

Quantum Weak Coin Flipping an analytic solution

Atul Singh Arora

Joint work with Jérémie Roland and Chrysoula Vlachou

A four-slide summary

Motivation

Problem Statement

Take 2

Prior Art

Contribution

An analytic solution

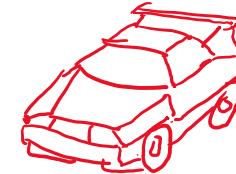
Conclusion

A four-slide summary

♀
:
Heads

♂
:
Heads

e.g.



Heads = Alice gets the car
Tails = Bob gets the car

(Strong) Coin flipping: Who gets the car?: Alice and Bob wish to agree on a random bit, remotely and without trusting each other.

+

Weak Coin Flipping: Both want the car : Alice wants Heads or "0"
Bob wants Tails or "1"

PROBLEM STATEMENT

Not all coin-flipping protocols are born secure.

- Figure of merit of a CF protocol: bias \hat{e}

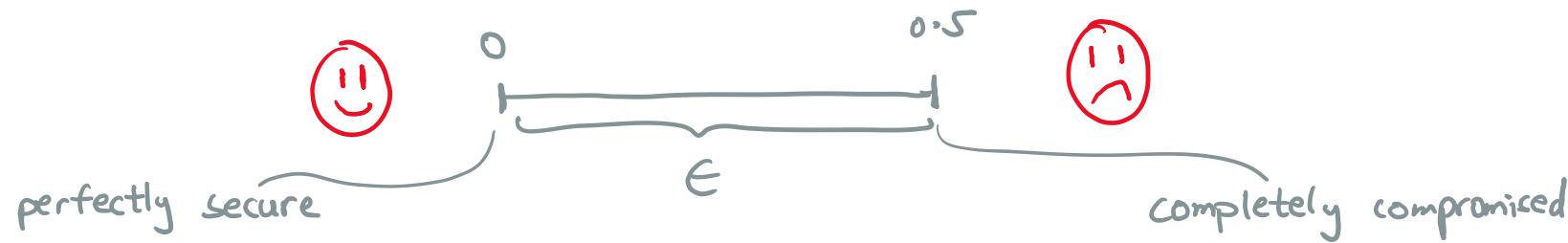
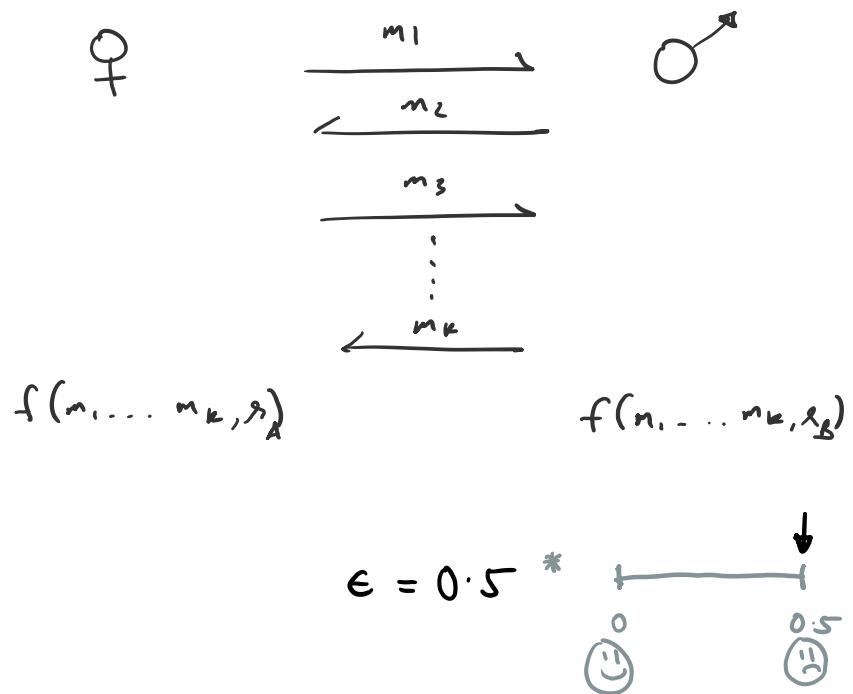
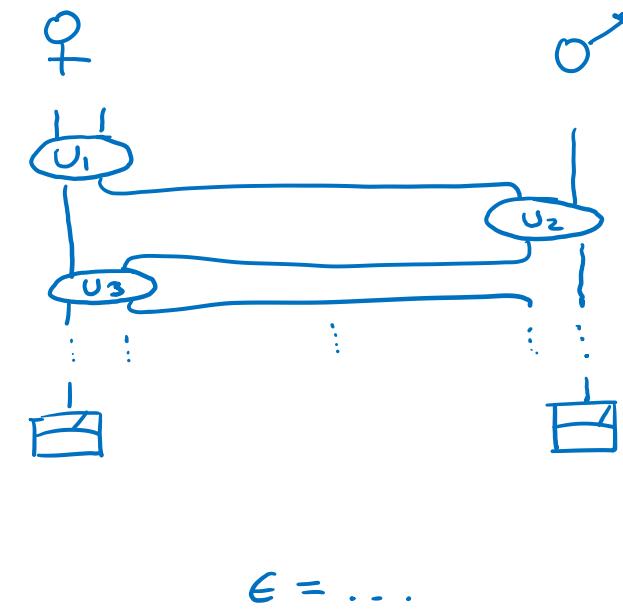


