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Random quantum circuits have played a central role in establishing the computational advantages
of near-term quantum computers over their conventional counterparts [1]. Despite remarkable
progress in quantum control and measurement across different quantum computing platforms [1-7],
it remains a major challenge to develop error correction strategies that are practically relevant
for near-term applications of quantum computers [8, 9]. Many of the most well-studied codes for
near-term devices require either a high encoding circuit depth or, at low depth, achieve only a low
coding rate (number of logical qubits/physical qubits) or require all-to-all connectivity [10]. In
this work, we show that a spatially local random shallow circuit of logarithmic depth or better can
generate high-performing codes for local noise models, even at very large coding rates.

Our approach to quantum code design is rooted in arguments from statistical physics and
establishes several deep connections between quantum coding theory and critical phenomena in
phase transitions. In addition, we introduce a method of targeted measurements to significantly
improve random coding performance. These latter results provide interesting connections to the
emerging topic of measurement-induced quantum phase transitions [11-17].

At a fundamental level, the study of random error correcting codes has a long history that dates
back to the foundational work on information theory by Shannon [18], who showed that random
classical codes achieve the capacity of many local error models. Moreover, following early pioneering
studies by Gallager [19, 20|, random constructions of classical linear codes (e.g., the random LDPC
code) have even been found to be practically relevant for designing coding strategies for digital
communication. Random coding results in the quantum case have only recently been investigated
[21-24], but these groundbreaking works focused on the depth required to achieve a very strong
form of quantum error correction related to the decoupling theorem.

In this submission, we study the circuit depth required to achieve zero failure probability for the
specific local error model of erasures. In the case of this weaker metric, that is also a practically
relevant metric for experiments |25, 26|, we are able to improve upon the previous bounds to achieve
high-performance coding with random circuits in D spatial dimensions from depth O(N'/P) to depth
O(log N). Furthermore, by using quantum measurements to remove low-quality logical operators
from the code, we introduce a novel “expurgation” algorithm to achieve high-performance coding at
sub-logarithmic depths above one dimension (D > 1).

To validate our theoretical approach, we undertake a thorough study of the depth requirements
to achieve the quantum channel capacity of the erasure channel, which also points to several deep
connections between error correction thresholds and critical phenomena in phase transitions. In our
approach, we use the critical finite-size scaling properties of the erasure threshold for the optimal
codes as a benchmark performance metric for our low-depth random codes. In D = 1, the requisite
depth to approach capacity scales as O(\/N ), which is derived by mapping the threshold problem
to a problem in the statistics of random walks. Above one dimension, we find that the circuit depth
required to achieve zero failure probability below capacity does not change upon approaching the
capacity (the so-called moderate deviation limit in coding theory). The theoretical basis for this
result can be traced back to fundamental Imry-Ma arguments from statistical physics about the
relevance of spatial randomness to the critical behavior of thermal phase transitions [27].

More specifically, we consider stabilizer codes generated by two-local random Clifford circuits
on hypercubic lattices in D spatial dimensions or on all-to-all coupled networks. For concreteness,
we consider codes of rate R = 1/2 in which every other qubit is mapped to an encoded or “logical”


https://arxiv.org/abs/2010.09775

D e < e e:ec—O(%) Expur. e < e,
1 (%)logN N1/2 log N
2 log N log N (conj.) (logN)¢, e < 1
> 2 log N log N (log N)¢, e< 1

TABLE I. Random Clifford circuit depths required to reach zero failure probability for finite-rate codes under
erasure errors in D dimensions. Here, e, — O(1/N?) denotes coding arbitrarily close to the critical region of
the erasure threshold in the thermodynamic limit. We find b = 1 for the fixed-fraction erasure model. D = 2
is the marginal dimension for the relevance of spatial randomness in the errors to the threshold behavior,
which makes the scaling at capacity difficult to reliably determine from numerics or Imry-Ma arguments.
The last column shows the results upon expurgation of bad logical operators using quantum measurements.

qubit. We provide a summary of the main results found in this work in Table I. The error model
is taken to be an erasure model where eV sites of an N-qubit system are randomly selected and
traced out of the system, with those sites heralded to the decoder but unknown to the encoder.

The main results we will highlight in our talk are in two dimensions (D = 2). In order for the
code to correct a given region with an excess number of erasures, there needs to be a sufficiently
large number of syndromes to identify the possible errors in that region. Notably, for a depth d
random circuit the random fluctuations in erasure number within a given region can be overcome by
the overlapping syndromes near the boundary of that region whenever

LP7l'd~ VN ~ LP?2 & d ~ L} P2, (1)

This tension between random fluctuations and ordering tendencies is familiar from Imry-Ma argu-
ments. This scaling indicates that D = 2 is the marginal dimension for the relevance of random
erasure locations. In Fig. 1(a), we show the numerical results for the recovery probability through
the erasure threshold at different values of the depth. We clearly see the exponential convergence to
the infinite-depth limit throughout the critical region.

