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"Quantum homeopathy”: the result in a nutshell
Ci ~ Heian K ¢ CI(2")

is an approximate unitary t-design in depth
k > O(t*) provided that n > O(t?).

o I z = T 9ac



Random unitaries are everywhere

> Quantum system identification: randomized benchmarking,
tomography, shadow tomography...

» Sending information through quantum channels.
» Models of quantum information scrambling for black holes.

» Generic features of quantum many-body systems.
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> Quantum system identification: randomized benchmarking,
tomography, shadow tomography...

» Sending information through quantum channels.
» Models of quantum information scrambling for black holes.

» Generic features of quantum many-body systems.

But: full Haar-randomness requires exponential resources!



Unitary designs

Definition

Consider the moment operator:
A, (A) =By, UPLA(UT)®! (1)
Exact unitary t-design is a probability measure v such that

Al/,t = AMH;\:n-,t‘ (2)



Unitary designs

Measures how evenly spread a set of unitaries is. E.g. the time
evolution under random Hamiltonians.
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Discrete designs always exist but are complicated!
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Unitary group designs
We want scalable designs that are generated by the application of
local generators.

Well behaved case: v is Haar measure on subgroup G of U(N).
Then A, ; is orthogonal projector on Comm(U™" U e G).

Example: A, . ¢ IS projector on

Comm(U®*, U € U(N)) = span(r(r), 7 € S;) (Schur-Weyl)



The Clifford group: many faces

» Generated by Phase gate, Hadamard and controlled NOT:
Cl(2") = ({S, H,CZ}).

» Normalizer of the Pauli group:
Cl(27) == {U € U(2"), UPU' C P}.

» Symplectic group on vector space over finite field.

» Analogue of Gaussian operations for discrete variables.



The Clifford group: many applications

Quantum error correction.
Randomized benchmarking.
Simulation of quantum circuits.

(Shadow) tomography.

vVvyVYyyvyy



The Clifford group as a unitary design
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o . THE CLIFFORD GROUP FORMS A UNITARY 3-DESIGN
Multiqubit Clifford groups are unitary 3-designs

. ZAK WEBB! i Jtin
Huangiun Zhu ‘Quantum Information & Computation, 2016

The Clifford group fails gracefully to be a unitary 4-design

Huangjun Zhu!, Richard Kueng!, Markus Grassi?, and David Gross!
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Another face: Multiqubit Clifford group is unique non-trivial
3-group in U(2").

Bannai, Navarro, Rizo, Tiep, arXiv:1810:02507 (2018)
Guralnick, Tiep, Representation Theory (2005)
Sawicki, Karnas, Ann. Henri Poincaré (2017).



No good 4-designs?

—> 4-groups don't exist!
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Unitary designs via random quantum circuits
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Unitary designs via random quantum circuits

Definition

v is e-approximate design if

||A/~”[aar,t - AV7tH0 S .

Theorem (Brandao, Harrow, Horodecki)

U; ~ Huay

T —gt

U,

U;

is an approximate unitary t-design for k > O(n

Brand3o, Harrow, Horodecki, Comm. in Math. Phys. (2016).

21‘9'5).



Unitary t-designs from random Clifford dominated circuits
Theorem

~ Heyzn K & C1(2")

1 ren

is =-approximate unitary design in depth k > Ci(K)(t* + log(1/¢))
for all n > Co(K)t2.



Schur-Weyl duality (for the Clifford group)

For m € 5S¢, we denote

() =2 ()X

x€Zb

8} v n

o 0 s A
Comm(U®?) = span(r(7)®")
t
) . Wk Comm( U®t, Ue CI(Z")) _ Span(r( T)‘X‘n)
.~

T € X+ Lagrangian subspaces.

Gross, Nezami, Walter, arXiv:1712:08628, (2017)



Proof strategy

Rewrite moment operator

AO’,[’ - A,U‘Ha,n”t = [(Aucl,t - Al’fll;\:n')AdK@t]k' (4)
—_————

projector

> Ay, — Ay, is projector onto the orthocomplement of the
permutations in the span of Lagrangian subspaces.

» Technical problem: {r(T)®"} is not an orthonormal basis.

» Careful bound on Gram-Schmidt orthogonalization of
Lagrangian subspaces for n > O(t?).



Proof strategy

» Painful combinatorial argument yields
4 2y _ _

» Depends on "expectation value” of Adke: acting on
non-permutation Lagrangian subspaces:

n-= Tg:i)\(st ‘(r(T)’AdK@‘r(T))HS‘ :

Lemma

n < 1—c(K)log™2(t).



Open problems

» Can the condition n > O(t°) be lifted?

> Relative approximate designs. — partial result: O(n) instead
of O(n?) many non-Clifford gates.
» Applications of higher designs:



Open problems

» Can the condition n > O(t°) be lifted?

> Relative approximate designs. — partial result: O(n) instead
of O(n?) many non-Clifford gates.
» Applications of higher designs:

» Qut-of-time-order correlators and scrambling?
» Quantum PUFs?

» Equilibration.

» Complexity growth.
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Mi, et. al., arXiv:2101.08870
Kumar, Mezher, Kashefi, arxiv:2101.05692