FIGURE OF MERIT

classical



quantum



STATE OF THE ART

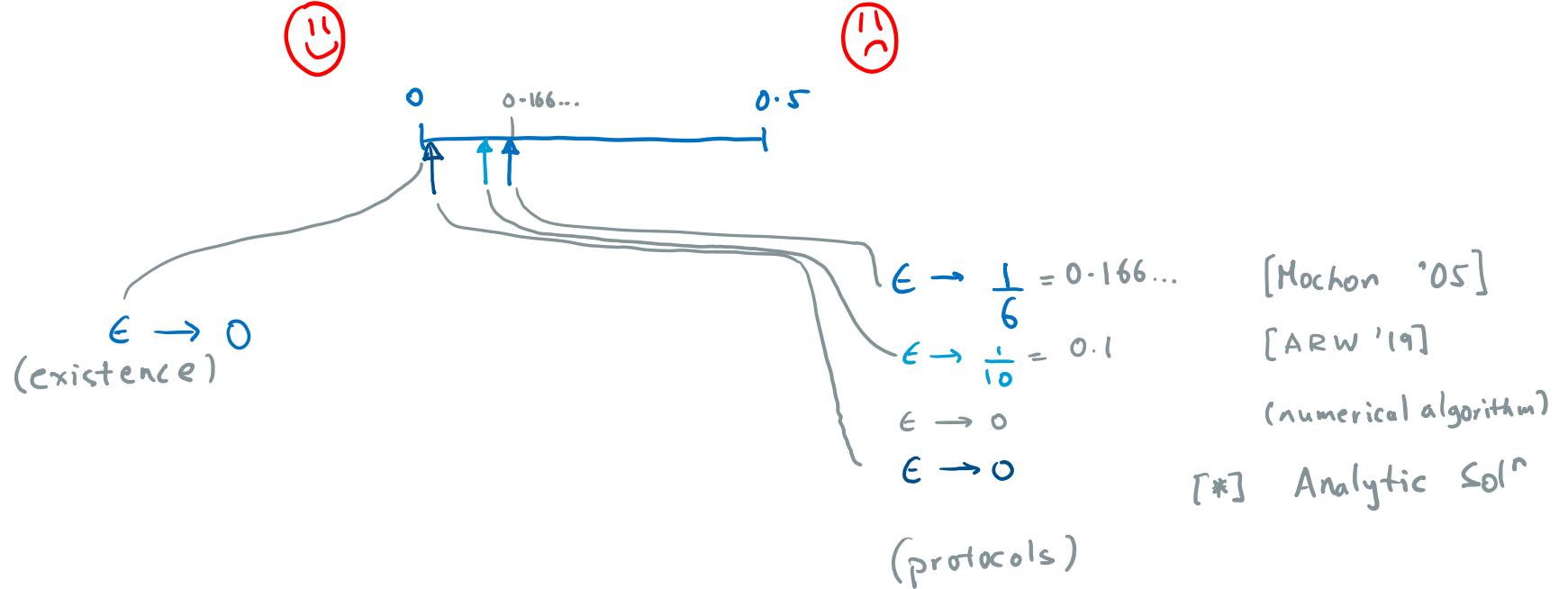
(unless, e.g. computational hardness assumptions are made)

SCF

ϵ is lower bounded by $\frac{1}{\sqrt{2}} - \frac{1}{2}$. [Kitaev '03]

WCF

Mochon '07
Aharonov, '16
(Hailloux,
Ganz, Kerenidis, Magnin)



STATE OF THE ART

Motivation

Secure Two - Party Computation (Secure Function Evaluation)

↔

Oblivious Transfer

↓ ↑ ~Quantumly

Bit Commitment

↓

(strong) Coin Flipping

↓

Weak Coin Flipping

[Kerenidis '09, '11]
[Chailloux
optimal but necessarily
imperfect

impossible classically
(without further assumptions)

if BC has "extraction" & "equivocation"
[Damgård, Fehr, Lunemann, Salvail, Schaffner '09]

Impossible Quantumly [Meyers '97,
Lo Chau '97]

Impossible ($\epsilon \geq \frac{1}{52} - \frac{1}{2}$) [Kitaev '03]

Possible but protocol missing

- Simple to state
- Distribution of entanglement + randomness

Both honest

$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

One honest, other cheats

$$\frac{|0\rangle|0\rangle + |1\rangle|1\rangle}{2}$$

Problem Statement

Take 2

Situations

Honest player: A player that follows the protocol exactly as described.

Alice	Bob	Feature
Honest	Honest	Correctness
Cheats	Honest	Alice can bias
Honest	Cheats	Bob can bias
Cheats	Cheats	Independent of the protocol

Bias of a protocol: A protocol that solves the CF problem has bias ϵ if neither player can force their desired outcome with probability more than $\frac{1}{2} + \epsilon$.

Situations | Weak CF

NB. For WCF the players have opposite preferred outcomes.

Alice	Bob	Pr(A wins)	Pr(B wins)
Honest	Honest	P_A	$P_B = 1 - P_A$
Cheats	Honest	P_A^*	$1 - P_A^*$
Honest	Cheats	$1 - P_B^*$	P_B^*

Bias:

smallest ϵ s.t. $P_A^*, P_B^* \leq \frac{1}{2} + \epsilon$

NB.

$$0 \leq \epsilon \leq \frac{1}{2}$$

Situations | Weak CF | Flip and declare

Protocol: Alice flips a coin and declares the outcome to Bob.