To further improve the scaling with depth, we first note that the dominant failure mode at depths
[log N ]1/ D < d < log N are rare regions with bad logical qubits. In our expurgation algorithm,
we essentially remove these rare logical operators from the code. Specifically, we begin with a
stabilizer code with many logical qubits. We then randomly generate an erasure pattern e. Using
row reduction, we can form a basis of linearly independent uncorrectable Pauli errors, i.e., these
errors map to the all-zero syndrome, but have nontrivial logical operator content. We then perform
a sequence of projective measurements of these operators on the code space density matrix to form
a new stabilizer or subsystem code. This procedure is iterated many times until either the rate of
the code approaches a specified target value, the failure probability reaches a certain threshold, or
the number of logical operators goes to zero (i.e., expurgation fails).

In Fig. 1(b), we provide an illustrative example of the performance improvements that are possible
with this expurgation strategy for 2D random circuit encodings. Here, d* is the interpolated depth
required to reach a 50% failure probability. We see nearly linear scaling of d* with log N before
expurgation. After expurgation, d* has a strongly sublinear scaling with log N. All expurgated
logicals were turned into gauge qubits in this example, which has the advantage that the syndrome
check operators are unchanged and can retain a low-weight.

To summarize, we study quantum error correcting codes generated by low depth random circuits.
In any spatial dimension, we find that a depth O(log N) random circuit is necessary and sufficient
to achieve good coding against erasure errors below the channel capacity. However, in 1D, coding
arbitrarily close to capacity requires a depth O(\/N ) circuit due to the relevance of spatial randomness
in errors at threshold. The marginal dimension for high-performance low-depth coding at capacity
is 2D where spatial randomness becomes an irrelevant perturbation at threshold.
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FIG. 1. (a) Code-averaged recovery probability P(R) vs erasure fraction for a two-dimensional random
circuit in a brickwork arrangement of gates with periodic boundary conditions for different depths d for
N = 256 and rate R = 1/2. We sequentially cycle through 4 layers so that each site interacts with its north,
east, south, west neighbor for each 4 units of depth. The inset shows the same data on a logarithmic scale,
illustrating the exponentially scaling with depth P(F) ~ e~%4 for e < e.. Each two qubit gate in the circuit
consists of an iISWAP gate followed by a random single-site Clifford on each site. (b) Interpolated depth d*
to reach 50 % failure probability for a random 2D circuit vs log-system size. Each two qubit gate in the
circuit is a random Clifford gate. All expurgated logical operators were turned into gauge operators. We
removed only N/32 logicals to aid in extracting the scaling vs log, N to large sizes and small depths. We
took an erasure fraction n./N = 1/8 for the expurgation and the calculation of the failure probability.

Although spatial randomness in the errors becomes irrelevant above 1D, there are still large
inhomogeneities in the quality of the random code due to random circuit fluctuations. We showed
that the effects of code randomness in D > 1 can be mitigated by expurgating low-weight logical
operators from the code using quantum measurements. With this method, we found that high-
performance coding becomes possible at sub-log-N depths. Codes with rates near 1/2 generated by
our random coding algorithms can achieve high performance at depth 4-8 in 2D for large erasure
rates and block sizes of thousands of qubits.

The results in this work open up many directions for future research. To develop these codes for
use on near-term devices, a more general theory of optimal decoding for Pauli error channels should
be developed. Efficient optimal decoding can likely be implemented for these low-depth codes by
taking advantage of their strongly local nature and log-depth encodings. It will also be interesting
to consider the performance of these codes in conventional threshold theorems, including strategies
for achieving full fault-tolerance.

Moreover, it has now been well established that fault-tolerant thresholds can be significantly
improved by tailoring codes to the detailed properties of the noise [28-31]. The expurgation
algorithm provides a wide variety of additional techniques to tailor codes to specific noise models.
In addition, it may be possible to further improve the expurgation by using quantum measurements
that explicitly implement entanglement swapping, similar to techniques used for the measurement
based preparation of the surface code states [32, 33].

In conclusion, we believe our work adds crucial evidence to an emerging consensus in quantum
information science that quantum information processing with error correction may not be that far
from practical experimental reality. The introduction of concrete evaluation metrics and practical
algorithms to generate high-performing codes has the potential to be a boon to the field of quantum
error mitigation strategies in near-term devices that rely on quantum error correcting codes. For
these reasons, we believe these results will be a valuable contribution to QIP.
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