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Understanding the relative power of quantum and classical computing is of basic importance in theoretical
computer science. This question has been studied most actively in the query model, which is tractable enough
to allow unconditional lower bounds yet rich enough to capture most of the known quantum algorithms.
Illustrative examples include the quantum algorithms of Deutsch and Jozsa [9], Bernstein and Vazirani [5],
Grover [12], and Shor’s period-finding [17]. In the query model, the task is to evaluate a fixed function f on
an unknown n-bit input x. In the classical setting, query algorithms are commonly referred to as decision
trees. A decision tree accesses the input one bit at a time, choosing the bits to query in adaptive fashion.
The objective is to determine f(x) by querying as few bits as possible. The minimum number of queries
needed to determine f(x) in the worst case is called the query complexity of f . The quantum model is a
far-reaching generalization of the classical decision tree whereby all bits can be queried in superposition with
a single query. The catch is that the outcomes of those queries are then also in superposition, and it is not
clear a priori whether quantum query algorithms are more powerful than decision trees. The focus of our
paper is on the bounded-error regime, where the query algorithm (quantum or classical) is allowed to err
with small constant probability on any given input.

The comparative power of randomized and quantum query algorithms has been studied for more than
two decades. In pioneering work, Deutsch and Jozsa [9] gave a quantum query algorithm that solves, with
a single query, a problem on n bits that any deterministic decision tree needs at least n/2 queries to solve.
Unfortunately, this separation does not apply to the more subtle, bounded-error setting. This was addressed
in follow-up work by Simon [18], who exhibited a problem with bounded-error quantum query complexity
O(log2 n) and randomized query complexity Ω(

√
n). These are striking examples of the computational

advantages afforded by the quantum model.
This leaves us with a fundamental question: what is the largest possible separation between bounded-error

quantum and randomized query complexity, for a problem with n-bit input? This question was popularized
by Buhrman et al. [6] and, a decade later, by Aaronson and Ambainis [1], who presented it as being essential
to understanding the phenomenon of quantum speedups. Toward this goal, the authors of [1] obtained both
positive and negative results. They showed, for every constant t, that every quantum algorithm with t
queries can be converted to a randomized decision tree of cost O(n1−1/2t). In particular, this rules out an
O(1) versus Ω(n) separation. In the opposite direction, Aaronson and Ambainis exhibited a problem that
can be solved to bounded error with a single quantum query but has randomized query complexity Ω̃(

√
n).

They left open the challenge of obtaining a separation of O(1) versus Ω(nα) for some α > 1/2.
In more detail, Aaronson and Ambainis [1] introduced and studied the k-fold forrelation problem. The

input to the problem is a k-tuple of vectors x1, x2, . . . , xk ∈ {−1, 1}n, where n is a power of 2. Define

φn,k(x1, x2, . . . , xk) =
1

n
1ᵀDx1

HDx2
HDx3

H · · ·HDxk
1, (1)

where 1 is the all-ones vector, H is the Hadamard transform matrix of order n, and Dxi
is the diagonal

matrix with the vector xi on the diagonal. Since each of the linear transformations H,Dx1 , Dx2 , . . . , Dxn

preserves Euclidean length, it follows that |φn,k(x1, x2, . . . , xk)| 6 1. Given x1, x2, . . . , xk, the forrelation
problem is to distinguish between the cases |φn,k(x1, x2, . . . , xk)| 6 α and φn,k(x1, x2, . . . , xk) > β, where
the problem parameters 0 < α < β < 1 are suitably chosen constants. Equation (1) directly gives a quantum
algorithm that solves the forrelation problem with bounded error and query cost k, and in fact [1] the cost
can be further reduced to dk/2e. Aaronson and Ambainis complemented this with an Ω̃(

√
n) lower bound on

the randomized query complexity of the forrelation problem for k = 2, hence the 1 versus Ω̃(
√
n) separation

mentioned above.
Building on the work of Aaronson and Ambainis [1], last year Tal [21] gave an improved separation of O(1)

versus Ω(n2/3−ε) for bounded-error quantum and randomized query complexities, for any constant ε > 0.
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For this, Tal replaced (1) with the more general quantity

