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1 Introduction

Error reduction is a fundamental, natural, and useful primitive in algorithm design whose
goal is to reduce the error that an algorithm makes, while not deteriorating its performance by
much. An (efficient) randomised or quantum algorithm A will output the correct answer with
reasonable success probability: 1− ε. Often, the error ε is some small constant, but it may be a
function depending in the size of the input or some other parameter.

The goal is to design a new algorithm A′, that computes the same function as A, has a
comparable running time, but has a much smaller error. The standard way of doing this is by
running algorithm A n times, yielding n answers a1, . . . , an. The output of the new algorithm
A′ is the majority value among the n outputs: MAJ(a1, . . . , an). The running time of this new
algorithm is n times the original running time plus the time it takes to compute the majority
value. Standard tools from probability theory, like e.g. the Chernoff bound, can be used to show
that the new ε is exponentially smaller (in n) than the old error. This strategy of computing
the majority value usually works, but in some situations may be quite complicated to prove.
See for example the extensive literature on parallel repetition in interactive proof systems. This
procedure also works when the error is due to imperfections in the hardware. As long as the
final majority computation is error free, hardware errors can also be reduced this way.

This approach works equally well for quantum algorithms whose output is classical. For ex-
ample BQP, the complexity class of computational problems that can be solved by a polynomial-
time quantum algorithm with constant error is independent of the precise value of ε. As long
as the error is not too big, the above majority procedure can be used to reduce the error to
some arbitrary small value. However, when the output of the algorithm is quantum, it is not
known or even clear how to implement the above described majority voting procedure. Is it
possible to devise an efficient error reduction procedure that runs the quantum algorithm n
times and produces the desired output state with higher probability or fidelity than the original
algorithm? We make a start on how to approach this problem and open up a new area that
studies this question not only for the majority function but for arbitrary functions. We call this
the computation of Boolean functions with quantum inputs.

2 Quantum Majority Vote

Consider the following simplified version of the problem where the algorithm can produce only
two orthogonal states |ψ0〉 or |ψ1〉. Note that we don’t know which states they are, only that
they are orthogonal. Moreover, assume that the algorithm is more likely to produce one of the
two states. After running such algorithm n times we have the n-qubit product state

|Ψ〉 = |φ1〉 ⊗ · · · ⊗ |φn〉 (1)

where each qubit |φi〉 is in one of two orthogonal states |ψ0〉 or |ψ1〉. Ideally we need to return
either |ψ0〉 or |ψ1〉, depending on which state occurs more often in the product. The difficulty
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lies in the fact that we do not know the identity of |ψ0〉 or |ψ1〉. We refer to this problem as
quantum majority vote. One can show that generally this task cannot be achieved perfectly due
to linearity of quantum mechanics.

The simplest strategy is to select a random qubit of |Ψ〉 and output its state |φi〉. While this
procedure is more likely to output the most frequent state, it does not reduce the worst-case
error or fidelity as was intended. Using tools from representation theory, such as Schur–Weyl
duality and the Schur transform, we devise an optimal algorithm for this task that improves the
naive guessing strategy. In fact, promised that at least 2/3 of the qubit states are the same, the
output fidelity of our algorithm gets arbitrarily close to 1.

Theorem 1. For any odd n, if |x| (the number of 1’s in x) is arbitrary, then the optimal worst-case
fidelity FMAJ(n) = 1/2 + Θ(1/

√
n). If we promise that

∣∣|x| − n
2

∣∣ ≥ n
3 then FMAJ(n) = 1−Θ(1/n).

This is quite surprising as it shows that in the quantum case success amplification with
linearly small error is possible even without knowing the input/output basis. Moreover, our
algorithm can be implemented efficiently. On the other hand, the rate of reduction is not as
good as in the classical setting where we can reduce the error exponentially.

We remark that an alternative notion of majority voting is given by the closely related
concept of purification [CEM99, KW01]. However, our viewpoint can be generalized to a more
wide-ranging framework of Boolean functions that have quantum inputs, as we discuss next.

3 Boolean Functions with Quantum Inputs

A Boolean function f : {0, 1}n → {0, 1} gets as input an n-bit string x = x1 . . . xn and outputs a
bit f (x). We replace the classical input x by a quantum state as in eq. (1): |Ψ〉 = |φ1〉 ⊗ · · · ⊗ |φn〉
where |φi〉 = |ψxi〉. That is, each input bit xi is replaced by one of two orthogonal qubit states
|ψ0〉 or |ψ1〉, depending on xi. The goal is to quantumly compute f on this state and output
a state ρ which is equal, or as close as possible, to |ψ f (x)〉. Since we do not know what |ψ0〉
and |ψ1〉 are, only that they are orthogonal, there is not a unique way to assign them to the
bits 0 and 1. Therefore, it only makes sense to explore this task for Boolean functions that are
self-dual or covariant: f (¬x1, . . . ,¬xn) = ¬ f (x1, . . . , xn). For simplicity, we focus on symmetric
functions in which case f (x) only depends on |x|. Note that for odd n, the majority function
MAJ(x1, . . . , xn) is a natural example of a function that is both covariant and symmetric.

