '20]
| _ .
Forry(x) = Z x((iVH, . x,(i)H, . ... H, . x,(i;) L,-norm of coefficients of degree £ monomials
12 2°3 k—1% .
n < number of degree £ monomials

ll”lkzl

Z |05 f(0) | = Z 1£(S)] < (;) < (j) forallZ <d
= e

I Observation

Multilinear polynomial p of degree d < n'~¥ with small This Work]
derivatives cannot compute k-Fold Forrelation
d for any Z and
D, 1950 < N
4 any x € [—1,1]

We only need bound on derivatives of order < k? which follow from [Tal '20] 1S|=¢



Degree Lower Bounds

I_1/k Input (x;, ..., x;) € {£1}"

Multilinear polynomial p of degree d < n with small

n

derivatives cannot compute k-Fold Forrelation - 2 MEH, 5y Hy 2 0)
iy i =1

Show that such polynomials cannot distinguish Formi(x)

distributions on O vs 1 inputs

| Forr(x)| < 0.01 ﬁvis Forry(x) > 0.1 Elp(F,)] —E[p(%)] = 0

Uniform Distribution % Pseudorandom Distribution &,

, Rounding

e.g. take sign

. L n Sample from some
Unitorm Distribution on {*1} distribution P, over R Distribution on {1}




Degree Lower Bounds via Interpolation

. Input(x,...,x)e{il}k”
=1k \with small 1 ¢

Multilinear polynomial p of degree d < n

n

derivatives cannot compute k-Fold Forrelation - 2 MEH, 5y Hy 2 0)
iy i =1

Forry(x)
Elp(F)] — E[p(%)] = 0

Labeled “Smart Path method” by Talagrand

Many applications in statistical physics,
probability, convex geometry,...

Uniform Distribution % o
I A Pseudorandom Distribution &,

, Rounding

e.g. take sign

Choose smart path to control Sample from some
.. . kn .o . kn
time derivative of E[p(2(¢))] distribution &, over R Distribution on {£1}

Uniform Distribution on {1 }*"




Our Main Technical Contribution

Multilinear polynomial p of degree d <« n!~f with small Choose smart path to control
derivatives cannot compute k-Fold Forrelation time derivative of E[p(2(1))]
U (1) 7
~ —/\/
Elp(F )] — E[p(%)] ~ 0 T
0 Time ¢ 1
For every “time” ¢
k(k—1) i ¢(1-1/k) Recall bound on derivatives [Tal '20]
"Time derivative" < max Z — Z | 0gp(x) | Ath_order < g2 [SSW '21]
xe[—1,11" p \/% S — + Our Observation
1 d
< Sa— | 0sp(X) | < — |ch d ~ nl2
_ kn 2 — oose ~ N . .
Raz-Tal "18] xe[-1,1] \/; Si=2 \/; Relies on stochastic calculus tools
[Wu™19] 2nd order . .
» Gaussian Interpolation
» Gaussian Integration by Parts
1 1 R
3-Fold < max — Z | 0¢p(x) | +— Z |0gp(x) | < F— » Develop new Integration by
This Work] xel=LIT A 1S]=3 & |1S|=6 n n Parts identities for rounding

3rd order 6th order Choose d ~ n?">




Proof Ideas




Degree Lower Bounds via Interpolation

: Input (xi, ..., x,) € {£1}*"
=1k \with small 1 ¢

Multilinear polynomial p of degree d < n

n

derivatives cannot compute k-Fold Forrelation " 2 MEH, 5y Hy 2 0)
iyi=1

Forry(x)
Elp(F)] = E[p(%)] = 0

Small Value Large Value

Sl DISBATon % Pseudorandom Distribution &,

D(1)
o —

0 Time ¢ 1 , Rounding
é

e.g. take sign

Choose smart path to control Sample from some k
. . . kn . . . 2
time derivative of E[p(2(¢))] distribution &, over R Distribution on {*1}

Uniform Distribution on {1 }*"



2-Fold Case: Pseudorandom Distribution

Input (x;,x,) € {£1}*"

A
® ®
® ®

Pseudorandom Distribution &,

Forri(x) > 0.1 S x(j)
>
Sample from some k=2 1 « _ .
distribution &, over R*" istributi + Forrp(x) = s Z x1(10) - Hyj - %5(j)

ij=1

) )
X,(i) | o4 Hj; ° <
.\. “Covariance Graph” Decision tree or multilinear polynomial
. < J ® X()) needs to compute all 2-wise correlations
independent
® ® S ———
) ® independent
J J
— —

E[X,(DX,()] = H

I Hﬂ) E[Forr(X)] = — ZHZ_I

X := (X;,X,) Gaussian in R** with Covariance X = (H I

[Aaronson-Ambainis '14]



2-Fold Case: The Smart Path

Uniform Distribution % =1l —-pl+ = Pseudorandom Distribution &,

Covariance

U (1) F >
Rounding ./_\./\/‘ Rounding

0 Time ¢ 1 il

Sample from some
distribution %, over R Distribution on {£1}*"

Sample from standkard Uniform Distribution
Gaussian over R*" k
on {x1}*"

Can be directly handled using Gaussian

X, @0) Interpolation Formula

Multilinear l Bound in terms of d;;p(x) and final

. . 1
covariance entries H;; = = —

Vn

polynomial p

d;; corresponds to removing x;x; €.g. X XpX3---X;X; xe[-1,1

. o 1
"Time derivative" < max = Z \6ijp(x)\
1" A/n i




3-Fold Case: Pseudorandom Distribution

Pseudorandom Distribution &, Input (xq, x,,x3) € {1 }3n

x1(i1) i

, Forri(x) > 0.1 ?%

n

1 . .
Forra(x) = - ZZ x (D H;x,())H;px5(1)
l’.]’

¢eo o
o
°p

¢oo

Sample from some
distribution &, over [Rkn Distribution on {%1}*"

. . : : I, H,
G, B independent Gaussians in R*" with covariance x = <H ; )

) ) ) )

G,(@)

E[Forrs(X)] =1

B(j) By(D)

Ak

[
(
(
(

(

Decision tree or multilinear polynomial needs
Take product of these random variables to compute all three-wise correlations now

X =(G,G,0B,B,) € R3"  Entry-wise product
[Tal '20]




3-Fold Case: The Smart Path

Uniform Distribution %

Pseudorandom Distribution #

U D(1) 7
Rounding ‘/\./—\/‘

e.g. tak 0 Time ¢ 1

Sample from standkard Uniform Distribution
Gaussian over R*" k
on {x1}*"

e.g. tal

Sample from some
distribution %, over R Distribution on {£1}*"

Interpolate G and B separately 21 =81 2= 8 by 3= b3
_
l(l) ° Bz(l) p(Z) —_— e _|_ 500 Z1Z2Z3 000 _|_ 500
° Want bounds in terms of 9;;,p I
o o and sixth order derivatives 8182 - bybs
. . il lynomi
o o Multilinear polynomial p
— —

Take product of these random variables Other stochastic calculus tools e.g. Gaussian Integration

X :=(G,,G, ® B;,B,) € R™ by Parts to relate derivatives after substitution




Summary and Open Problems

—0(k)

k-fold Forrelation problem gives a [k/2] vs Q(n '~k separation between Optimal
Separation

quantum and classical query algorithms for advantage 6 = 2

Relies on stochastic calculus tools

» Gaussian Interpolation
» Gaussian Integration by Parts

» Develop new Integration by Parts identities for rounding

Open . L . :
Prozlem Quantum vs Classical Communication Complexity of Total Functions

Are these polynomially related?



