

Efficient unitary designs with a system-size independent number of non-Clifford gates

Jonas Haferkamp

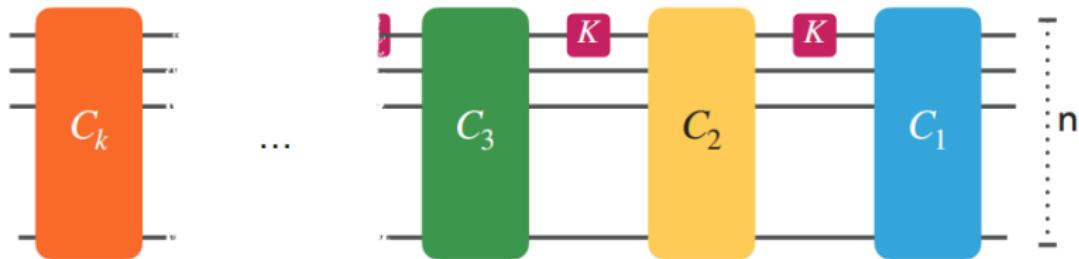
Dahlem center for complex quantum systems

F. Montalegre-Mora, M. Heinrich, J. Eisert, D. Gross, I. Roth

arXiv:2002.09524

"Quantum homeopathy": the result in a nutshell

$$C_i \sim \mu_{\text{Cl}(2^n)} \quad K \notin \text{Cl}(2^n)$$



is an approximate unitary t -design in depth
 $k \geq O(t^4)$ provided that $n \geq O(t^2)$.

Random unitaries are everywhere

- ▶ Quantum system identification: randomized benchmarking, tomography, shadow tomography...
- ▶ Sending information through quantum channels.
- ▶ Models of quantum information scrambling for black holes.
- ▶ Generic features of quantum many-body systems.

Random unitaries are everywhere

- ▶ Quantum system identification: randomized benchmarking, tomography, shadow tomography...
- ▶ Sending information through quantum channels.
- ▶ Models of quantum information scrambling for black holes.
- ▶ Generic features of quantum many-body systems.

But: full Haar-randomness requires exponential resources!

Unitary designs

Definition

Consider the moment operator:

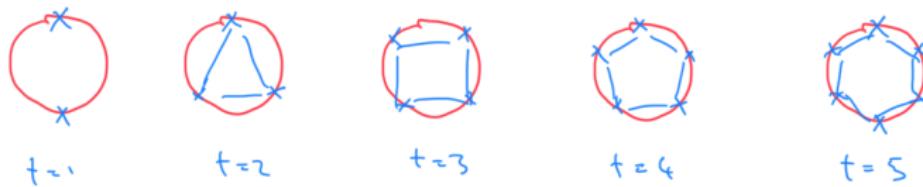
$$\Delta_{\nu,t}(A) := \mathbb{E}_{U \sim \nu} U^{\otimes t} A (U^\dagger)^{\otimes t} \quad (1)$$

Exact unitary t -design is a probability measure ν such that

$$\Delta_{\nu,t} = \Delta_{\mu_{\text{Haar}},t}. \quad (2)$$

Unitary designs

Measures how **evenly spread** a set of unitaries is. E.g. the time evolution under random Hamiltonians.



Discrete designs always exist but are complicated!

Unitary group designs

We want **scalable** designs that are generated by the application of **local generators**.

Unitary group designs

We want **scalable** designs that are generated by the application of **local generators**.

Well behaved case: ν is **Haar measure** on subgroup G of $U(N)$.
Then $\Delta_{\nu,t}$ is orthogonal projector on $\text{Comm}(U^{\otimes t}, U \in G)$.

Unitary group designs

We want **scalable** designs that are generated by the application of **local generators**.

Well behaved case: ν is **Haar measure** on subgroup G of $U(N)$.

Then $\Delta_{\nu,t}$ is orthogonal projector on $\text{Comm}(U^{\otimes t}, U \in G)$.

Example: $\Delta_{\mu_{\text{Haar}},t}$ is projector on

$$\text{Comm}(U^{\otimes t}, U \in U(N)) = \text{span}(r(\pi), \pi \in S_t) \quad (\text{Schur-Weyl})$$

The Clifford group: many faces

- ▶ Generated by Phase gate, Hadamard and controlled NOT:
 $\text{Cl}(2^n) := \langle \{S, H, \text{CZ}\} \rangle$.
- ▶ Normalizer of the Pauli group:
 $\text{Cl}(2^n) := \{U \in U(2^n), U\mathcal{P}U^\dagger \subseteq \mathcal{P}\}$.
- ▶ **Symplectic group** on vector space over finite field.
- ▶ Analogue of **Gaussian operations** for discrete variables.

