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Introduction

Many important quantum algorithms make use of the quantum if clause, a primitive which given a
unitary U ∈ U(d) builds control(U) = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ U . For example, the famous algorithms
for factoring integers [Sho94], solving linear systems of equations [HHL09], solving semidefinite pro-
grams [BS17, VAGGdW20], or characterising quantum many-body systems [TOV+11, WBAG11]
all use quantum phase estimation [Kit95, CEMM98], which, in turn, requires calls to control(U).
If a classical description of U is available, as is the case in the fast algorithms mentioned above,
there is the following general, implementation-independent way to build control(U) from U : Given
its classical description, find U ’s decomposition to elementary gates and add a control to each of
them, then run the controlled elementary gates to implement control(U) [BBC+95].

It is a very natural question whether a quantum circuit can implement control(U) when treating
U as an oracle [AK07]. One solution is immediately available; call U sufficiently many times to apply
process tomography [CN97, PCZ97], providing a classical description of eiαU for some α ∈ [0, 2π]
(the procedure must be insensitive to the global phase of U), then continue as described above -
implementing control(eiαU). Much simpler solutions exist in specific physical implementations; in
optics [ZRK+11], computation with trapped ions [FDDB14] or superconducting qubits [FMKB15].
For example in optics, since the oracle gate U occupies a certain physical space, an interferometer
with polarising beamsplitters can control whether a photon passes through the gate U or not
depending on the polarisation degree of freedom. This implementation-dependent solution does
not require measurements. We ask whether a unitary solution exists in a quantum circuit. Our
answer is in the negative: A unitary quantum circuit implementing control(eiαU) is impossible.
Equivalently, in any quantum circuit with measurements that does implement control(eiαU) (as
the one corresponding to the process tomography approach), the measurements are necessary for
disentangling the gained phase α from ancilla registers.

First we introduce the notion of task to simplify the discussion of preceding works and the
formulation of our result. Several works studied the possibility of using oracle access to U for
implementing functions of U ; the control function [AFCB14, TMVG18, DNSM19], but also complex
conjugation [MSM19], transpose and inverse [QDS+19a, QDS+19b], raising U to some fractional
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power [SMM09, GSLW19], and more. In all these works, one is interested in viewing the access to
the subroutines U as an oracle access, and treating the process achieving the desired function of U ,
t(U), as an algorithm. Treating subroutines U as oracles has a great deal of flexibility; replacing the
subroutines by different ones (different U ’s) preserves the functionality of the algorithm (namely,
the function t). Since the algorithm itself may be used as a subroutine, the t(U) it should achieve
is an operator - i.e. the algorithm should implement t(U). At the same time, it makes sense to
specify what ways to access the oracle U are available to the algorithm. To this end we define:

Definition 1 (Task). A task is a pair (t,Σ), where
1. The task function t : U(d) → L(Ht) indicates that given an oracle U ∈ U(d), we wish to

implement the operator t(U) to the task Hilbert space, Ht.
2. The query alphabet Σ is a set of functions on U(d), such that if the oracle is U ∈ U(d) and
σ ∈ Σ, then the algorithm is allowed to query σ(U). The set Σ usually contains the identity
id : U 7→ U ,

where L(H) is the set of linear operators from the finite-dimensional Hilbert space H to itself.
Roughly, we say that an algorithm exactly achieves (ε-approximates) the task (t,Σ), if it exactly

(approximately) implements t(U) while accessing U only via the functions in the query alphabet
Σ. We distinguish worst-case algorithms, which implement t(U) for all U ∈ U(d), and average-case
algorithms, which can fail for some U ∈ U(d). All the algorithms we mention throughout this paper
are worst-case unless we explicitly indicate otherwise.

We restate some of the previous works in this ’task’ (t,Σ) terminology. First of all, phase esti-
mation is concerned with a task whose query alphabet contains control. Miyazaki et al. [MSM19]
presented an algorithm for the task of complex conjugation (t,Σ) = (U 7→ U∗, {id}). This was
followed by algorithms by Quintino et al. [QDS+19b, QDS+19a] for transpose (U 7→ UT , {id}) and
inversion (inv :U 7→U †, {id}). Sheridan et. al. [SMM09] presented the q-th power algorithm, an
average-case algorithm achieving (U 7→U q, {id, inv}) for any fixed q ∈ R.

