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Entanglement is strictly better than shared random coins for some tasks.

Such tasks include nonlocal games and distributed computation.
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CHSH', a Nonlocal Game:

(No communication)

v~ {0,1} ~ {0, 1}

Alice
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CHSH?, a Nonlocal Game:

a b
7 1
& @ (No communication) @ 8
_ 4
Al|cem ~ {0, 1} ~{0,1} Bob

Players Win if zy = a + b mod 2

@ Classical Players win 75% of games

@ Entangled Players win ~ 85.3% of games
2[CHSH69] 3/30
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Distributed Computation:
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Distributed Computation:

O(n) bits communication

Alice\ /Bob

Vo e {0,1}" vy e {0,1}"
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Trivial Communication Complexity:

O(1) bits communication

Alice\ /Bob

Vo e {0,1}" vy e {0,1}"
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What is the relationship between nonlocal games and trivial communication
complexity?

O(1) bits communication
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Brassard Buhrman Linden Méthot

Theorem [BBL 06] (informal)

Communication complexity is trivial if two players win more than ~ 90.8%
of CHSH games.
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What is the relationship between nonlocal games and trivial communication
complexity?
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If it were possible to win CHSH with P[win] > .908, communication com-
plexity would become trivial.

1 1,
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What is the relationship between nonlocal games and trivial communication
complexity?

trivial communication complexity

P[win CHSH] @ ° '

.75 .85 908 1

If it were possible to win CHSH with P[win] > .908, communication com-
plexity would become trivial.

1 1.
1+ L ~0.908
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Alice + Bob's strategy as a conditional probability distribution:
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Alice + Bob's strategy as a conditional probability distribution:

a b

\ /

Pla, b|z, ] € R®

/ Alice Bob \

i
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Alice + Bob’s strategy as a conditional probability distribution:

Pla, bz, ] € R®
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Alice + Bob’s strategy as a conditional probability distribution:
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Alice + Bob's strategy as a conditional probability distribution:

trivial communication complexity [BBL* 06, vD13, Cle]

CHSH

[R16

Pla,b|x, ] € R®
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trivial communication complexity
. ?7? 4
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trivial communication complexity
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The [BBLMTU] proof used the fact that formulas of AND_, XOR,, gates for e < 1/6
support reliable computation.
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trivial communication complexity

[P[Wlﬂ CHSH] [ J ® - - ---—-—--- O ®
.75 .85 908 1

()

The [BBLMTU] proof used the fact that formulas of AND_, XOR,, gates for e < 1/6
support reliable computation.

We give a tight upper bound that limits this approach:

Reliable computation by formulas of e-noisy AND gates and noise-free XOR
gates is impossible fore > 1/6
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Is there a nonlocal game for which any super-quantum success probability
causes communication complexity to become trivial?
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Is there a nonlocal game for which any super-quantum success probability
causes communication complexity to become trivial?

Theorem 3

Yes.
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(Trivial) Communication Complexity
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(Trivial) Communication Complexity
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(Trivial) Communication Complexity
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Fault Tolerance with Noisy Gates
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Nonlocal Games

Amplification

A
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4y Yy

Question

Can you compute an arbitrary function using a formula of AND, XOR, and
NOT gates?
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4y Yy

Question

Can you compute an arbitrary function using a formula of AND, XOR, and
NOT gates?

Answer

Yes! This set of gates is functionally universal.
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w.p. 1—e TPy wp. 1—7

-y W.P. € wW.p. T

Can you compute an arbitrary function with bounded probability of error
using a formula of AND_, XOR_, and NOT gates?
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w.p. 1—e TPy wp. 1—7

-y W.P. € wW.p. T

Can you compute an arbitrary function with bounded probability of error
using a formula of AND_, XOR_, and NOT gates?

Answer

It depends on e and 7!
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Noise Threshold Proof Ingredients:
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Question: |s there a simple characterization of which noisy gate sets allow for
fault-tolerant classical computation?
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Question: |s there a simple characterization of which noisy gate sets allow for
fault-tolerant classical computation?

