
Quantum majority
and other Boolean functions with quantum inputs

|ψ〉 |ψ⊥〉 |ψ⊥〉 |ψ〉 |ψ〉

Harry
Buhrman Laura

Mančinska

Māris
Ozols Noah

Linden

Ashley
Montanaro

Manifesto
I All information is quantum. . .

I . . . there is no classical information
I Algorithm = CPTP map
I Classical computer science is dead!

1

0

Φ

1

0

Manifesto
I All information is quantum. . .
I . . . there is no classical information

I Algorithm = CPTP map
I Classical computer science is dead!

1

0

Φ

1

0

Manifesto
I All information is quantum. . .
I . . . there is no classical information

I Algorithm = CPTP map
I Classical computer science is dead!

1

0

Φ

1

0

Manifesto
I All information is quantum. . .
I . . . there is no classical information
I Algorithm = CPTP map

I Classical computer science is dead!

1

0

Φ

1

0

Manifesto
I All information is quantum. . .
I . . . there is no classical information
I Algorithm = CPTP map
I Classical computer science is dead!

1

0

Φ

1

0

Manifesto (lite)

15 3 · 5

Manifesto (lite)

|ψ〉 |ψ′〉

I quantum Fourier transform
I Grover iteration
I swap test
I . . .

Manifesto (lite)

|ψ〉 |ψ′〉

I quantum Fourier transform
I Grover iteration
I swap test
I . . .

Manifesto (lite)

|ψ〉 |ψ′〉

New quantum primitives!

I quantum Fourier transform
I Grover iteration
I swap test
I . . .

Majority vote

0 1 1 0 0

I success amplification
I error correction
I democracy

Majority vote

0 1 1 0 0

I success amplification
I error correction
I democracy

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉

|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉

|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉

|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉

U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉

U
|ψ〉|ψ〉|ψ

⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Quantum majority vote

|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ⊥〉|ψ〉|ψ〉|ψ〉

|ψ〉

Computation in an unknown basis

|0〉|0〉|1〉

|ψ〉
U

|ψ〉|ψ〉|ψ
⊥〉

|0〉

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n

|x〉 7→

U

|f (x)〉 ∀x ∈ {0, 1}n

, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

U|0〉 ⊗U|1〉 7→ U|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

U|0〉 ⊗U|1〉 7→ U|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

U|0〉 ⊗U|1〉 7→ U|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

U|0〉 ⊗U|1〉 7→ U|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

X|0〉 ⊗X|1〉 7→ X|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

X|0〉 ⊗X|1〉 7→ X|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

X|0〉 ⊗X|1〉 7→ X|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

X|0〉 ⊗X|1〉 7→ X|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Covariance

Unitary covariance
Computing f : {0, 1}n → {0, 1} in a unitary-covariant way:

U⊗n|x〉 7→ U|f (x)〉 ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0〉 ⊗ |1〉 7→ |1〉

X|0〉 ⊗X|1〉 7→ X|1〉

|1〉 ⊗ |0〉 7→ |0〉

Covariant functions
f : {0, 1}n → {0, 1} is covariant (or self-dual) if

f (x) = f (x)

Symmetric functions

Assumption
f (x) depends only on the Hamming weight of x ∈ {0, 1}n

Example: n = 3

|x| 0 1 2 3
f (x) 0 0 1 1

Even n is bad

f (0, 1) = f (1, 0) = f (0, 1)

Symmetric functions

Assumption
f (x) depends only on the Hamming weight of x ∈ {0, 1}n

Example: n = 3

|x| 0 1 2 3
f (x) 0 0 1 1

Even n is bad

f (0, 1) = f (1, 0) = f (0, 1)

Symmetric functions

Assumption
f (x) depends only on the Hamming weight of x ∈ {0, 1}n

Example: n = 3

|x| 0 1 2 3
f (x) 0 0 1 1

Even n is bad

f (0, 1) = f (1, 0) = f (0, 1)

Problem

Assumptions
Given f : {0, 1}n → {0, 1}, assume
I f is covariant
I f is symmetric
I n is odd

Goal
Given U⊗n|x〉, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)〉.