Alice	Bob	Pr(A wins)	Pr(B wins)
Honest	Honest	$P_A = 1/2$	$P_B = 1/2$
Cheats	Honest	$P_A^* = 1$	$1 - P_A^* = 0$
Honest	Cheats	$1 - P_B^* = 1/2$	$P_B^* = 1/2$

Bias: smallest ϵ s.t. $P_A^*, P_B^* \leq \frac{1}{2} + \epsilon$ $\implies \epsilon = \frac{1}{2}$

Prior Art

Kitaev | Three Equivalent Formalisms

Protocol + Certificate (SDP Duality)

(constructive) $\downarrow \uparrow$ (non-constructive)

(numerical algorithm: EMA) [ARW¹⁹]

(Time Dependant) Point Games

(constructive) $\downarrow \uparrow$ (constructive)

TIPGs

(Time Independent Point Games)

REVIEW OF MOCHON/KITAEV/ACGKM
'06 '03 '16

Protocol + Certificate (SDP duality)

(constructive) \downarrow \uparrow (non-constructive)

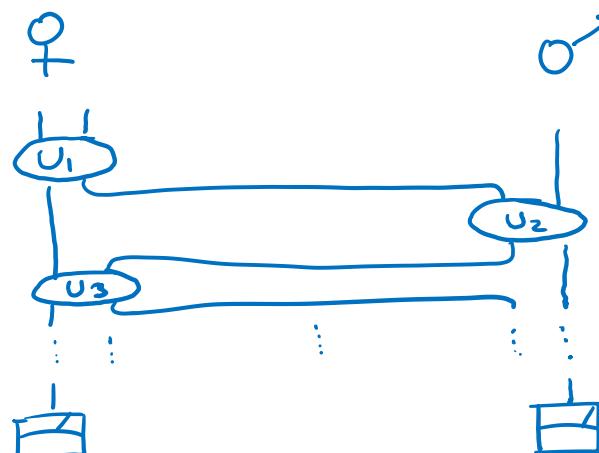
(Time Dependant) Point Games

(constructive) \downarrow \uparrow (constructive)

TIPGs

(Time Independent Point Games)

Kitaev | Protocol



- Variables involved: ρ, U
- Two SDPs
 - P_A^* is an SDP in ρ_B : $P_A^* = \max(\text{tr}(\Pi_A \rho_B))$ s.t. the honest player (Bob) follows the protocol.
 - Similarly for P_B^* .
- Dual: $\rho \leftrightarrow Z$, $\max \leftrightarrow \min$, $P^* = \max \leftrightarrow P^* \leq \text{certificate}$

Protocol + Certificate (gap duality)

(constructive) \downarrow \uparrow (non-constructive)

(Time Dependant) Point Games

(constructive) \downarrow \uparrow (constructive)

TIPGs

(Time Independent Point Games)



Kitaev | TDPG

Time Dependent Point Game (TDPG):

A sequence of frames (frames = points on a plane) such that

- Starts with points at $(0, 1)$ and $(1, 0)$ with weight $1/2$.
- Consecutive frames: along a line, for all $\lambda \geq 0$

“Valid Moves”

$$\sum_z \frac{\lambda z}{\lambda + z} p_z \leq \sum_{z'} \frac{\lambda z'}{\lambda + z'} p'_{z'}.$$

- Ends with a single point (β, α) .

Claim: For a valid TDPG there is a protocol with $P_A^* \leq \alpha$, $P_B^* \leq \beta$.

Technique: Operator monotone functions.

Kitaev | TDPG | Valid Moves

Merge ($n_g \rightarrow 1$):

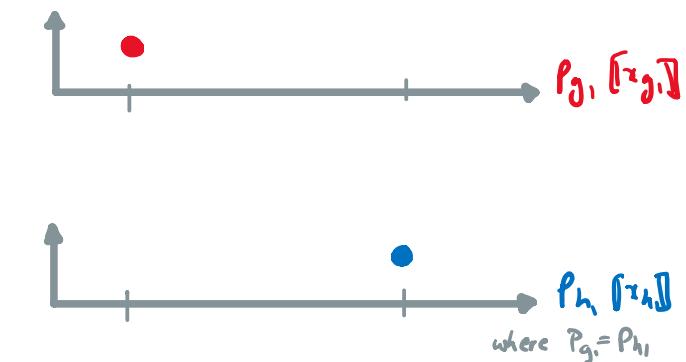
$$\langle x_g \rangle \leq x_h$$

Split ($1 \rightarrow n_h$):

$$\frac{1}{x_g} \geq \left\langle \frac{1}{x_h} \right\rangle$$

Raise ($n_g = n_h \rightarrow n_h$):

$$x_{g_i} \leq x_{h_i}$$



Kitaev | TDPG | Valid Moves

$$\sum_{i=1}^3 p_{g_i} [x_{g_i}] \rightarrow \sum_{i=1}^2 p_{h_i} [x_{h_i}]$$

Consecutive frames: along a line, for all $\lambda \geq 0$

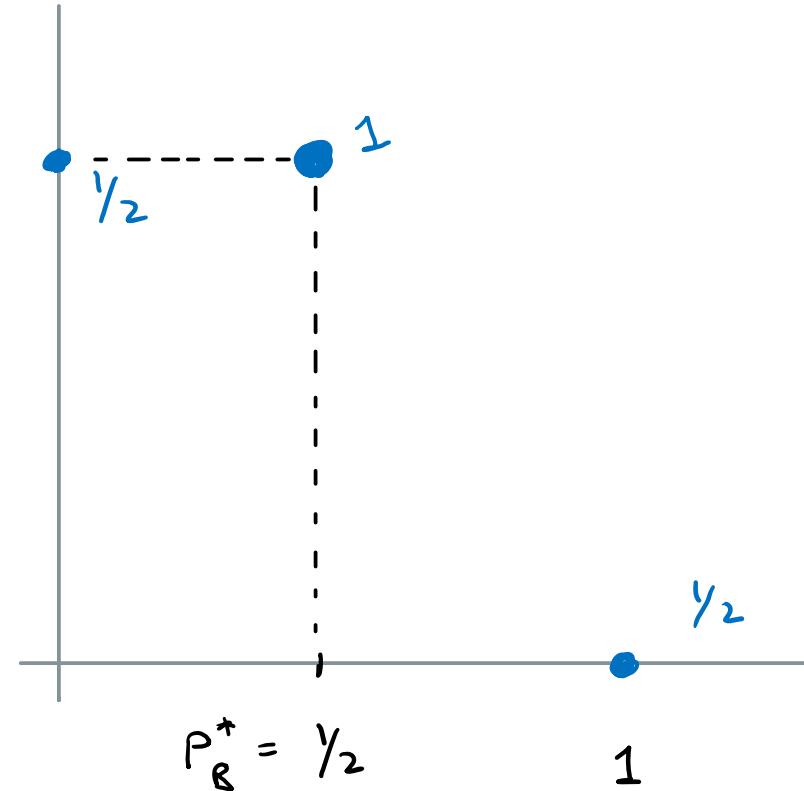
$$\sum_i \frac{\lambda x_{g_i}}{\lambda + x_{g_i}} p_{g_i} \leq \sum_i \frac{\lambda x_{h_i}}{\lambda + x_{h_i}} p_{h_i}.$$

