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Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n

|x〉 7→

U

|f (x)〉 ∀x ∈ {0, 1}n

, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

U|0〉 ⊗U|1〉 7→ U|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)
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Even n is bad
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Assumptions
Given f : {0, 1}n → {0, 1}, assume
I f is covariant
I f is symmetric
I n is odd

Goal
Given U⊗n|x〉, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)〉.

Worst-case fidelity

Ff := max
Φ

min
x,U
〈f (x)|U† Φ

(
U⊗n|x〉〈x|U†⊗n

)
U|f (x)〉
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Symmetric / anti-symmetric subspace of C2⊗C2

Symmetric states:
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c d
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 = a2 |00〉

0

+
√

2ac
|01〉+ |10〉√

2

1

+ c2 |11〉

2

Anti-symmetric state (singlet):

|Ψ−〉 :=
|01〉 − |10〉√

2(
a b
c d

)⊗2

|Ψ−〉 = (ad− bc)|Ψ−〉
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Schur transform on two qubits

USch :=
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0 1√
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

USch

(
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c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)
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Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ`n

[
Cmλ ⊗Cdλ

]

USchM⊗nU†
Sch =

⊕
λ`n

[
Qλ(M)⊗ Idλ

]
USchπU†

Sch =
⊕
λ`n

[Imλ
⊗ Pλ(π)]

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)
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4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f
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“partial trace” “universal NOT”

I A “dual“ Clebsch–Gordan transform
I Symmetric subspaces on ` vs `+ 1 qubits
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Main result

Theorem
For any symmetric and covariant n-bit boolean function
I the optimal parameters tλ and the resulting fidelity can be

determined by a linear program of size n/2
I optimal algorithm with O(n4 log n) gates



Fidelities of all 7-argument functions

|x| 0 1 2 3 4 5 6 7
f (x) 0 1 0 0 1 1 0 1

0 1

0 1

2
3

0

5
9

1

0 1

59
78

0

47
78

1

0

2888
3675

1

1444
1845

0

1141
1845

1

6841
11025

Fidelity depends only on the gap around n/2 in the truth table
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I Extending to non-symmetric and partial functions
I Connections with regular quantum query complexity
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Thank you!