The specific question of implementing control(U) for all U ∈ U(d), and some variations of
this question, have already been studied quite extensively before. Araújo et al. [AFCB14] and
Thompson et al. [TMVG18] observed that the (control, {id}) task is impossible; any algorithm
that can implement control(U) from calls to U is unphysical - if applied to the correct input and
followed by the correct measurement, it would give a physical process distinguishing U from −U ,
contradicting the fact that a difference in global phase is physically indistinguishable. Araújo
et al. [AFCB14] asked about implementing control up to a global phase on U , i.e. about the
task (controlφ, {id}) with controlφ(U) = |0〉〈0| ⊗ 1+eiφ(U) |1〉〈1| ⊗ U for any real function φ. They
proved that with one call to U ∈ U(2) this task is impossible for a quantum circuit. Dong et al.
[DNSM19] found an algorithm for (U 7→ controlφ(Ud), {id}) for d the dimension of U . Together with
the 1

d -th power algorithm of Sheridan et al. [SMM09] these two results compose to an algorithm for
(controlφ, {id, inv}). Unfortunately, due to its [SMM09] component, this algorithm fails for some
U ∈ U(d).

Overview of Main Result

The main result of this paper is concerned with the worst-case achievability of the task c-U :=
(controlφ, {id, inv}). We generalise the impossibility of Araújo et al. [AFCB14] to oracles of any
fixed dimension d, U ∈ U(d) and to any finite number of id and inv queries, and show that for any
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such unitary circuit c-U is impossible. It remains impossible also if we add postselection, calling the
resulting model postselection oracle algorithm. Most importantly, the impossibility holds even when
one allows only approximate implementation of controlφ(U). We will compare this impossibility
result to the above mentioned combination of the algorithms of Sheridan et al. [SMM09] and Dong
et al. [DNSM19] which achieves the c-U task for most Us. We will also contrast it with the process
tomography strategy. To get our impossibility, we prove a stronger result, regarding a more general
task: c-Um := (U 7→ controlφ(Um), {id, inv}) for m ∈ Z. We phrase our result as a dichotomy
theorem regarding the possibility of this task, as a function of the relation between m and d:

Theorem 1 (The Exact Dichotomy). Let m ∈ Z and let d ∈ N be the dimension of the oracle,
U ∈ U(d).

• If d|m there exists a postselection oracle algorithm exactly achieving the task

c-Um := (U 7→ |0〉〈0| ⊗ 1+eiφ(U) |1〉〈1| ⊗ Um, {id, inv}),

for some φ : U(d)→ R.
• If d - m no such algorithm exists.

Since the m = 1 case of the task c-Um, is the task c-U , the following impossibility, which is our
main result, follows from our Dichotomy theorem:

Corollary 1 (Main: Impossibility of Controlled U). Exactly achieving the task c-U is im-
possible in the postselection oracle algorithm model.

The d|m part of Theorem 1 is a corollary of Dong et al.’s [DNSM19] construction of the algorithm
that achieves c-Ud. Our main contribution is the d - m direction, for which we prove the following
topological lemma, closely related to the Borsuk-Ulam theorem [Bor33]:

Lemma 1. Let d ∈ N and m ∈ Z such that there exists a function f : U (d) → S1 which is
continuous and m-homogeneous, i.e. f(λU) = λmf(U) for each λ ∈ S1. Then m is a multiple of d.

As we mentioned, our main result generalises for the approximate setting. In that case we require
that the postselection oracle algorithm implements the operator t(U) = |0〉〈0|⊗1+eiφ(U) |1〉〈1|⊗Um
only approximately. We say that the postselection oracle algorithm ε-approximates the task, if the
algorithm’s superoperator is within distance ε from the task superoperator ρ 7→ t(U)ρ t(U)†. We
need a new notion of distance, because the algorithm includes postselection - its output must be
renormalised before comparing it to an output of the trace-preserving task superoperator. In our
technical paper [Gav20] we define postselection equivalents of trace-induced distance and diamond
distance and prove some inequalities we find useful. In the main paper we use them to get:

Theorem 2 (The Approximate Dichotomy) (Roughly). Theorem 1 and Corollary 1 hold also
when ”exactly achieving” in their statement is replaced by ”ε-approximating” for any ε < 1

2 .

Our main result about c-Um affects other tasks; we prove corollaries about the transpose and
the inversion tasks studied by Quintino et al. [QDS+19a, QDS+19b] and present a new proof, in
addition to the existing proof of [SMM09], that any algorithm for the fractional power task must
be average-case.
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