Worst-case fidelity

Ff := max
Φ

min
x,U
〈f (x)|U† Φ

(
U⊗n|x〉〈x|U†⊗n

)
U|f (x)〉

Problem

Assumptions
Given f : {0, 1}n → {0, 1}, assume
I f is covariant
I f is symmetric
I n is odd

Goal
Given U⊗n|x〉, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)〉.

Worst-case fidelity

Ff := max
Φ

min
x,U
〈f (x)|U† Φ

(
U⊗n|x〉〈x|U†⊗n

)
U|f (x)〉

Problem

Assumptions
Given f : {0, 1}n → {0, 1}, assume
I f is covariant
I f is symmetric
I n is odd

Goal
Given U⊗n|x〉, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)〉.

Worst-case fidelity

Ff := max
Φ

min
x,U
〈f (x)|U† Φ

(
U⊗n|x〉〈x|U†⊗n

)
U|f (x)〉

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1−Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1−Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1−Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1−Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Symmetric / anti-symmetric subspace of C2⊗C2

Symmetric states:

(
a b
c d

)⊗2

|00〉 =


a2

ac
ca
c2

 = a2 |00〉

0

+
√

2ac
|01〉+ |10〉√

2

1

+ c2 |11〉

2

Anti-symmetric state (singlet):

|Ψ−〉 :=
|01〉 − |10〉√

2(
a b
c d

)⊗2

|Ψ−〉 = (ad− bc)|Ψ−〉

Symmetric / anti-symmetric subspace of C2⊗C2

Symmetric states:

(
a b
c d

)⊗2

|00〉 =


a2

ac
ca
c2

 = a2 |00〉

0

+
√

2ac
|01〉+ |10〉√

2

1

+ c2 |11〉

2

Anti-symmetric state (singlet):

|Ψ−〉 :=
|01〉 − |10〉√

2(
a b
c d

)⊗2

|Ψ−〉 = (ad− bc)|Ψ−〉

Symmetric / anti-symmetric subspace of C2⊗C2

Symmetric states:

(
a b
c d

)⊗2

|00〉 =


a2

ac
ca
c2

 = a2 |00〉

0

+
√

2ac
|01〉+ |10〉√

2

1

+ c2 |11〉

2

Anti-symmetric state (singlet):

|Ψ−〉 :=
|01〉 − |10〉√

2

(
a b
c d

)⊗2

|Ψ−〉 = (ad− bc)|Ψ−〉

Symmetric / anti-symmetric subspace of C2⊗C2

Symmetric states:

(
a b
c d

)⊗2

|00〉 =


a2

ac
ca
c2

 = a2 |00〉

0

+
√

2ac
|01〉+ |10〉√

2

1

+ c2 |11〉

2

Anti-symmetric state (singlet):

|Ψ−〉 :=
|01〉 − |10〉√

2(
a b
c d

)⊗2

|Ψ−〉 = (ad− bc)|Ψ−〉

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad− bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(− 1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ`n

[
Cmλ ⊗Cdλ

]

USchM⊗nU†
Sch =

⊕
λ`n

[
Qλ(M)⊗ Idλ

]
USchπU†

Sch =
⊕
λ`n

[Imλ
⊗ Pλ(π)]

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ`n

[
Cmλ ⊗Cdλ

]
USchM⊗nU†

Sch =
⊕
λ`n

[
Qλ(M)⊗ Idλ

]

USchπU†
Sch =

⊕
λ`n

[Imλ
⊗ Pλ(π)]

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ`n

[
Cmλ ⊗Cdλ

]
USchM⊗nU†

Sch =
⊕
λ`n

[
Qλ(M)⊗ Idλ

]
USchπU†

Sch =
⊕
λ`n

[Imλ
⊗ Pλ(π)]

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ`n

[
Cmλ ⊗Cdλ

]
USchM⊗nU†

Sch =
⊕
λ`n

[
Qλ(M)⊗ Idλ

]
USchπU†

Sch =
⊕
λ`n

[Imλ
⊗ Pλ(π)]