Kitaev | TDPG | Example

Merge ($n_g \rightarrow 1$):

$$\langle x_g \rangle \leq x_h$$

$$\rho_A^+ = 1$$



Split ($1 \rightarrow n_h$):

$$\frac{1}{x_g} \geq \left\langle \frac{1}{x_h} \right\rangle$$

Raise ($n_g = n_h \rightarrow n_h$):

$$x_{g_i} \leq x_{h_i}$$

The flip and declare protocol!

Kitaev | TDPG | Example

Merge ($n_g \rightarrow 1$):

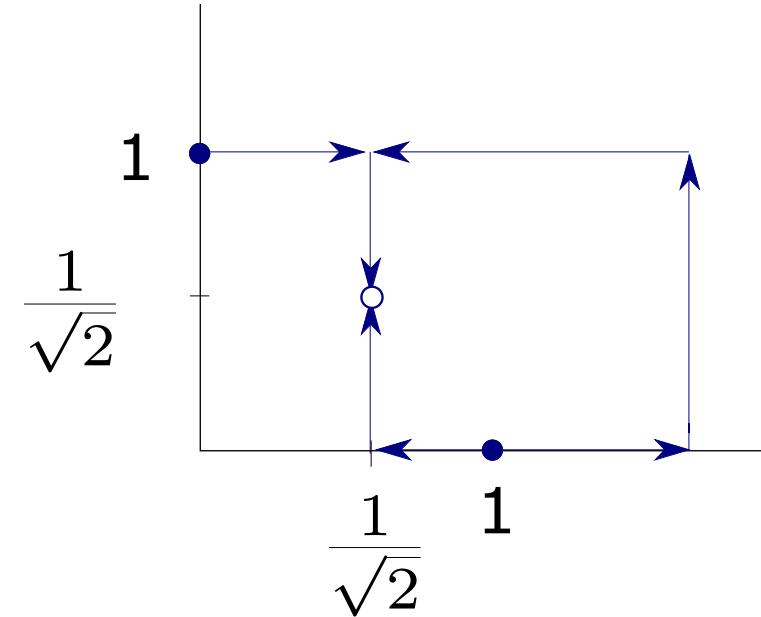
$$\langle x_g \rangle \leq x_h$$

Split ($1 \rightarrow n_h$):

$$\frac{1}{x_g} \geq \left\langle \frac{1}{x_h} \right\rangle$$

Raise ($n_g = n_h \rightarrow n_h$):

$$x_{g_i} \leq x_{h_i}$$



Spekkens Rudolph protocol (PRL, 2002)

Kitaev | TDPG | Example

Merge ($n_g \rightarrow 1$):

$$\langle x_g \rangle \leq x_h$$

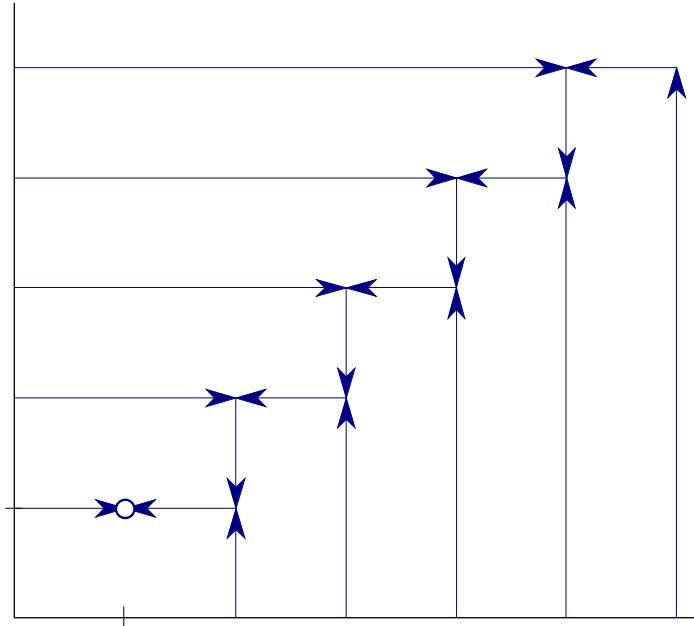
Split ($1 \rightarrow n_h$):

$$\frac{1}{x_g} \geq \left\langle \frac{1}{x_h} \right\rangle$$

Raise ($n_g = n_h \rightarrow n_h$):

$$x_{g_i} \leq x_{h_i}$$

$$\approx \frac{2}{3}$$



$$\approx \frac{2}{3} = \frac{1}{2} + \frac{1}{6}$$

Best known explicit protocol until '18:
Dip Dip Boom (Mochon, PRA '05)

Kitaev | TIPG

Time Independent Point Game (TIPG):

- Key idea: Allow negative weights
- $h(x, y), v(x, y)$ s.t.
 $h + v = \text{final frame} - \text{initial frame}$
 h, v satisfy a similar equation.

