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Random Classical Coding

Random codes play an essential role in the theory of error correction

C. Shannon, A mathematical theory of communication, Bell System 
Technical Journal 27, 379 (1948).

R. Gallager, Low-density parity check codes, IRE Trans. Info. Theory 8, 21 (1962).

Practical random LDPC codes with efficient encoders/decoders

Random codes saturate the channel capacity
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Random Quantum Coding

Random quantum encodings are Haar random circuits
Decoupling theorem 

Hayden, Horodecki, Winter, Yard, A decoupling approach to the quantum 
capacity, Open Syst. Inf. Dyn. 15, 7 (2007).

Two-local random Clifford circuits reach linear distance at depth O(log3 N)
Brown and Fawzi, Short random circuits define good quantum error correcting 
codes, Proceedings of ISIT, pages 346-350 (2013). arXiv:1312.7646

Local random circuits are two-designs at depth O(N1/D)
Brandao, Harrow, Horodecki, Local random quantum circuits are approximate 
polynomial designs, Commun. Math. Phys. 346, 397 (2016).
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Low-Depth Random Quantum Coding

Study the circuit depth required to converge to zero failure probability 
for specific model of erasure errors - efficient decoding algorithm*
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- code rate
*Delfosse and Zemor, PRR 2, 033042 (2020).



Low-Depth Random Clifford Coding Results

2) Can apply an “Imry-Ma” argument to optimal decoding problem: 
Spatial randomness in errors is an irrelevant perturbation for D>2 

Main results:

1) Coding below capacity requires only O(log N) depth in any D

3) 2D is the marginal dimension for log-N depth coding at capacity

4) Introduce an “expurgation” algorithm based on quantum measurements 
to achieve sub-log-N depth coding below capacity 



Random Stabilizer Code Transition - RMT Ansatz

Start with infinite depth limit - Can compute the critical behavior of a 
random stabilizer code using a random matrix theory ansatz

Fix an erasure pattern, write a generating matrix for all syndromes and 
logical operator errors

In RMT approximation we assume M is a random matrix over a finite field

Provides a combinatorial formula for critical recovery probability 



Random Stabilizer Code Transition - RMT Ansatz

Rate 1/2 code



Low-Depth Random Clifford Codes in 2D



Imry-Ma Argument for Relevance of Randomness

Standard Imry-Ma argument

Low-T, h = 0



Imry-Ma Argument for Relevance of Randomness

Standard Imry-Ma argument

Boundary energy cost -
Ordering tendency

Energy gained in field -
Random fluctuations

Ordering winsRandomness wins Marginal dimension
Unresolved*

*Recent progress: Aizenmen, Harel, Paled, J. Stat. Phys. 180, 304 (2020).

Low-T, h > 0



Imry-Ma Argument for Low-Depth Random Code

Random fields replaced by the random fluctuations in erasure numbers
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Error correction wins when:

Error correction wins 
at constant depth

Divergent depth Marginal dimension
Uncertain fate



Random Clifford Coding at Capacity in 1D

Random error locations Regular error locations

Randomness in the code 
dominates at log N depth



Failure Mode at Low-Depth Below Capacity

Code fails below log N depth for D>1 because of localized logical operators

Rare localized logicals persist with probability                for any D and any 
random Clifford ensemble 

Typical minimum weight logical in a given region spreads to a size dD

Rare logicals

Typical logical

Project bad logicals 
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Expurgation Algorithm Below Capacity

Proposition: This process monotonically increases the code distance 
and recovery probability without changing original check operators.

Start with a logical operator g that has high-probability of 
leading to failures
Update the code-space density matrix by measuring g

Algorithm for projecting out bad logical operators

Now g is a new stabilizer.  Find new g for the new code. Repeat.



Sub-Log-N Depth Scaling with Expurgated Random Code

2D All-to-all

d* is interpolated depth to reach 50% failure probability 

No sub-log-N scaling observed in D = 1



Approximate Stat. Mech. Model for the Erasure Threshold

Use mapping of local random circuit to Ising model for purity of subsystems: 
Nahum, Vijay, Haah, PRX 78, 021014 (2018).
Zhou, Nahum, PRB 99,174205 (2019).

Logical qubits

Logical qubits map to polarizing fields on boundary: 
Bao, Choi, Altman, PRB 101, 104301 (2020).

Erasure threshold is a first-
order pinning transition for 
this domain wall



Summary
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1) Very high-performance codes exist at very low depths!

2) Deep connections between random quantum coding and statistical physics 

Reference: 
arXiv:2010.09775

3) Expurgation algorithm points to the untapped potential of spatially 
local finite-rate codes



Open Questions

- Optimal decoding for low-depth codes beyond erasure errors 

- Performance with circuit-level errors - towards fault-tolerance

- Biased random codes: Can we develop biased sampling 
techniques like expurgation to find noise-optimized random codes?

- Adaptive decoding:  Are there efficient adaptive strategies that 
dynamically update the code space depending on observed syndromes?

- Connections to measurement-induced entanglement phase transitions


