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Entanglement is strictly better than shared random coins for some tasks.

101011...

Shared Random
Bit

s

≥|𝜓⟩

Shared Quantum
Sta

te

Such tasks include nonlocal games and distributed computation.

1/30



CHSH1, a Nonlocal Game:

𝑥 ∼ {0, 1}
Alice

𝑎

Bob
𝑦 ∼ {0, 1}

𝑏

(No communication)

Players Win if 𝑥𝑦 = 𝑎 + 𝑏 mod 2

Classical Players win 75% of games

1[CHSH69]
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CHSH2, a Nonlocal Game:

𝑥 ∼ {0, 1}
Alice

𝑎

Bob
𝑦 ∼ {0, 1}

𝑏

(No communication)

Players Win if 𝑥𝑦 = 𝑎 + 𝑏 mod 2

|𝜓⟩ |𝜓⟩

Classical Players win 75% of games

Entangled Players win ≈ 85.3% of games|𝜓⟩
2[CHSH69] 3/30



ℙ[win CHSH]
.75 .85 1

|𝜓⟩
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Distributed Computation:

∀𝑥 ∈ {0, 1}𝑛

Alice

𝑓(𝑥, 𝑦) w.h.p.

Bob

∀𝑦 ∈ {0, 1}𝑛

𝑂(𝑛) bits communication
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Trivial Communication Complexity:

∀𝑥 ∈ {0, 1}𝑛

Alice

𝑓(𝑥, 𝑦) w.h.p.

Bob

∀𝑦 ∈ {0, 1}𝑛

𝑂(1) bits communication
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What is the relationship between nonlocal games and trivial communication
complexity?

𝑥

Alice

𝑎

Bob

𝑦

𝑏

𝑂(1) bits communication
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Brassard Buhrman Linden Méthot Tapp Unger

Theorem [BBL+06] (informal)

Communication complexity is trivial if two players win more than ≈ 90.8%
of CHSH games.
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What is the relationship between nonlocal games and trivial communication
complexity?

ℙ[win CHSH]
.75 .85 1

|𝜓⟩

.908

trivial communication complexity

Theorem [Cleve], [van Dam], [Brassard, Buhrman, Linden, Méthot, Tapp, and Unger]

If it were possible to win CHSH with ℙ[win] > .908, communication com-
plexity would become trivial.

1
2 + 1√

6 ≈ 0.908
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Alice + Bob’s strategy as a conditional probability distribution:

𝑥

Alice

𝑎

Bob

𝑦

𝑏

ℙ[𝑎, 𝑏|𝑥, 𝑦] ∈ ℝ16
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…
ℝ16

𝑁𝑆

𝑄

𝐶

𝐶𝐻𝑆𝐻

0.75
≈ 0.85

1

trivial communication complexity [BBL+06, vD13, Cle]
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ℙ[win CHSH]
.75 .85 1

|𝜓⟩

.908

trivial communication complexity
???

The [BBLMTU] proof used the fact that formulas of AND𝜖, XOR0 gates for 𝜖 < 1/6
support reliable computation.

We give a tight upper bound that limits this approach:

Theorem 1

Reliable computation by formulas of 𝜖-noisy AND gates and noise-free XOR
gates is impossible for 𝜖 ≥ 1/6
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Question

Is there a nonlocal game for which any super-quantum success probability
causes communication complexity to become trivial?

Theorem 3
Yes.
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(Trivial) Communication Complexity

Nonlocal Games

Amplification

Fault Tolerance with Noisy Gates
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AND

𝑥 𝑦

𝑥𝑦

XOR

𝑥 𝑦

𝑥 ⊕ 𝑦

NOT

𝑥

¬𝑥

Question

Can you compute an arbitrary function using a formula of AND, XOR, and
NOT gates?

Answer

Yes! This set of gates is functionally universal.

15/30



AND

𝑥 𝑦

𝑥𝑦

XOR

𝑥 𝑦

𝑥 ⊕ 𝑦

NOT

𝑥

¬𝑥

Question

Can you compute an arbitrary function using a formula of AND, XOR, and
NOT gates?

Answer

Yes! This set of gates is functionally universal.

15/30



AND

𝑥 𝑦

𝑥𝑦

XOR

𝑥 𝑦

𝑥 ⊕ 𝑦

NOT

𝑥

¬𝑥

Question

Can you compute an arbitrary function using a formula of AND, XOR, and
NOT gates?

Answer

Yes! This set of gates is functionally universal.

15/30



AND𝜖

𝑥 𝑦

{
𝑥𝑦 w.p. 1 − 𝜖
¬𝑥𝑦 w.p. 𝜖

XOR𝜏

𝑥 𝑦

{
𝑥 ⊕ 𝑦 w.p. 1 − 𝜏
¬(𝑥 ⊕ 𝑦) w.p. 𝜏

NOT

𝑥

¬𝑥

Question

Can you compute an arbitrary function with bounded probability of error
using a formula of AND𝜖, XOR𝜏, and NOT gates?