Claim: For a valid TIPG there is TDPG with almost the same last frame.

Technique: Catalyst state.

Protocol + Certificate (SOP duality)

(constructive) \downarrow \uparrow (non-constructive)

(Time Dependant) Point Games

(constructive) \downarrow \uparrow (constructive)

TIPGs

(Time Independent Point Games)

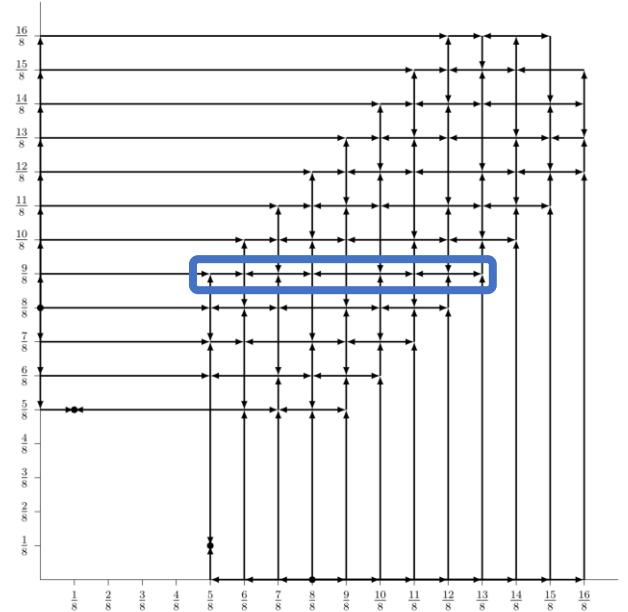
Mochon | Near-perfect WCF is possible

- Result: Family of TIPGs that yield

$$\epsilon = \frac{1}{4k + 2}$$

where $2k =$ number of points involved in the non-trivial step.

- $k = 1$ yields the Dip Dip Boom protocol ($\epsilon = 1/6$) protocol.
- Technique: Polynomials.



Mochon | Valid moves and valid functions

Def: $\llbracket x \rrbracket(a) := \delta_{x,a}$ ~ Kronecker Delta.

NB: $\sum_{i=1}^{n_g} p_{g_i} \llbracket x_{g_i} \rrbracket \rightarrow \sum_{i=1}^{n_h} p_{h_i} \llbracket x_{h_i} \rrbracket$. Then g & h are finitely supported functions.

$\underbrace{\sum_{i=1}^{n_g} p_{g_i} \llbracket x_{g_i} \rrbracket}_{\text{if } g}$ $\underbrace{\sum_{i=1}^{n_h} p_{h_i} \llbracket x_{h_i} \rrbracket}_{\text{if } h}$

"Notation": $t = h - g$ is a valid function

↓ (assuming no overlapping points)

$h \rightarrow g$ is a valid move

Mochon | f -assignments

Defⁿ: f -assignment. Given

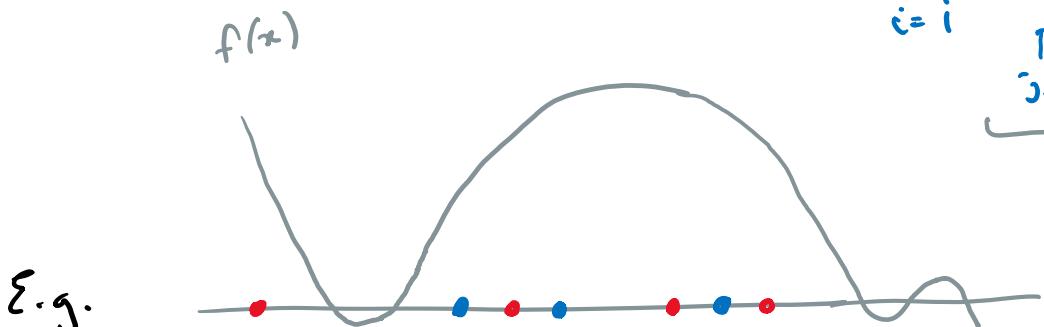
- coordinates $0 \leq x_1 < x_2 \dots < x_n$
- a polynomial $f(x)$ of degree at most $n-2$ satisfying $f(-\lambda) \geq 0 \quad \forall \lambda \geq 0$,

an f -assignment is the function

$$t = \sum_{i=1}^n \frac{-f(x_i)}{\prod_{j \neq i} (x_j - x_i)} \quad [x_i] = h - g \quad \text{where} \quad h = \sum_{i: p_i > 0} p_i [x_i],$$

$=: p_i$

$$g = \sum_{i: p_i < 0} p_i [x_i].$$



E.g.