φn,k,U (x1, x2, . . . , xk) =
1

n
1ᵀDx1

UDx2
UDx3

U · · ·UDxk
1, (2)

where U is an arbitrary but fixed orthogonal matrix. On input x1, x2, . . . , xk ∈ {−1, 1}n, the author
of [21] considered the problem of distinguishing between the cases |φn,k,U (x1, x2, . . . , xk)| 6 2−k−1 and
φn,k,U (x1, x2, . . . , xk) > 2−k. This problem is referred to in [21] as the k-fold rorrelation problem with respect
to U. The quantum algorithm of Aaronson and Ambainis, adapted to the arbitrary choice of U, solves this
new problem with dk/2e queries and advantage Ω(2−k) over random guessing, which counts as a bounded-
error algorithm for any constant k. On the other hand, Tal [21] proved that the randomized query complexity
of the k-fold rorrelation problem for uniformly random U is Ω(n2(k−1)/(3k−1)/k log n) with high probability.
Setting k to a large constant gives a separation of O(1) versus Ω(n2/3−ε) for bounded-error quantum and
randomized query complexity for any constant ε > 0.

Our Results

Separations for partial functions. Prior to our paper, Tal’s separation of O(1) versus Ω(n2/3−ε) was the
strongest known, and Aaronson and Ambainis’s challenge of obtaining an O(1) versus Ω(n1−ε) separation
remained open. The main contribution of our work is to resolve this question. In what follows, we let fn,k,U
denote the k-fold rorrelation problem with respect to U. We prove:

Theorem 1. Let n and k be positive integers, with k 6 1
3 log n − 1. Let U ∈ Rn×n be a uniformly random

orthogonal matrix. Then with probability 1− o(1),

R 1
2−γ

(fn,k,U ) = Ω

(
γ2

k
· n1−

1
k

(log n)2−
1
k

)
, ∀γ ∈ [0, 1/2]. (3)

For k = 2, this lower bound is the same as Aaronson and Ambainis’s lower bound for the forrelation problem
(which is fn,2,H in our notation). For k = 3 already, Theorem 1 is a polynomial improvement on all previous
work, including Tal’s recent result [21]. Theorem 1 is essentially tight for all k, both even and odd, due to the
matching upper bound Ok(n1−1/k) of Aaronson and Ambainis [1] for bounded block-multilinear polynomials
of degree k. Since fn,k,U has an efficient quantum protocol for every U , we obtain the following corollary:

Corollary 2. Let ε > 0 be given. Then there is a partial Boolean function f on {−1, 1}n with Q1/3(f) =

O(1) and R1/3(f) = Ω(n1−ε).

This separation of bounded-error quantum and randomized query complexities is best possible for all f
due to Aaronson and Ambainis’s result that every quantum protocol with k queries can be simulated by
a randomized query algorithm of cost O(n1−1/2k). In particular, Corollary 2 shows that the rorrelation
problem separates quantum and randomized query complexity optimally, of all problems f .

Separation for total functions. Our results so far pertain to partial Boolean functions, whose domain of
definition is a proper subset of the Boolean hypercube. For total Boolean functions, such large quantum-
classical gaps are not possible. In a seminal paper, Beals et al. [4] prove that the bounded-error quantum
query complexity of a total function f is always polynomially related to the randomized query complexity
of f . A natural question to ask is how large this polynomial gap can be. Grover’s search [12] shows that
the n-bit OR function has bounded-error quantum query complexity Θ(

√
n) and randomized complexity

Θ(n). For a long time, this quadratic separation was believed to be the largest possible. In a surprising
result, Aaronson et al. [2] proved the existence of a total function f with R1/3(f) = Ω̃(Q1/3(f)2.5). This was
improved by Tal [21] to R1/3(f) > Q1/3(f)8/3−o(1). We give a polynomially stronger separation:

Theorem 3. There is a function f : {−1, 1}n → {0, 1} with R1/3(f) > Q1/3(f)3−o(1).

Theorem 3 follows by combining our quantum-classical query separations (see the full version) with the
“cheatsheet” framework of Aaronson et al. [2]. A recent paper of Aaronson et al. [3] conjectures thatR1/3(f) =

O(Q1/3(f)3) for every total function f, which would mean that our Theorem 3 is essentially optimal.



