Quantum majority
and other Boolean functions with quantum inputs

Harry Maris Ashley
Buhrman Laura Ozols Noah Montanaro
Mancinska Linden

Manifesto

» All information is quantum. ..

Manifesto

» All information is quantum. ..

» ...there is no classical information

Manifesto

» All information is quantum. ..

» ...there is no classical information

Manifesto

» All information is quantum. ..
» ...there is no classical information
> Algorithm = CPTP map

Manifesto

» All information is quantum. ..

» ...there is no classical information
> Algorithm = CPTP map

» Classical computer science is dead!

Manifesto (lite)

Manifesto (lite)

(@
ﬁw o)

.I\

Manifesto (lite)

» quantum Fourier transform

» Grover iteration
> swap test
> ...

Manifesto (lite)

New quantum primitives!

» quantum Fourier transform

» Grover iteration
> swap test
> ...

Majority vote

Majority vote

» success amplification
> error correction

» democracy

Quantum majority vote

Quantum majority vote

)

Quantum majority vote

) 1)

Quantum majority vote

) ¢))

Quantum majority vote

) [9)))

Quantum majority vote

[P e) @))) [w) 1)

Quantum majority vote

[P) @)) [) [w) 1)

\ J
Y

¥)

Quantum majority vote

&
|\1P>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

Quantum majority vote

&
|\¢>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

Quantum majority vote

&
|\¢>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

LI

e

Quantum majority vote

&
|\¢>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

LI

Quantum majority vote

&
|\¢>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

LI

e

Quantum majority vote

&
|\¢>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

LI

Quantum majority vote

&
|\¢>\¢>|¢L>|¢>|¢>|¢l>|¢>!¢>|¢3
Y
)

Computation in an unknown basis

LI

Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

[x) = If(x)) Yxe {01}

Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

XOR of two bits 10) ®|1) — |1)

Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

XOR of two bits 10) ®|1) — |1)
ujo) ® Uf1) — uUj1)

Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

XOR of two bits 10) @ 1) — |1)
X|0) ® X|1) — X|1)

Covariance
Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

XOR of two bits 10) @ 1) — |1)
X|0) ® X|1) — X|1)
1) @10) = 10)

fin error has occurred. To continue:
Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this,
you will lose any unsaved information in all open applications.

Error: QE : 016F : BFF9E3D4

Press any key to continue _

Covariance
Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

XOR of two bits 10) @ 1) — |1)
X|0) ® X|1) — X|1)
1) @10) = 10)

Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x)) Vxe {0,1}",U € U(2)

XOR of two bits 10) @ 1) — |1)
X|0) ® X|1) — X|1)
1) @10) = 10)

Covariant functions
f:{0,1}" — {0,1} is covariant (or self-dual) if

Symmetric functions

Assumption
f(x) depends only on the Hamming weight of x € {0,1}"

Symmetric functions

Assumption
f(x) depends only on the Hamming weight of x € {0,1}"

Example: n =3

Symmetric functions

Assumption
f(x) depends only on the Hamming weight of x € {0,1}"

Example: n =3

Even n is bad

f(0,1) = £(1,0) = £(0,1)

Problem

Assumptions

Givenf : {0,1}" — {0,1}, assume
» fis covariant
> fis symmetric
> nisodd

Problem

Assumptions

Givenf : {0,1}" — {0,1}, assume
» fis covariant
> fis symmetric
> nisodd

Goal
Given U%"|x), for an unknown U € U(2) and x € {0,1}",
produce p that is close to U|f(x)).

Problem

Assumptions

Givenf : {0,1}" — {0,1}, assume
» fis covariant
> fis symmetric
> nisodd

Goal
Given U%"|x), for an unknown U € U(2) and x € {0,1}",
produce p that is close to U|f(x)).