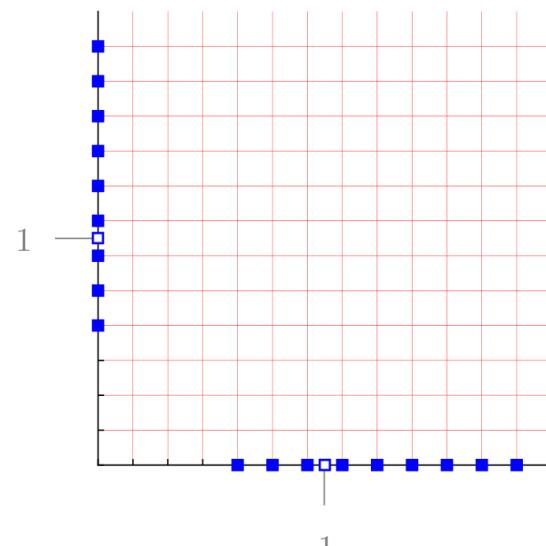
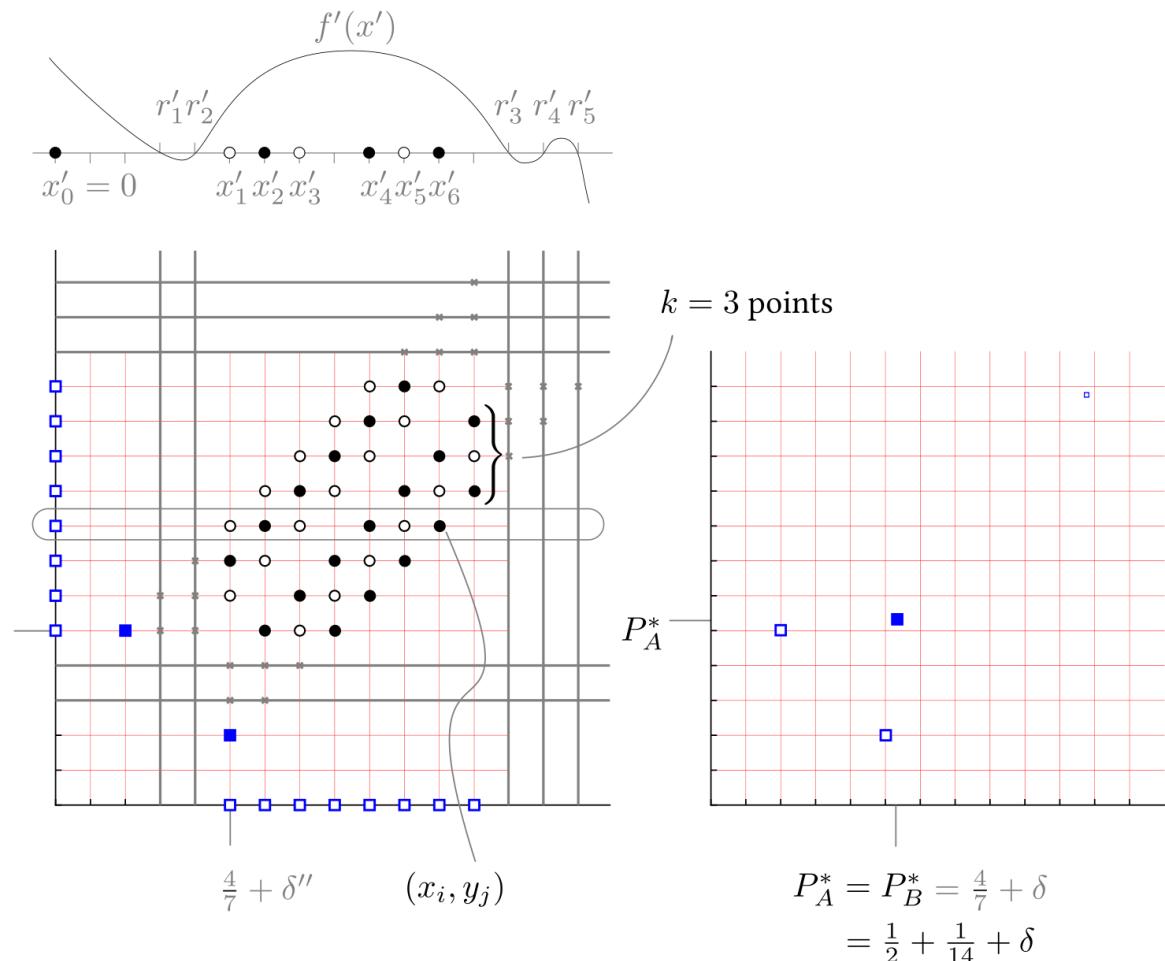
7 points; $n=7$

5 roots; $n-2=5$

Mochon | f -assignments (cont.)

Lemma: All f -assignments are valid functions.

Illustration: Mochon's point game approaching bias γ_{14} .



Prior Art

Summarised

$$\epsilon = \max\{\alpha, \beta\} - \frac{1}{2}$$



Protocol + Certificate (SDP Duality)

(constructive) $\downarrow \uparrow$ (non-constructive)

(Time Dependant) Point Games

(constructive) $\downarrow \uparrow$ (constructive)

TIPGs (Time Independent Point Games)

our focus
(numerical algorithm: EMA) [ARW'19]

Mochon gave a family of
TIPGs with bias approaching

$$\epsilon(k) = \frac{1}{4k+2}$$

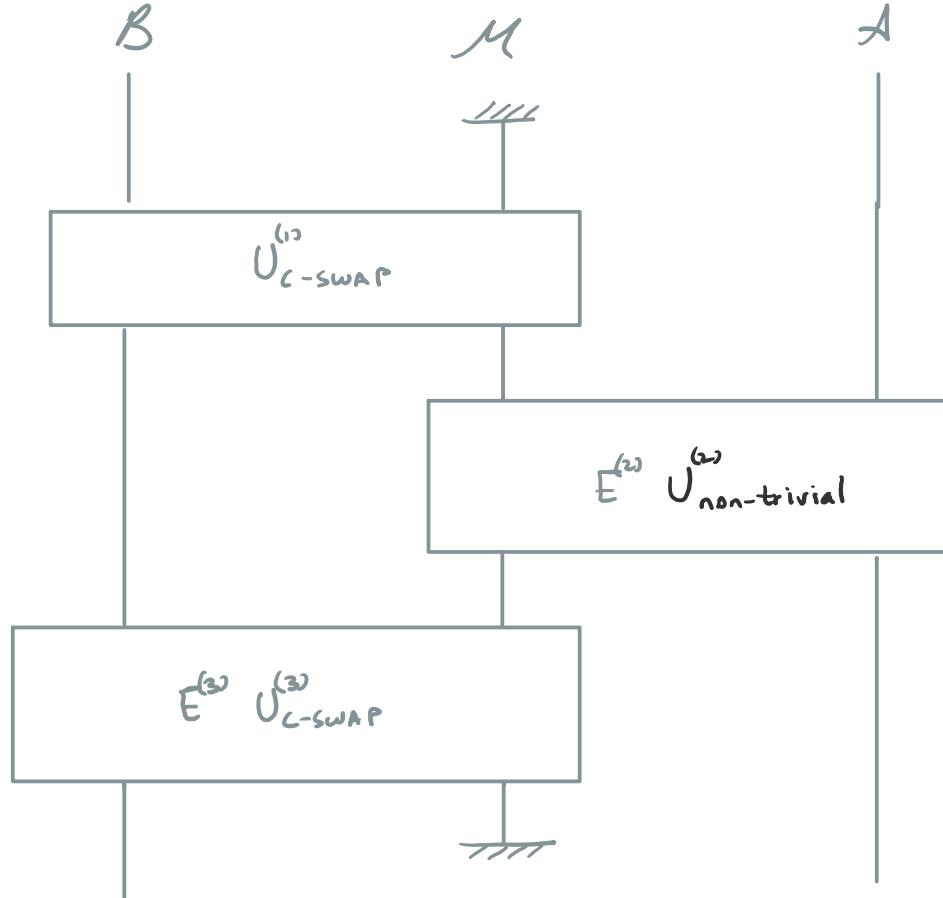
REVIEW OF MOCHON/KITAEV/ACGKM
 '06 '03 '16