One-bit Boolean functions with quantum inputs and outputs have already been studied
and even experimentally implemented. In [BHW99] Bužek, Hillery and Werner ask for the
best quantum approximation of what they call the universal-NOT gate. This gate is defined
as the anti-unitary map sending an arbitrary qubit state |ψ〉 =

( α
β

)
to its perpendicular state

|ψ⊥〉 =
(

β
−α

)
. The best quantum algorithm for this problem achieves the worst-case output

fidelity of 2/3 [BHW99].
We consider the problem of covariant symmetric functions in the n-qubit setting. Our main

result is a generic algorithmic template which we can tune with a set of parameters t. We
provide an efficient linear program that computes the optimal setting of t and a gate-efficient
implementation of the corresponding quantum algorithm At.

Theorem 2 (informal). Let f : {0, 1}n → {0, 1} be a symmetric and covariant Boolean function.
For some choice of interpolation parameters t, our template algorithm At is optimal for computing f .
Moreover, the optimal worst-case fidelity for computing f can be computed by a simple linear program
of size bn/2c+ 1 whose optimal solution also yields the optimal choice of parameters t. The resulting
algorithm At can be implemented using O(n4 log n) elementary quantum gates.
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Template Algorithm At

Input: Quantum state U⊗n|x〉 with an unknown x ∈ {0, 1}n and U ∈ U(2).

Output: An approximation of U| f (x)〉.

Parameters: A vector of interpolation parameters t = (tλ : λ ` n) where each tλ ∈ [0, 1].

Step 1: Weak Schur sampling: apply Schur transform USch and measure λ ` n.

Step 2: Discard the permutation register.

Step 3: Apply ΦTr with probability tλ and ΦUNOT with probability (1− tλ), where λ is
the measurement outcome from Step 1.

ΦUNOT essentially corresponds to the quantum universal-NOT discussed above while ΦTr
corresponds to tracing out all but one of the qubits. Using this structure of the optimal algorithm,
one can design optimal interpolation parameters t for any covariant symmetric n-bit function.
Further analysis of the linear program can then establish optimal quantum algorithms for
infinite families of Boolean function, one for every n. We have performed this analysis for
the majority function MAJ discussed above in the context of error reduction for quantum
algorithms that have a quantum output. For majority, it is optimal to apply ΦTr with probability
one in Step 3 so the resulting algorithm is especially simple. Another natural function is the
PARITY function, which is covariant if n is odd, where we have numerical evidence that strongly
suggests that the optimal fidelity to compute PARITY for arbitrary n is 1/2 + Θ(1/n). This may
have further applications to hardness amplification in the quantum setting.

Example. We now illustrate the optimal algorithm A := A(1,1) for 3-bit majority. As input we recieve
U⊗3|x〉 for some unknown unitary U ∈ U(2) and a 3-bit string x. In Step 1 we obtain partition label
λ = (λ1, λ2) ` 3, with probability pλ(x). Upon measuring λ and after discarding in Step 2 we are left
with a state of dimension λ1 − λ2 + 1, which can be seen as corresponding to

U⊗(λ1−λ2)|s(|x| − λ2)〉

from the (λ1 − λ2)-qubit symmetric space, where |s(w)〉 is the symmetric state of Hamming weight w.
There are only two ways to partition three elements into two parts: λ = (2, 1) and λ = (3, 0). For
inputs x = 000, 001 and all measurement outcomes λ we list the associated probability pλ(x) and the
resulting state after Step 2 in the table below.

x = 000 x = 001

λ = (2, 1) pλ(x) = 0 pλ(x) = 2
3

—– U|0〉

λ = (3, 0) pλ(x) = 1 pλ(x) = 1
3

U⊗3|000〉 U⊗3 |001〉+|010〉+|100〉√
3

In case of majority for both x = 000 and x = 001, the correct output is U|0〉. Examining the states
resulting after Step 2 from the above table, it seems reasonable to simply return one of the qubits as this
allows to achieve fidelity 1 in all cases except for

(
λ = (3, 0), x = 001

)
where we get fidelity 2

3 . This is
exactly what A does in Step 3, since for majority tλ = 1 for all λ. Overall, the algorithm A achieves
worst-case fidelity

min
{

0 + 1 · 1,
2
3
· 1 + 1

3
· 2

3

}
=

8
9

. (2)
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