Worst-case fidelity

Fy := max min {f(x)|U" <D<U®”|x> <xyu+®") Ulf(x))

Results on majority

Trivial strategy: Output any qubit at random

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

o
(ST
=
o
T
=

Results on majority

Trivial strategy: Output any qubit at random

No promise

Promise

n/3 n/3

Trivial

N O1

Results on majority

Trivial strategy: Output any qubit at random

No promise

Promise

n/3 n/3

.. 1 1 5
Trivial §+ﬂ 8
1 1 1
Optimal - — —o(=
ptima 2+®(\/ﬁ> 1 ®<n>

Symmetric / anti-symmetric subspace of C*> ® C?

Symmetric states:

®2
01) 4|10
<‘Cl Z) 100) = Z‘; =a* 00) +v/2ac H\J/%|> +2 |11)

Symmetric / anti-symmetric subspace of C*> ® C?

Symmetric states:

b\’ 01) + |10
<‘Cl d) 00) = | | =a? |00) +V/2ac |>\2|> +c |11)
c? 0 1 2

Symmetric / anti-symmetric subspace of C*> ® C?

Symmetric states:

b\’ 01) + |10
<Z d) 00) = | | =a? |00) +V/2ac |>\2|> +c |11)
c? 0 1 2

Anti-symmetric state (singlet):

_ |o1) — [10)

¥) - 7

Symmetric / anti-symmetric subspace of C*> ® C?

Symmetric states:

b\’ 01) + |10
<Z d) 00) = | | =a? |00) +V/2ac |>\2|> +c |11)
c? 0 1 2

Anti-symmetric state (singlet):

_ |o1) — [10)

¥) - 7

(°)") = by

Schur transform on two qubits

S O = O
SURSNE

OﬁFOEP

_ O O O

Schur transform on two qubits

S O = O
SUESIE

°§F°§F

_ O O O

Schur transform on two qubits

1 1
0% v !
1 0 0 0
uSCh = 0 1 1 0
V2 V2
0 O 0 1
ad—bc 0 0 0
u a b\ ut. — 0 a> v/2ab o
sh { . 4 Sch = 0 V2ac ad +bc /2bd

0 c2 V2cd d?

Schur transform on two qubits

1 1
0 \—@ _ﬁ 0
1 0 0 0
uSCh = 0 1 1 0
V2 V2
0 O 0 1
ad—bc 0 0 0
u a b\ ut. — 0 a> v/2ab o
sh { . 4 Sch = 0 V2ac ad +bc /2bd

0 c2 V2cd d?

Schur transform on two qubits

1 1
0 % 7 0
1 0 0 0
Useh := 0 L L g
V2 V2
0 O 0 1
ad —bc 0 0 0
u a b*? ut. — 0 a? v/2ab b
sh { . 4 Sch = 0 V2ac ad+bc /2bd
0 2 V2d

Schur transform on two qubits

1 1
0% v !
1 0 0 0
uSCh = 0 1 1 0
V2 V2
0 O 0 1
ad—bc 0 0 0
u a b\ ut. — 0 a> v/2ab o
sh { . 4 Sch = 0 V2ac ad +bc /2bd

0 c2 V2cd d?

Uss, SWAP U, = diag(—1,1,1,1)

Schur transform on two qubits

1 1
0 \—@ _ﬁ 0
1 0 0 0
uSCh = 0 1 1 0
V2 V2
0 O 0 1
ad—bc 0 0 0
u a b\ ut. — 0 a> v/2ab o
sh { . 4 Sch = 0 V2ac ad +bc /2bd

0 c2 V2cd d?

Uss, SWAP U, = diag(—1,1,1,1)

Schur transform on two qubits

1 1
0% %0
1 0 0 0
Useh := 0 L L g
V2 V2
0 O 0 1
ad —bc 0 0 0
u a b\ ut. — 0 a> v/2ab o
sh { . 4 Sch = 0 V2ac ad +bc /2bd

0 c2 V2cd d?