(Time Dependent Point Game)

Diagram illustrating the decomposition of a function into two parts:

- Top Part:** A function f_g is shown as a sum of two g_i functions. The function f_g is plotted as a piecewise constant function. Two points x_{g1} and x_{g2} are marked on the horizontal axis. The vertical axis has two points labeled P_{g1} and P_{g2} . A downward arrow is shown on the right side of the plot.
- Bottom Part:** A function f_h is shown as a sum of two h_i functions. The function f_h is plotted as a piecewise constant function. Two points x_{h1} and x_{h2} are marked on the horizontal axis. The vertical axis has two points labeled P_{h1} and P_{h2} . A downward arrow is shown on the right side of the plot.

A hand-drawn style arrow pointing to the right, containing the acronym TEF.



(Reversed Explicit Protocol)

Simplified Constraint on Un-trivial

$$\{ |g_1\rangle, |g_2\rangle, \dots |h_1\rangle, |h_2\rangle, \dots \}$$

$$x_h := \sum x_{hi} \mathbf{1}_{hi} > \langle \mathbf{c}_h \rangle$$

$$x_g := \sum x_{g_i} \lg_i > \lg_i l$$

$$|v\rangle := \sum_i \sqrt{p_i} |g_i\rangle$$

$$|w\rangle := \sum_i \sqrt{p_{h_i}} |h_i\rangle$$

U s.t.

$$U|v\rangle = |w\rangle$$

$$x_n \geq E_n U x_g U^+ E_n$$

where $E_h := \sum |h_i\rangle\langle h_i|$

TEF TDPG-to-Explicit-Protocol Framework

[ARW '19]

TEF | Blinkered Unitaries

For the Dip Dip Boom ($\epsilon = 1/6$) protocol, we need a U that implements

- Split: $1 \rightarrow n_h$
- Merge: $n_g \rightarrow 1$

Claim: $U_{\text{blink}} = |w\rangle\langle v| + |v\rangle\langle w| + \mathbb{I}_{\text{else}}$ can perform both.

Significance: Mochon's $\epsilon = 1/6$ protocol from its point game directly.

Contribution

An analytic solution

Analytic Solution | Special cases of f-assignments

Recall: f-assignment: $t = \sum_{i=1}^n \frac{-f(x_i)}{\prod_{j \neq i} (x_j - x_i)} \llbracket x_i \rrbracket$

where f was a polynomial of $\deg \leq n-2$
 $\& f(-\lambda) \geq 0 \quad \forall \lambda > 0$.

Special Cases: • monomial assignment: $f(x) = (-x)^q$

• balanced monomial: # points with +ve weight
= # points with -ve weight

• aligned: $\deg(f) = q$ is an even #

Aim: "Solve" f-assignments i.e.
find U s.t. $X_h \geq E_h U X_g U^T E_h$

unbalanced

misaligned

Analytic Solution | Effective Solutions

(Int) Defⁿ: Suppose $t = \sum_i t_i$ where t, t_1, t_2, \dots are valid functions.

We say t has an effective solution if each t_i has a solⁿ.

(Int) Lemma: A TIP_h can be converted into an explicit protocol if each valid function it uses, admits an effective solution.

Analytic Solution | Sum of Monomial Assgnmnt

Idea: Break an f -assignment, t , into a sum of monomial assignments, $\{t_i\}$

(almost trivial)

$$t = \sum_i t_i,$$

and solve the monomial assignments.

Significance: Mochon's TIPh approaching $\epsilon = \frac{1}{4k+2}$ use only f -assignments
(+ splits but those we already handled using blinkered unitaries)
so the aforesaid yields exact WCF protocols approaching zero bias.

Non-trivial: Solving monomial assignments.