The Clifford group: many applications

- ▶ Quantum error correction.
- ▶ Randomized benchmarking.
- ▶ Simulation of quantum circuits.
- ▶ (Shadow) tomography.
- ▶ ...

The Clifford group as a unitary design

PHYSICAL REVIEW A **96**, 062336 (2017)

Multiqubit Clifford groups are unitary 3-designs

Huangjun Zhu*

THE CLIFFORD GROUP FORMS A UNITARY 3-DESIGN

ZAK WEBB¹

Quantum Information & Computation, 2016

The Clifford group fails gracefully to be a unitary 4-design

Huangjun Zhu¹, Richard Kueng¹, Markus Grassl², and David Gross¹

[arXiv:1609.08172](https://arxiv.org/abs/1609.08172)

The Clifford group as a unitary design

PHYSICAL REVIEW A **96**, 062336 (2017)

Multiqubit Clifford groups are unitary 3-designs

Huangjun Zhu*

THE CLIFFORD GROUP FORMS A UNITARY 3-DESIGN

ZAK WEBB¹

Quantum Information & Computation, 2016

The Clifford group fails gracefully to be a unitary 4-design

Huangjun Zhu¹, Richard Kueng¹, Markus Grassl², and David Gross¹

arXiv:1609.08172

Another face: Multiqubit **Clifford group** is unique non-trivial
3-group in $U(2^n)$.

Bannai, Navarro, Rizo, Tiep, arXiv:1810:02507 (2018)

Guralnick, Tiep, Representation Theory (2005)

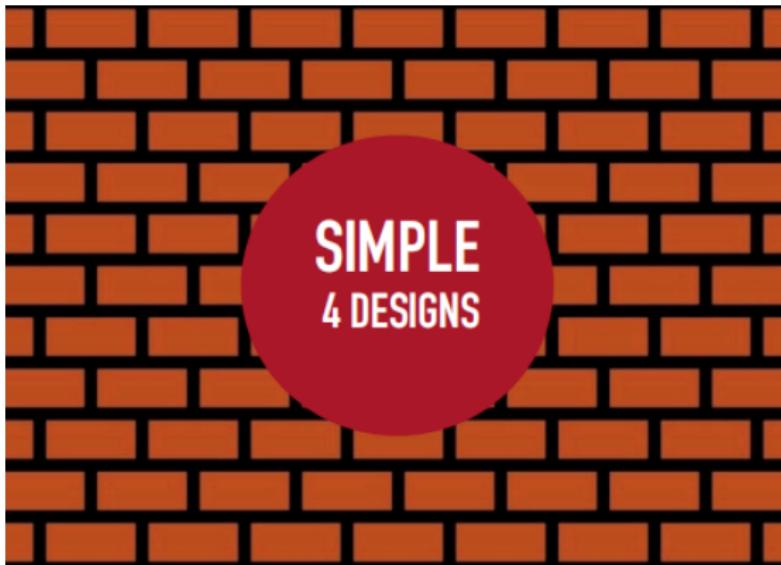
Sawicki, Karnas, Ann. Henri Poincaré (2017).

No good 4-designs?

⇒ 4-groups don't exist!

No good 4-designs?

⇒ 4-groups don't exist!



Unitary designs via random quantum circuits

Definition

ν is ε -approximate design if

$$\|\Delta_{\mu_{\text{Haar}}, t} - \Delta_{\nu, t}\|_{\diamond} \leq \varepsilon. \quad (3)$$

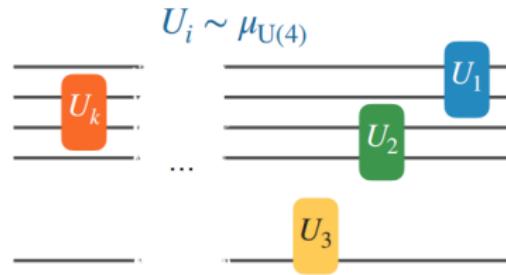
Unitary designs via random quantum circuits

Definition

ν is ε -approximate design if

$$\|\Delta_{\mu_{\text{Haar}},t} - \Delta_{\nu,t}\|_{\diamond} \leq \varepsilon. \quad (3)$$