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)
3. Discard the permutation register
4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)

3. Discard the permutation register
4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)
3. Discard the permutation register

4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)
3. Discard the permutation register
4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)
3. Discard the permutation register
4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)

I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)
3. Discard the permutation register
4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Algorithm

Input: U⊗n|x〉 with unknown x ∈ {0, 1}n and U ∈ U(2)

1. Apply Schur transform USch

2. Measure λ ` n (weak Schur sampling)
3. Discard the permutation register
4. Apply some covariant channel with 1-qubit output

I Steps 1–3 are reversible (generic pre-processing)
I Step 4 acts on a state of random dimension mλ

I Only step 4 depends on f

Extremal covariant channels

For each λ ` n, only two extremal covariant channels from
Cmλ → C2:

λ

tλ 1− tλ

“partial trace” “universal NOT”

I A “dual“ Clebsch–Gordan transform
I Symmetric subspaces on ` vs `+ 1 qubits
I O(` log `) gates

Extremal covariant channels

For each λ ` n, only two extremal covariant channels from
Cmλ → C2:

λ

tλ 1− tλ

“partial trace” “universal NOT”

I A “dual“ Clebsch–Gordan transform
I Symmetric subspaces on ` vs `+ 1 qubits
I O(` log `) gates

Extremal covariant channels

For each λ ` n, only two extremal covariant channels from
Cmλ → C2:

λ

tλ 1− tλ

“partial trace” “universal NOT”

I A “dual“ Clebsch–Gordan transform

I Symmetric subspaces on ` vs `+ 1 qubits
I O(` log `) gates

Extremal covariant channels

For each λ ` n, only two extremal covariant channels from
Cmλ → C2:

λ

tλ 1− tλ

“partial trace” “universal NOT”

I A “dual“ Clebsch–Gordan transform
I Symmetric subspaces on ` vs `+ 1 qubits

I O(` log `) gates

Extremal covariant channels

For each λ ` n, only two extremal covariant channels from
Cmλ → C2:

λ

tλ 1− tλ

“partial trace” “universal NOT”

I A “dual“ Clebsch–Gordan transform
I Symmetric subspaces on ` vs `+ 1 qubits
I O(` log `) gates

Main result

Theorem
For any symmetric and covariant n-bit boolean function
I the optimal parameters tλ and the resulting fidelity can be

determined by a linear program of size n/2
I optimal algorithm with O(n4 log n) gates

Fidelities of all 7-argument functions

|x| 0 1 2 3 4 5 6 7
f (x) 0 1 0 0 1 1 0 1

0 1

0 1

2
3

0

5
9

1

0 1

59
78

0

47
78

1

0

2888
3675

1

1444
1845

0

1141
1845

1

6841
11025

Fidelity depends only on the gap around n/2 in the truth table

Open problems

I Continuous output instead of |ψ〉 vs |ψ⊥〉

I Extending to qudits or to multiple outputs
I Extending to non-symmetric and partial functions
I Connections with regular quantum query complexity
I Applications!

Open problems

I Continuous output instead of |ψ〉 vs |ψ⊥〉
I Extending to qudits or to multiple outputs

I Extending to non-symmetric and partial functions
I Connections with regular quantum query complexity
I Applications!

Open problems

I Continuous output instead of |ψ〉 vs |ψ⊥〉
I Extending to qudits or to multiple outputs
I Extending to non-symmetric and partial functions

I Connections with regular quantum query complexity
I Applications!

Open problems

I Continuous output instead of |ψ〉 vs |ψ⊥〉
I Extending to qudits or to multiple outputs
I Extending to non-symmetric and partial functions
I Connections with regular quantum query complexity

I Applications!

Open problems

I Continuous output instead of |ψ〉 vs |ψ⊥〉
I Extending to qudits or to multiple outputs
I Extending to non-symmetric and partial functions
I Connections with regular quantum query complexity
I Applications!

Thank you!