Analytic Solution | Balanced Aligned Monomial

(Inf) Propⁿ: Let $m = 2b$ $(b \geq 0; b \in \mathbb{Z})$

$t = \sum_{i=1}^n x_{h_i}^m \rho_{h_i} [x_{h_i}] - \sum_{i=1}^n x_{g_i}^m \rho_{g_i} [x_{g_i}]$ be a monomial assignment

$\{ |h_1\rangle, |h_2\rangle, \dots, |h_n\rangle, |g_1\rangle, |g_2\rangle, \dots, |g_n\rangle \}$ be an orthonormal basis over $0 < x_1 < x_2 < \dots < x_{2n}$

$x_h := \sum_i x_{h_i} |h_i\rangle \langle h_i|; x_g := \sum_i x_{g_i} |g_i\rangle \langle g_i|$

 $|w\rangle := \sum_i \sqrt{\rho_{h_i}} |h_i\rangle; |v\rangle := \sum_i \sqrt{\rho_{g_i}} |g_i\rangle$
 $|w'\rangle := (x_h)^b |w\rangle; |v'\rangle := (x_g)^b |v\rangle.$

Then U solves t where

$$U = \sum_{i=-b}^{n-b-1} \underbrace{\left(\Pi_{h_i}^\perp (x_h)^i |w\rangle \langle v| (x_g)^i \Pi_{g_i}^\perp \right)}_{\substack{\sqrt{C_{h_i} C_{g_i}} \\ \text{normalisation} \\ \text{of the braed terms}}} + \text{h.c.}$$

where

$$\Pi_{h_i}^\perp := \begin{cases} \text{projector orthogonal to } \text{span}\{(x_h)^{-|i|+1} |w\rangle, (x_h)^{-|i|+2} |w\rangle, \dots, |w\rangle\} & i < 0 \\ \text{projector orthogonal to } \text{span}\{(x_h)^{-b} |w'\rangle, (x_h)^{-b+1} |w'\rangle, \dots, (x_h)^{i-1} |w'\rangle\} & i > 0 \\ 1 & i = 0 \end{cases}$$

Analytic Solution | Zeroth Assignment

Suppose $b=0$, i.e. $t = \sum_{i=1}^{2n} \frac{-1}{\prod_{j \neq i} (x_j - x_i)} \llbracket \tau_i \rrbracket = \sum_{i=1}^n p_{hi} \llbracket x_{hi} \rrbracket - \sum_{i=1}^n p_{gi} \llbracket x_{gi} \rrbracket$

$$\begin{bmatrix} p_{g_1} & p_{g_2} & \dots & p_{g_n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{g_1} & x_{g_2} & \dots & x_{g_n} \end{bmatrix}$$

U s.t.

$$\begin{array}{ccc}
 \begin{array}{c} \text{1v} \\ \text{1w} \end{array} & \mapsto & \begin{array}{c} \text{1w} \\ \text{1w} \end{array} \\
 \begin{array}{c} \prod_{g_1} x_g \text{ 1v} \\ \prod_{g_2} x_g^2 \text{ 1v} \\ \vdots \\ \prod_{g_n} x_g^n \text{ 1v} \end{array} & \mapsto & \begin{array}{c} \prod_{h_1} x_h \text{ 1w} \\ \prod_{h_2} x_h^2 \text{ 1w} \\ \vdots \\ \prod_{h_n} x_h^n \text{ 1w} \end{array} \\
 & + \text{ h.c.} &
 \end{array}$$

$$\begin{bmatrix} p_{h_1} & p_{h_2} & \dots & p_{h_n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{h_1} & x_{h_2} & \dots & x_{h_n} \end{bmatrix}$$

Analytic Solution | Intuition behind the proof

Recall: U had to be s.t. $x_n \geq E_n U x_g U^\dagger E_n$

(and $U|v\rangle = |w\rangle$ but this is by construction for us).

Defn: $\Delta := x_n - E_n U x_g U^\dagger E_n$

Claim:

(due to Mochon
+ ARW)

$$\langle x^k \rangle = 0 \quad \# \quad k \in \{0, 1, 2, \dots, 2n-2\} \quad k$$

$$\langle x^{2n-1} \rangle > 0$$

Assertion:

$$\Delta = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \langle w_{n-1} | \Delta | w_{n-1} \rangle \end{bmatrix}$$

$$\begin{aligned}
 \text{claim} &= \frac{1}{c_{n-1}} \underbrace{\langle w_1 | (x_n)^{2n-2+1} | w \rangle}_{\text{recall} := \sum_i \langle p_{hi} | h_i \rangle} - \frac{1}{c_{n-1}} \underbrace{\langle v_1 | x_g^{2n-2+1} | v \rangle}_{\text{recall} := \sum_i \langle p_{gi} | g_i \rangle} \\
 &= \frac{\langle x^{2n-1} \rangle}{c_{n-1}} > 0
 \end{aligned}$$

Conclusion

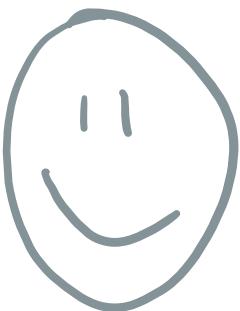
Conclusion

- Found exact and relatively simple unitaries which constitute WCF protocols with vanishing bias.
- It circumvents the conic-duality argument (a technical reduction) which was crucially used in ARW'19 & in Mochon's proof of existence (simplified further in ACGKM'14).

Outlook

- **Resource Requirements** — [Miller20] # rounds for WCF with bias $\epsilon \geq e^{-2\left(\frac{1}{\epsilon}\right)}$.
qubits — b/w γ_6 & γ_{10} currently there's a large gap.
Use of effective solutions increases the dimension
- **Noise Robustness** — [Vlachou, Roland, *] Quantum strategies / Quantum combs: general bounds!
- **Device Independence** — [Sikora, Van Hmeedec, *] —
 - lower bound?
 - protocol $P_A^* = 3/4, P_B^* = \cos^2(\frac{\pi}{8})$
 - [SCAKPM 11] $\epsilon \simeq 0.336$
 - [in preparation] $\epsilon \simeq 0.317$
 - no-signalling
 - avoiding NPA
 - ↳ self-testing
 - ↳ restricted bases
 - ↳ iterative improvements.

Thank You



arXiv:1911.13288 v2

<https://doi.org/10.1137/1.9781611976465.58> ← SODA '21