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Currently, one of the great unsolved technological questions is whether near-term quantum

computers will be useful for practical applications. These noisy intermediate-scale quantum (NISQ)

devices do not have enough qubits or high enough gate fidelities for fault-tolerant quantum error

correction [1]. Consequently, any observable measured on a NISQ device will have limited accuracy.

However, candidate applications such as quantum chemistry require chemical accuracy to beat

classical methods [2, 3]. Similarly quantum approximate optimization has the potential to beat

classical optimization when high accuracy is achieved [4–6].

Hence, it is widely regarded that near-term quantum advantage will only be achieved through

error mitigation. Error mitigation (EM) is broadly defined as methods that reduce the impact

of noise, rather than directly correct it. A prominent EM approach is to perform classical post-

processing of observable expectation values. This includes the most widely used, state-of-the-art

example known as zero-noise extrapolation (ZNE), which has shown great promise [7, 8]. ZNE

involves collecting data at various levels of noise, achieved by stretching gate times, and using this

noisy data to extrapolate an observable’s expection value to the zero-noise limit [9, 10]. It has been

successfully employed to correct ground-state energies for problem sizes up to 4-qubits [7, 8, 11].

In principle the method is scalable since it only adds overhead that is linear in the number of

gates. However, ZNE only corrects noise up to a certain expansion order and hence it relies on the

assumption of low noise levels, an assumption that could be challenged for deep, large-scale circuits.

A crucial requirement of any EM method is scalability. While it is relatively easy to develop

EM methods for small qubit systems, EM methods that work effectively at the quantum supremacy

scale (> 50 qubits) are much more challenging to construct. Even methods that are in principle

scalable may not actually scale well in practice.

This work aims to address this issue by proposing a novel, scalable EM method that is applicable

to all gate-based quantum computers. The basic idea is shown in Fig. 1. First we generate training

data, of the form {Xnoisy
i , Xexact

i }, where Xnoisy
i and Xexact

i are the noisy and noiseless versions

of an observable’s expectation value of interest. The noisy values are obtained directly from the

quantum computer, while the noiseless values are simulated on a classical computer. Scalability
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FIG. 1. Our proposed error mitigation method. For a set of states that are classically simulable, one generates

noisy and corresponding noise-free data on a quantum computer and classical computer, respectively. One

learns to correct on this training data by fitting the parameters of an ansatz. Finally, one uses this ansatz

with the fitted parameters to predict noise-free observables for arbitrary quantum states.

is achieved by generating the training data from quantum circuits composed largely of Clifford

gates (gates that map Pauli operators to Pauli operators), and hence these circuits are efficiently

classically simulable. Next we fit the training data with a model, and finally we use the fitted model

to predict the noise-free observable. We call our method Clifford Data Regression (CDR).

Our method is conceptually simple and could be refined with sophisticated model fitting methods

offered by modern machine learning [12] and generalized by taking into account additional features

like the noise level [13]. Nevertheless, even with simple linear-regression-based fitting, our method

performs extremely well in practice.

A central application of error mitigation is to correct the energies of Hamiltonian eigenstates

prepared on a quantum computer. Here we illustrate this application by the task of estimating the

ground-state energy E of a transverse Ising spin chain defined by a Hamiltonian

H = −g
∑
j

σjX −
∑
〈j,j′〉

σjZσ
j′

Z , (1)

where σX , σZ are Pauli operators and 〈j, j′〉 denotes a sum over nearest neighbors. We study the
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FIG. 2. Correcting local minima of the energy optimization for a 16-qubit transverse Ising model with our

CDR method. We optimize a QAOA circuit with p = 2 ansatz layers. We perform the correction using

IBM’s Almaden quantum computer. (a) The relative energy error is plotted for the noisy (red) and corrected

(blue) results for several optimization instances. (b) The inferred energy per qubit, E/Q, is plotted, along

with the exact values (black).

case of g = 2. To estimate E we variationally train the Quantum Alternating Operator Ansatz

(QAOA) [4, 5]. To apply the QAOA, we write H = H1 + H2 with H2 = −g
∑

j σ
j
X and H1 =

−
∑
〈j,j′〉 σ

j
Zσ

j′

Z . Then the QAOA is ∏
j=p,p−1...,1

eiβjH2eiγjH1(|+〉)⊗Q, (2)

where βj , γj are variational parameters, Q is the number of qubits, p is the number of ansatz layers,

and |+〉 = (|0〉 + |1〉)/
√
2. For this task, our method reduces the error by an order-of-magnitude

for a 16-qubit problem solved on IBMQ quantum computer (see Fig. 2). We find that our method

appears to perform better than ZNE for this problem. Using a noise model obtained from IBM’s

Ourense quantum computer by get set tomography [14] we study the rate of error growth with p

and Q. We find that it is not very sharp, and we still obtain order of magnitude error reductions for

either p = 4 or 64 qubits. It is worth noting that 64 qubits is considered to be in the regime where

quantum supremacy might be demonstrated [15]. We also demonstrate the utility of our method

for non-variational algorithms such as quantum phase estimation.
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