Simplifying Assumption: We are allowed to use convex combinations of circuits.
>, piC; = "with probability p;, apply circuit C;"

Answer: Yes, there is a simple characterization.
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An amplifier is any circuit ¢, such that if we feed in i.i.d. bits ~ Bernoulli(p), we get
something like this:

]

X, ~ Ber(p)

Amplifier away from 1/2



An amplifier is any circuit ¢, such that if we feed in i.i.d. bits ~ Bernoulli(p), we get
something like this:

_ y Plcoutputs 1]
C<X17"'7X4>

C
]

1/2 -

X, ~ Ber(p)

Amplifier away from 1/2
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Theorem 2

A set of noisy circuits closed under convex combinations allows fault-
tolerant computation if and only if it contains an amplifier away from 1/2
and a (noisy) NOT gate.

8| Aoty s<u
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Theorem 2

A set of noisy circuits closed under convex combinations allows fault-
tolerant computation if and only if it contains an amplifier away from 1/2
and a (noisy) NOT gate.

m 6 <1/2
N
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(BBL+06] trivial communication complexity
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(BBL+06] trivial communication complexity

[This WorR]

CHSH / i

Pla, b|z, ] € RY
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Is there a nonlocal game for which any super-quantum success probability
causes communication complexity to become trivial?
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Theorem 3

VEk > 1, there is a nonlocal game G, such that a win probability above the
quantum value causes communication complexity to become trivial.



Is there a nonlocal game for which any super-quantum success probability
causes communication complexity to become trivial?

Theorem 3

VEk > 1, there is a nonlocal game G, such that a win probability above the
quantum value causes communication complexity to become trivial.
Conversely, if communication complexity is trivial, then 3k such that the
win probability for G, is above the quantum value.
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trivial communication complexity
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Alice + Bob as a conditional probability distribution:

a b
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Alice + Bob as a conditional probability distribution:

a b

\ /
Pla, b|x, 1]

/ Alice Bob \
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Alice + Bob as a conditional probability distribution:

a b
\ /
Pla,blz, ]

/Alice Bob\

Plwin game] = > Pla, bz, y]P[z, ]V (a, b; x, 1)

x,y,a,b
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Turning Strategies (Conditional Probability Distributions) Into Gates:

Alice "N Bob

| |

Ty Lo Y1 Yo
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Turning Strategies (Conditional Probability Distributions) Into Gates:

AliceBob(zy, 25)

Alice "N Bob

| |

Ty g Y1 Yo
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pick z; ~ {0,1}, y; = z; + ; mod 2



Turning Strategies (Conditional Probability Distributions) Into Gates:

AliceBob(zy, 25)

l
- B

| |

Alice "N Bob

pick z; ~ {0,1}, y; = z; + ; mod 2
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The Nonlocal Game G :

Fix k> 1.
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The Nonlocal Game G :

Fix k> 1.

(No communication)
Alice Bob
z € {0,1}2++1 P € {0,1}2k+1

[SU, ] = Pay



The Nonlocal Game G :

Fix k> 1.
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The Nonlocal Game G :

Fix k> 1.

a e {0,1} be {0,1}

(No communication)
Alice
= {0 1}2k+1 c {0 1}2k+1
x? p{py

Players Win if Maj r+y)=a+b

2k+1(
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For some choice of p,,, any P[win G ] above quantum implies that AliceBob is an
amplifier away from 1/2.
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For some choice of p,,, any P[win G ] above quantum implies that AliceBob is an
amplifier away from 1/2.

There is also an AliceBob NOT gate, so by Theorem 2 there is fault tolerant
computation by AliceBob circuits.

Alice and Bob can simulate arbitrary circuits of AliceBob gates with constant
communication using shared random coins.

This implies that communication complexity is trivial for such Alice and Bob.
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How to modify nonlocal game to have quantum advantage:
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How to modify nonlocal game to have quantum advantage:
G y» G + (1 — g)Magic
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