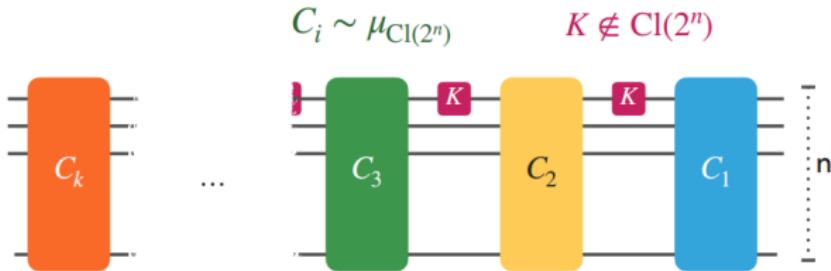
Theorem (Brandão, Harrow, Horodecki)



is an approximate unitary t -design for $k \geq O(n^2 t^{9.5})$.

Unitary t -designs from random Clifford dominated circuits

Theorem

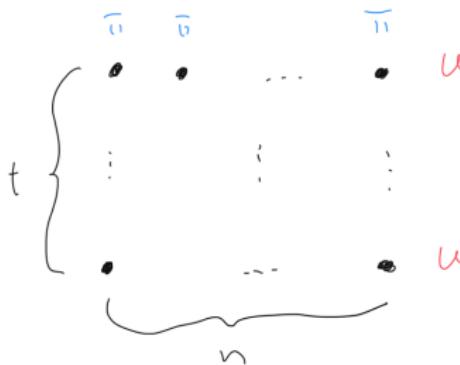


is ε -approximate unitary design in depth $k \geq C_1(K)(t^4 + \log(1/\varepsilon))$ for all $n \geq C_2(K)t^2$.

Schur-Weyl duality (for the Clifford group)

For $\pi \in S_t$, we denote

$$r(\pi) := 2^{-t/2} \sum_{x \in \mathbb{Z}_2^t} |\pi(x)\rangle\langle x|.$$



$$\text{Comm}(U^{\otimes t}) = \text{span}(r(\pi)^{\otimes n})$$

$$\text{Comm}(U^{\otimes t}, U \in \text{Cl}(2^n)) = \text{span}(r(T)^{\otimes n})$$

$T \in \Sigma_{t,t}$ Lagrangian subspaces.

Proof strategy

Rewrite moment operator

$$\Delta_{\sigma,t} - \Delta_{\mu_{\text{Haar}},t} = \underbrace{[(\Delta_{\mu_{\text{Cl},t}} - \Delta_{\mu_{\text{Haar}}}) \text{Ad}_{K^{\otimes t}}]^k}_{\text{projector}}. \quad (4)$$

- ▶ $\Delta_{\mu_{\text{Cl},t}} - \Delta_{\mu_{\text{Haar}}}$ is projector onto the **orthocomplement** of the permutations in the span of **Lagrangian subspaces**.
- ▶ **Technical problem:** $\{r(T)^{\otimes n}\}$ is not an orthonormal basis.
- ▶ Careful bound on **Gram-Schmidt orthogonalization** of **Lagrangian subspaces** for $n \geq O(t^2)$.

Proof strategy

- ▶ Painful combinatorial argument yields

$$\|\Delta_{\sigma,t} - \Delta_{\mu_{\text{Haar}},t}\|_{\diamond} \leq 2^{O(t^4) + t \log(k)} (1 + 2^{O(t^2) - n})^{5k} \eta^{k-1}.$$

- ▶ Depends on "expectation value" of $\text{Ad}_{K^{\otimes t}}$ acting on non-permutation Lagrangian subspaces:

$$\eta := \max_{T \in \Sigma_t \setminus S_t} |(r(T)|\text{Ad}_{K^{\otimes t}}|r(T))_{\text{HS}}|.$$

Lemma

$$\eta \leq 1 - c(K) \log^{-2}(t).$$

Open problems

- ▶ Can the condition $n \geq O(t^2)$ be lifted?
- ▶ Relative approximate designs. → partial result: $O(n)$ instead of $O(n^2)$ many non-Clifford gates.
- ▶ Applications of higher designs:

Open problems

- ▶ Can the condition $n \geq O(t^2)$ be lifted?
- ▶ Relative approximate designs. → partial result: $O(n)$ instead of $O(n^2)$ many non-Clifford gates.
- ▶ Applications of higher designs:
 - ▶ Out-of-time-order correlators and scrambling?
 - ▶ Quantum PUFs?
 - ▶ Equilibration.
 - ▶ Complexity growth.
 - ▶ ...

Mi, et. al., arXiv:2101.08870

Kumar, Mezher, Kashefi, arxiv:2101.05692