Answer

It depends on 𝜖 and 𝜏 !
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3−
√

7
4

3−
√

7
4

1
2 − 1√

8

1
2 − 1√

8

0
0

1
6

1
2

1
2

1
4

1
4

𝜖

𝜏XOR𝜏

AND𝜖

[EP98]

[BBL+06]

folklore

[ES99, EP98, Ung07]No

Yes

??
?? ??

??
??
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Noise Threshold Proof Ingredients:

• Probabilistic version of Pippenger’s
reduction [Pip88]

• Taming noise-free XOR gates

AND𝜖

𝑋1 XOR𝜏

𝑋2 AND𝜖

𝑋2𝑋3

1

0

0

19/30
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Question: Is there a simple characterization of which noisy gate sets allow for
fault-tolerant classical computation?

Simplifying Assumption: We are allowed to use convex combinations of circuits.

∑𝑖 𝑝𝑖𝐶𝑖 ∶= “with probability 𝑝𝑖, apply circuit 𝐶𝑖”

Answer: Yes, there is a simple characterization.
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An amplifier is any circuit 𝑐, such that if we feed in i.i.d. bits ∼ Bernoulli(𝑝), we get
something like this:

𝑐

𝑋1 𝑋2 𝑋3 𝑋4

𝑋𝑖 ∼ Ber(𝑝)

𝑐(𝑋1, … , 𝑋4)

𝑝

ℙ[𝑐 outputs 1]

1/2

1/2

Amplifier away from 1/2
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Theorem 2

A set of noisy circuits closed under convex combinations allows fault-
tolerant computation if and only if it contains an amplifier away from 1/2
and a (noisy) NOT gate.

⇔ 𝑐
𝑋1 𝑋2 𝑋3 𝑋4

𝑋𝑖 ∼ Ber(𝑝)

𝑐(𝑋1, … , 𝑋4)

𝑝

ℙ[𝑐 outputs 1]

1/2

1/2

NOT𝛿 𝛿 < 1/2&
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ℙ[𝑎, 𝑏|𝑥, 𝑦] ∈ ℝ𝑁

…

𝑁𝑆

𝑄 𝐶

𝐶𝐻𝑆𝐻

trivial communication complexity
[BBL+06]

𝐺

[This Work]
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Question

Is there a nonlocal game for which any super-quantum success probability
causes communication complexity to become trivial?

Theorem 3

∀𝑘 ≥ 1, there is a nonlocal game 𝐺𝑘, such that a win probability above the
quantum value causes communication complexity to become trivial.
Conversely, if communication complexity is trivial, then ∃𝑘 such that the
win probability for 𝐺𝑘 is above the quantum value.
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ℙ[win 𝐺𝑘]
1
2

1

|𝜓⟩

trivial communication complexity
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Alice + Bob as a conditional probability distribution:

𝑥

Alice

𝑎

Bob

𝑦

𝑏

ℙ[𝑎, 𝑏|𝑥, 𝑦]

ℙ[win game] = ∑𝑥,𝑦,𝑎,𝑏 ℙ[𝑎, 𝑏|𝑥, 𝑦]ℙ[𝑥, 𝑦]𝑉 (𝑎, 𝑏; 𝑥, 𝑦)
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Turning Strategies (Conditional Probability Distributions) Into Gates:

Alice Bob

𝑥1 𝑥2 𝑦1 𝑦2

𝑎 𝑏

AliceBob(𝑧1, 𝑧2)

𝑧1 𝑧2

pick 𝑥𝑖 ∼ {0, 1}, 𝑦𝑖 = 𝑧𝑖 + 𝑥𝑖 mod 2

⊕
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The Nonlocal Game 𝐺𝑘:

Fix 𝑘 ≥ 1.

ℙ[𝑥, 𝑦] = 𝑝𝑥𝑦

Alice Bob
𝑥 ∈ {0, 1}2𝑘+1 𝑦 ∈ {0, 1}2𝑘+1

(No communication)

𝑎 ∈ {0, 1} 𝑏 ∈ {0, 1}

Players Win if Maj2𝑘+1(𝑥 + 𝑦) = 𝑎 + 𝑏
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For some choice of 𝑝𝑥𝑦, any ℙ[win 𝐺𝑘] above quantum implies that AliceBob is an
amplifier away from 1/2.

There is also an AliceBob NOT gate, so by Theorem 2 there is fault tolerant
computation by AliceBob circuits.

Alice and Bob can simulate arbitrary circuits of AliceBob gates with constant
communication using shared random coins.

This implies that communication complexity is trivial for such Alice and Bob.
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How to modify nonlocal game to have quantum advantage:

𝐺 𝑞𝐺 + (1 − 𝑞)Magic
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