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> Algorithm = CPTP map

» Classical computer science is dead!
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New quantum primitives!

» quantum Fourier transform

» Grover iteration
> swap test
> ...
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» success amplification
> error correction

» democracy
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fin error has occurred. To continue:
Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this,
you will lose any unsaved information in all open applications.

Error: QE : 016F : BFF9E3D4

Press any key to continue _
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Covariance

Unitary covariance
Computing f : {0,1}" — {0, 1} in a unitary-covariant way:

U|x) — Ulf(x))  Vxe {0,1}",U € U(2)

XOR of two bits 10) @ 1) — |1)
X|0) ® X|1) — X|1)
1) @10) = 10)

Covariant functions
f:{0,1}" — {0,1} is covariant (or self-dual) if
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Assumption
f(x) depends only on the Hamming weight of x € {0,1}"

Example: n =3

Even n is bad

f(0,1) = £(1,0) = £(0,1)
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Problem

Assumptions

Givenf : {0,1}" — {0,1}, assume
» fis covariant
> fis symmetric
> nisodd

Goal
Given U%"|x), for an unknown U € U(2) and x € {0,1}",
produce p that is close to U|f(x)).

Worst-case fidelity

Fy := max min {f(x)|U" <D<U®”|x> <xyu+®") Ulf(x))
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Results on majority

Trivial strategy: Output any qubit at random

No promise

Promise

n/3 n/3

.. 1 1 5
Trivial §+ﬂ 8
1 1 1
Optimal - — —o(=
ptima 2+®(\/ﬁ> 1 ®<n>
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Symmetric states:

b\’ 01) + |10
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Anti-symmetric state (singlet):
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Schur transform on two qubits

1 1
0% %0
1 0 0 0
Useh := 0 L L g
V2 V2
0 O 0 1
ad —bc 0 0 0
u a b\ ut. — 0 a> v/2ab o
sh { . 4 Sch = 0 V2ac ad +bc /2bd

0 c2 V2cd d?

Us, SWAP U, = diag( —1,1,1,1)



Schur transform on two qubits

uSch =

. 2
Usch (C d) Uiy, =

1 1
0 N Y, 0
1 0 0 O
1 1
0 VY 0
0 0 0 1
ad — be 0 0 0

0 a2 \/2ab b?
0 V2ac ad +bec /2bd
0 c2 V2ed 42

Uss, SWAP U, = diag( —1,1,1,1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)
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Schur transform on n qubits

Usen : (€))7 — P|C™ @ €|
Abn

UscnM®" Uy, = P (M) ® 1, ]
AFn

Uscn Ty, = P I, @ Pr(70)]
AbFn

Can be implemented with O(n*logn) gates
(Kirby & Strauch, 2017)
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Algorithm

Input: U*"|x) with unknown x € {0,1}" and U € U(2)

1.

Apply Schur transform Us,

2. Measure A - n (weak Schur sampling)
3.
4

. Apply some covariant channel with 1-qubit output

Discard the permutation register

» Steps 1-3 are reversible (generic pre-processing)

Step 4 acts on a state of random dimension m,
Only step 4 depends on f
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Extremal covariant channels

For each A -1, only two extremal covariant channels from

c™ — C2
A
|
BN
||
“partial trace” “universal NOT”

» A “dual” Clebsch—-Gordan transform
» Symmetric subspaces on ¢ vs £ + 1 qubits
» O({log?) gates



Main result

Theorem
For any symmetric and covariant n-bit boolean function

» the optimal parameters ¢, and the resulting fidelity can be
determined by a linear program of size n1/2

» optimal algorithm with O(n*logn) gates



Fidelities of all 7-argument functions

78 78
2888 1444 1141 6841
3675 1845 1845 11025

Fidelity depends only on the gap around 7/2 in the truth table
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Open problems

» Continuous output instead of |¢) vs |p)

» Extending to qudits or to multiple outputs

» Extending to non-symmetric and partial functions

» Connections with regular quantum query complexity
> Applications!
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