Us, SWAP U, = diag(—1,1,1,1)

Schur transform on two qubits

uSch =

. 2
Usch (C d) Uiy, =

1 1
0 N Y, 0
1 0 0 O
1 1
0 VY 0
0 0 0 1
ad — be 0 0 0

0 a2 \/2ab b?
0 V2ac ad +bec /2bd
0 c2 V2ed 42

Uss, SWAP U, = diag(—1,1,1,1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on n qubits

Usen : (€))7 — P|C™ @ €|
Abn

Schur transform on n qubits

Usen : (€))7 — P|C™ @ €|
Abn

UscnM®" Uy, = P (M) ® 1,]
AFn

Schur transform on n qubits

Usen : (€))7 — P|C™ @ €|
Abn

UschM*" ULy, = PlonM) @1,]
AFn

UschtUdy, = P I, ® Pa(71)]
AbFn

Schur transform on n qubits

Usen : (€))7 — P|C™ @ €|
Abn

UscnM®" Uy, = P (M) ® 1,]
AFn

Uscn Ty, = P I, @ Pr(70)]
AbFn

Can be implemented with O(n*logn) gates
(Kirby & Strauch, 2017)

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1. Apply Schur transform Us,

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1. Apply Schur transform Us,
2. Measure A - n (weak Schur sampling)

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1. Apply Schur transform Us,
2. Measure A - n (weak Schur sampling)

3. Discard the permutation register

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1. Apply Schur transform Us,
2. Measure A - n (weak Schur sampling)
3. Discard the permutation register

4. Apply some covariant channel with 1-qubit output

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1.

Apply Schur transform Us,

2. Measure A - n (weak Schur sampling)
3.
4

. Apply some covariant channel with 1-qubit output

Discard the permutation register

Steps 1-3 are reversible (generic pre-processing)

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1. Apply Schur transform Us,

2. Measure A - n (weak Schur sampling)
3. Discard the permutation register
4

. Apply some covariant channel with 1-qubit output

v

Steps 1-3 are reversible (generic pre-processing)
» Step 4 acts on a state of random dimension 1,

Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1.

Apply Schur transform Us,

2. Measure A - n (weak Schur sampling)
3.
4

. Apply some covariant channel with 1-qubit output

Discard the permutation register

» Steps 1-3 are reversible (generic pre-processing)

Step 4 acts on a state of random dimension m,
Only step 4 depends on f

Extremal covariant channels

For each A -1, only two extremal covariant channels from
C" — C2:

A

— N

“partial trace” “universal NOT”

Extremal covariant channels

For each A -1, only two extremal covariant channels from
C" — C2:

A

“partial trace” “universal NOT”

Extremal covariant channels

For each A -1, only two extremal covariant channels from

c™ — C2
A
|
BN
||
“partial trace” “universal NOT”

» A “dual” Clebsch—Gordan transform

Extremal covariant channels

For each A -1, only two extremal covariant channels from

c™ — C2
A
|
BN
||
“partial trace” “universal NOT”

» A “dual” Clebsch—-Gordan transform
» Symmetric subspaces on ¢ vs £ + 1 qubits

Extremal covariant channels

For each A -1, only two extremal covariant channels from

c™ — C2
A
|
BN
||
“partial trace” “universal NOT”

» A “dual” Clebsch—-Gordan transform
» Symmetric subspaces on ¢ vs £ + 1 qubits
» O({log?) gates

Main result

Theorem
For any symmetric and covariant n-bit boolean function

» the optimal parameters ¢, and the resulting fidelity can be
determined by a linear program of size n1/2

» optimal algorithm with O(n*logn) gates

Fidelities of all 7-argument functions

78 78
2888 1444 1141 6841
3675 1845 1845 11025

Fidelity depends only on the gap around 7/2 in the truth table

Open problems

» Continuous output instead of |¢) vs |p)

Open problems

» Continuous output instead of |¢) vs |p)
» Extending to qudits or to multiple outputs

Open problems

» Continuous output instead of |¢) vs |p)
» Extending to qudits or to multiple outputs

» Extending to non-symmetric and partial functions

Open problems

» Continuous output instead of |¢) vs |p)
» Extending to qudits or to multiple outputs
» Extending to non-symmetric and partial functions

» Connections with regular quantum query complexity

Open problems

» Continuous output instead of |¢) vs |p)

» Extending to qudits or to multiple outputs

» Extending to non-symmetric and partial functions

» Connections with regular quantum query complexity
> Applications!

)
o
)
Y
S
©
<
—

