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Random Classical Coding

Random codes play an essential role in the theory of error correction

Random codes saturate the channel capacity

C. Shannon, A mathematical theory of communication, Bell System
Technical Journal 27, 379 (1948).

Practical random LDPC codes with efficient encoders/decoders
R. Gallager, Low-density parity check codes, IRE Trans. Info. Theory 8, 21 (1962).
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Random Quantum Coding

Random quantum encodings are Haar random circuits

Decoupling theorem

Hayden, Horodecki, Winter, Yard, A decoupling approach to the quantum
capacity, Open Syst. Inf. Dyn. 15, 7 (2007).

Two-local random Clifford circuits reach linear distance at depth O(log® N)

Brown and Fawszi, Short random circuits define good quantum error correcting
codes, Proceedings of ISIT, pages 346-350 (2013). arXiv:1312.7646

Local random circuits are two-designs at depth O(N''P)

Brandao, Harrow, Horodecki, Local random quantum circuits are approximate
polynomial designs, Commun. Math. Phys. 346, 397 (2016).
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Low-Depth Random Quantum Coding

Study the circuit depth required to converge to zero failure probability
for specific model of erasure errors - efficient decoding algorithm™
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Low-Depth Random Clifford Coding Results
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Main results:

|) Coding below capacity requires only O(log N) depth in any D

2) Can apply an “Imry-Ma” argument to optimal decoding problem:
Spatial randomness in errors is an irrelevant perturbation for D>2

3) 2D is the marginal dimension for log-N depth coding at capacity

4) Introduce an “expurgation” algorithm based on quantum measurements
to achieve sub-log-N depth coding below capacity



Random Stabilizer Code Transition - RMT Ansatz

Start with infinite depth limit - Can compute the critical behavior of a
random stabilizer code using a random matrix theory ansatz

Fix an erasure pattern, write a generating matrix for all syndromes and
logical operator errors
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In RMT approximation we assume M is a random matrix over a finite field
Provides a combinatorial formula for critical recovery probability
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Random Stabilizer Code Transition - RMT Ansatz

Rate 1/2 code



Low-Depth Random Clifford Codes in 2D




Imry-Ma Argument for Relevance of Randomness

Standard Imry-Ma argument H = Z Jsis; + Z his; h; € [—h,h]
Low-T, h = 0 w9
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Imry-Ma Argument for Relevance of Randomness

Standard Imry-Ma argument H = — Jsis; + Z his; h; € [—h,h]
(27) z
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Unresolved*

*Recent progress: Aizenmen, Harel, Paled, J. Stat. Phys. 180, 304 (2020).



Imry-Ma Argument for Low-Depth Random Code

Random fields replaced by the random fluctuations in erasure numbers

Number of excess check
Check
operators at boundary
operators P1
% 8 @ ~r~7 " d d -circuit depth
.& Excess @ Random fluctuations in errors
@ erasures V. N TD/2
h 8 ? Error correction wins when:
d ~ Tl_D/Z
D <2 D=2 D >2
d = O(\/T) d=0(1)
Divergent depth Marginal dimension  Error correction wins

Uncertain fate at constant depth



Random Clifford Coding at Capacity in 1D
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Failure Mode at Low-Depth Below Capacity

Typical minimum weight logical in a given region spreads to a size d”

Rare localized logicals persist with probability ~ 1/Ad for any D and any
random Clifford ensemble

Code fails below log N depth for D>1| because of localized logical operators

d < log N Expurgated code

Typical logical
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Expurgation Algorithm Below Capacity

Algorithm for projecting out bad logical operators

. Start with a logical operator g that has high-probability of
. leading to failures

Update the code-space density matrix by measuring g

N—k
ps = ZLN H (I+Zi) = (L£g)ps(1£g)/2
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Now g is a new stabilizer. Find new g for the new code. Repeat.

Proposition: This process monotonically increases the code distance
and recovery probability without changing original check operators.



Sub-Log-N Depth Scaling with Expurgated Random Code
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d* is interpolated depth to reach 50% failure probability

No sub-log-N scaling observed in D = |



Approximate Stat. Mech. Model for the Erasure Threshold

Use mapping of local random circuit to Ising model for purity of subsystems:

Nahum, Vijay, Haah, PRX 78, 021014 (2018).
Zhou, Nahum, PRB 99,174205 (2019).

Logical qubits map to polarizing fields on boundary:
Bao, Choi, Altman, PRB 101, 104301 (2020).
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Summary

Random channel coding

Random Local Noise Optimal
encoding Channel decoding

|) Very high-performance codes exist at very low depths!

2) Deep connections between random quantum coding and statistical physics

3) Expurgation algorithm points to the untapped potential of spatially
local finite-rate codes

Reference:
arXiv:2010.09775



Open Questions

- Optimal decoding for low-depth codes beyond erasure errors

- Performance with circuit-level errors - towards fault-tolerance

- Biased random codes: Can we develop biased sampling
techniques like expurgation to find noise-optimized random codes!

- Adaptive decoding: Are there efficient adaptive strategies that
dynamically update the code space depending on observed syndromes!?

- Connections to measurement-induced entanglement phase transitions
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