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Note: A preliminary version of this paper was submitted to QIP 2019 with much
weaker results. Afterwards we significantly developed our ideas to obtain stronger new
results that addressed the original question. Rather than writing a new paper, we decided
to simply update the manuscript as the scientific motivation was the same and the old
results were subsumed by the new results. The present version of this work appeared in
FOCS 2020. We mention the results from the original manuscript in more detail in Section
1.2 of our Technical Manuscript.

A proposed information-theoretic axiom for distinguishing quantum mechanics from
incorrect theories of physics is that “communication complexity is nontrivial”. That is,
two parties with inputs € {0,1}" and y € {0,1}" respectively should not be able to
compute arbitrary functions f(z,y) with high probability, using only a constant amount of
communication (independent of n). Such a requirement is satisfied by quantum mechanics,
and is also known to rule out superquantum success at certain nonlocal games. For example,
consider the famous CHSH game." The two players, Alice and Bob, cannot communicate.
Alice and Bob receive independent random bits 2 and y respectively. Their goal is to
output bits a and b, respectively, so that a b =x A y.

In a classical world, Alice and Bob can win the CHSH game with probability 3/4 (e.g.
by outputting a,b = 0) and cannot do any better; thus the classical value of the CHSH
game is we(CHSH) = %. If Alice and Bob have access to any nonsignalling correlation—
that is, they can produce correlated bits @ and b in any way they like as long as they do
not gain the ability to communicate—then they can win the CHSH game with probability
1; we say that the nonsignalling value of the CHSH game is wys(CHSH) = 1. If instead
Alice and Bob share quantum entanglement, they can do something in between w¢o and
wns: it turns out that the quantum value of the CHSH game is [Cir80]

11
wo(CHSH) = 5 + —= =~ 0.8536.
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Work of van Dam [vD13], and independently Cleve [Cle], showed that if Alice and
Bob could win the CHSH game with probability 1, then communication complexity would
become trivial. This was extended by Brassard et al. [BBLT06], who showed that if Al-
ice and Bob could win the CHSH game with probability greater than % + % ~ 0.908
then communication complexity would become trivial. Thus, the axiom “communication
complexity is nontrivial” in some sense explains why wg(CHSH) < 0.908. Other works
have extended the set of nonlocal correlations known to collapse communication complex-
ity [FWW09, BS09, HR10].

However, so far the axiom “communication complexity is nontrivial” had not pinned
down the exact quantum value for any nonlocal game. For example, in the CHSH game,
there is a gap between the threshold of approximately 0.908 that Brassard et al. obtain
and the true quantum value wg(CHSH) ~ 0.853.

We address this question: can the axiom “communication complexity is nontrivial” be
used to explain the quantum value of certain nonlocal games? Along the way, we formalize a
connection to the theory of reliable computation for (classical) circuits with noisy gates, and
our results for nonlocal games correspond to new results for reliable classical computation.
We outline our contributions in both areas below.

Contributions

First, we address the extent to which the axiom “communication complexity is nontrivial”
can explain the quantum value of nonlocal games.

(1) We exhibit a nonlocal game G, for which
wo(G) <wq(G) <wns(G),

and for which the axiom “communication complexity is not trivial” precisely pins
down the value wg(G). Our game G is “complete”, in the sense that if communication
complexity is trivial in any superquantum theory S, then there is (a version of) our
game G so that wg(G) > wg(G). That is, a superquantum advantage at the game
G makes communication complexity trivial and, meanwhile, any universe in which
communication complexity is trivial offers a superquantum advantage at the game G.

(2) We provide evidence that the axiom “communication complexity is nontrivial” is
in fact not sufficient to pin down the quantum value of the CHSH game itself. In
more detail, in [BBLT06], Brassard et al. use the ability to succeed at the CHSH
game essentially as a noisy AND gate. They show that reliable computation is
possible when these noisy AND gates are used along with noiseless XOR gates (which
correspond to certain local operations for Alice and Bob). This leads to protocols that
collapse communication complexity. We show that this strategy cannot be pursued
further: the threshold of 0.908 is tight for this model of computation. While this



result is only a barrier against one line of attack, it does suggest that the axiom
“communication complexity is nontrivial” may not suffice to explain wo(CHSH).

As alluded to in our contribution (2) above, there is a connection to reliable computation
with noisy gates. In that area, we make the following contributions.

(3)

Our contribution (2) above can be seen as a result about reliable computation. Con-
sider the following circuit model with noisy gates. Let A. denote a 2-input AND gate
which, for any input produces an incorrect answer with probability e, and let g
denote a (noiseless) 2-input XOR gate.? Let C. be the collection of formulas® defined
on the gate set {A., @p}, where the noise in each A, gate is independent.

Our main technical result is that the noise threshold for reliable computation for this
model is precisely ¢ = 1/6. That is, when ¢ < 1/6, it is possible to compute any
function using a formula in C; with error probability bounded away from 1/2 for each
possible input. On the other hand, for any € > 1/6, there is some function for which
this is impossible.

There has been a great deal of work on pinning down noise thresholds for reliable
computation. However, most prior work has focused on symmetric noise, where the
noise rate is the same across all gate types. Extending these results to asymmetric
noise—and in particular to include noiseless gates—raises several new challenges.

Beyond our primary motivation in quantum mechanics, we believe that the case
of asymmetric gate noise is an independently interesting direction in fault-tolerant
computation. We hope that our techniques and results may spur future research in
this direction.

We formalize an equivalence between reliable computation and amplification. Infor-
mally, an amplifier is a function f : {0,1}¢ — {0,1} so that when f is fed in random
bits x € {0,1}¢ with a slight bias away from 1/2, the output f(z) amplifies that
bias. While a relationship between reliable computation and amplification had been
present in prior work, nailing down an equivalence is a bit subtle, and requires con-
sidering the convexr hull of circuit classes; to the best of our knowledge ours is the
first work to do this.

Our equivalence between reliable computation and amplification is required to estab-
lish the threshold in our contribution (3) above. Further, it leads to the definition
and analysis of our game G from contribution (1) whose quantum value is pinned
down by the nontriviality of communication complexity.

2For a gate g, g. refers to a version of g which fails with probability e.
3A formula is a circuit where every gate has fan-out 1 (that is, the graph underlying the circuit is a tree
and each input variable may appear at one or more leaves of this tree).
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