Separations for communication complexity. Using standard reductions, our quantum-classical query
separations imply analogous separations for communication complexity. We prove:

Theorem 4 (Partial functions). Let ε > 0 be given. Then there is a partial Boolean function F on {−1, 1}N×
{−1, 1}N with Qcc

1/3(F ) = O(logN) and Rcc
1/3(F ) = Ω(N1−ε).

Theorem 5 (Total functions). There is F : {−1, 1}N × {−1, 1}N → {0, 1} with Rcc
1/3(F ) > Qcc

1/3(F )3−o(1).

Theorem 4 is near-optimal and a polynomial improvement on previous work. The best previous quantum-
classical separation for communication complexity was O(logN) versus Ω(N2/3−ε), implicit in Tal [21] and
preceded in turn by other exponential separations [15, 16, 10]. Similarly, Theorem 5 is a polynomial im-
provement on previous work, the best previous result being a power of 8/3 separation implicit in [21].

Fourier weight of decision trees. It is straightforward to verify that a uniformly random input x ∈
({−1, 1}n)k is with high probability a negative instance of the rorrelation problem fn,k,U . With this in
mind, Tal [21] proves his lower bound for rorrelation by constructing a probability distribution Dn,k,U that
generates positive instances of fn,k,U with nontrivial probability yet is indistinguishable from the uniform
distribution by a decision tree T of cost n2/3−O(1/k). His notion of indistinguishability is based on the Fourier
spectrum. Specifically, Tal [21] shows that: (i) the sum of the absolute values of the Fourier coefficients of T
of given order ` does not grow too fast with `; and (ii) the maximum Fourier coefficient of Dn,k,U of order `
decays exponentially fast with `. In Tal’s paper, the bound for (ii) is essentially optimal, whereas the bound
for (i) is far from tight. The sum of the absolute values of the order-` Fourier coefficients of a decision tree
T , which we refer to as the `-Fourier weight of T , is shown in [21] to be at most

c`
√
d`(1 + log kn)`−1, (4)

where d is the depth of the tree and c > 1 is an absolute constant. This bound is strong for any constant
` but degrades rapidly as ` grows. In particular, for ` =

√
d already, (4) is weaker than the trivial bound(

d
`

)
. This is a major obstacle since the indistinguishability proof requires strong bounds for every `. This

obstacle is the reason why Tal’s analysis gives the randomized query lower bound n2/3−O(1/k) as opposed to
the optimal Ω̃(n1−1/k). Tal conjectured that the `-Fourier weight of a depth-d decision tree is in fact bounded

by c`
√(

d
`

)
(1 + log kn)`−1, which is a factor of

√
`! improvement on (4) and essentially optimal. We prove

his conjecture:

Theorem 6. Let T : {−1, 1}n → {0, 1} be a function computable by a decision tree of depth d. Then∑
S⊆{1,2,...,n}:
|S|=`

|T̂ (S)| 6 c`

√(
d

`

)
(1 + log n)`−1, ` = 1, 2, . . . , n,

where c > 1 is an absolute constant.

It is well known and easy to show that Theorem 6 is essentially tight, even for nonadaptive decision trees [13,
Theorem 5.19]. The actual statement that we prove is more precise and takes into account the density
parameter P[T (x) 6= 0]; see the full version for details. With Theorem 6 in hand, all our main results
(Theorem 1 and its corollaries) follow immediately by combining the new bound on the Fourier weight of
decision trees with Tal’s near-optimal bounds on the individual Fourier coefficients of Dn,k,U .

Theorem 6 is of interest in its own right, independent of its use in this paper to obtain optimal quantum-
classical separations. The study of the Fourier spectrum has a variety of applications in theoretical computer
science, including circuit complexity, learning theory, pseudorandom generators, and quantum computing.
Even prior to Tal’s work, the `-Fourier weight of decision trees was studied for ` = 1 by O’Donnell and
Servedio [14], who proved the tight O(

√
d) bound and used it to give a polynomial-time learning algorithm

for monotone decision trees. Fourier weight has been studied for various other classes of Boolean func-
tions, including bounded-depth circuits, branching programs, low-degree polynomials over finite fields, and
functions with bounded sensitivity; see the recent papers [11, 19, 20, 8, 7] and the references therein.
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