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In 1975, Hawking showed that black holes emit thermal radiation [1], thereby uncovering a deep
tension between quantum mechanics and general relativity. Hawking’s calculation suggests that black
holes eventually evaporate away completely, leaving behind — independently of their initial conditions
— perfectly thermal radiation. On the other hand, if black hole time evolution is to obey the usual
unitary dynamics of quantum mechanics, pure initial states must be taken to pure final states. This is
in apparent contradiction with Hawking’s calculation. This problem, which has since been known as
the black hole information paradox, has remained as one of the most perplexing paradoxes in physics.

More recently, the black hole information paradox was sharpened by using the monogamy of the
entanglement [2]. This paradox, which is often referred to as the firewall paradox, led to various
proposals to construct the interior of the black hole. One of the leading proposals involves the idea
that the interior of the black hole is somehow encoded within the early radiation [3, 4]. While this
proposal resolves the original firewall paradox, it is not without its own issues. Since the black hole
interior is embedded within the early radiation, an exterior observer may ostensibly perturb the black
hole interior by acting on the exterior radiation. If this were true, then it would appear that the
conventional notions of spacetime locality and causality appear to break down [5].

In this work, we formalize the embedding of the interior into the exterior radiation as a quantum
error-correcting code. In particular, we propose a complexity-theoretic mechanism by which locality and
causality can remain intact even in the presence of such non-local encodings. Concretely, we consider
a black hole that begins as a pure matter state |φmatter〉 which undergoes subsequent gravitational
collapse to become a black hole state |ΨEBH〉 at time t. We model the gravitation collapse as unitary
time evolution induced by some black hole unitary Ubh. The labels E,B, and H in the black hole state
refer to the early radiation (E), an outgoing Hawking mode (B), and the remaining black hole (H),
respectively; see Figure 1.

We assume that |H| < |E| so that we work explicitly with late time black holes for which the firewall
paradox applies in full force.1 We also assume that the outgoing Hawking mode B consists of a single
qubit, i.e., |B| = 1. This is simply for ease of exposition, our results do not change significantly for any
B of constant size. To model the interactions of an exterior observer with the early Hawking radiation,
we introduce an ancillary subsystem O. The subsystem O plays the role of a physical observer which
is able to interact with the early radiation through some unitary process UE . We will assume that
|O| � |H|, so that the observer is physically small compared to the remaining black hole.

Hawking’s calculation famously shows the thermality of Hawking radiation. From a modern infor-
mation theoretic point of view, this is analogous to saying that the radiation state appears maximally
mixed to external observers. We also understand however, that such a statement must be made with
additional qualifications; the purity of a quantum state may appear very different to observers with
access to different computational resources. Our work recasts the thermality of Hawking radiation as
a more precise statement about the computational pseudorandomness [6] of the radiation state.

Definition 1. Let |Ψ〉EBH be the state of the black hole and the radiation. Let σEB = IEB/dEB be
the maximally mixed state of EB, and let ρEB = TrH (|Ψ〉〈Ψ|). We say that the state |Ψ〉EBH is
pseudorandom on the radiation EB, if there exists some α > 0 such that

|Pr (M(ρEB) = 1)− Pr (M(σEB) = 1)| ≤ 2−α|H|, (1)

1We denote the size, i.e., the number of qubits, of a system E by |E|. Thus E has dimension 2|E|.
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Figure 1: An external observer O interacts with the early radiation E. The joint time evolution of the
black hole and the observer is assumed to be a unitary process.

for any two-outcome measurement M with quantum complexity polynomial in |H|, the size of the
remaining black hole.

Our starting point and fundamental working assumption is that the radiation state associated with
a late time black hole is computationally pseudorandom in the sense of definition 1. This pseudoran-
domness hypothesis has physical consequences for a realistic, i.e., computationally limited, observer O
who is only able to interact with the early radiation through a low-complexity unitary UE . For such
observers, the pseudorandomness hypothesis translates into a fundamental decoupling bound:

Lemma 2 (Decoupling Bound). Let ρOEBH denote any state obtained from ωO ⊗ |Ψ〉EBH by acting
with some polynomial-size circuit UE . See Figure 1. Then

‖ρOB − ρO ⊗ ρB‖1 ≤ 6 · 2−(α|H|−|O|). (2)

The decoupling bound allows us to define a natural code subspace associated with the black hole.
Letting |Ψ〉EBH denote the state of the black hole and radiation, we define an operator VΨ : HB̃ → HEH
by

VΨ|i〉B̃ = 2
(
IEH ⊗ 〈ω|BB̃

) (
|Ψ〉EHB ⊗ |i〉B̃

)
, (3)

where |ω〉 = 2−1/2(|00〉 + |11〉) denotes the maximally entangled state. We can use the decoupling
bound to show that VΨ is ε-close to an isometric embedding, where ε = 2 · 2−α|H|. It follows that VΨ

defines an approximate quantum error-correcting code. The code subspace defined by VΨ will be called
the black hole encoding, which defines the desired embedding of the partnered interior modes B̃ into
the exterior radiation (more precisely, into EH).

Having identified a suitable error-correcting code, we proceed to characterize its properties. Through
the information-disturbance trade-off for approximate quantum error-correction [7, 8], the decoupling
bound can be shown to be equivalent the correctability of error channels E : S(E) → S(E) with low
Kraus rank and low complexity. The conditions of the error channel having low rank and low complexity
corresponds precisely to the physical assumption of the observer O (which serves as a purifying space
of the channel) having small size (relative to H) and bounded computational power (so that UE is
polynomial complexity in |H|).

Theorem 3. Let E be an error channel on E with purification UE . Suppose that the decoupling bound
holds. Then E is ε-correctable for VΨ, where

ε =

√
3

2
· 2−(α|H|−|O|)/2. (4)

The black hole code makes precise what it means to embed a part of the black hole interior into
the early Hawking radiation. However, such an embedding is manifestly non-local, and so we must
ensure that the embedding is consistent with the locality and causality of the ambient spacetime. More
precisely, we must address the following problem: Since the interior of the black hole is encoded within
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the early radiation E, there should exist operators acting exclusively on E which can perturb the
interior. By applying such an operator, an observer outside the black hole can ostensibly signal into
the black hole interior from far away, in direct violation of Einstein causality.

The resolution of the locality problem above involves casting the error-correcting conditions of
Theorem 3 into algebraic form. In the process, we establish a novel characterization for the correctability
of a code which might find applications to more more general settings.

Definition 4. Let V : H̃ → C ⊆ H be a (approximate) quantum error-correcting code. Let E : S(H)→
S(H) be an error channel with Kraus operators K = {Ea}. Given an operator T̃ : H̃ → H̃, we say that
T : H → H is a δ-approximate ghost logical operator for T̃ (with respect to E) if

‖TEaV − EaV T̃‖ ≤ ‖T̃‖δ (5)

for all Ea ∈ K ∪ {I}, so that Ea above is either a Kraus operator or the identity. We say that a code
admits a complete set of δ-approximate ghost logical operators if there exists a δ-approximate ghost
logical operator for every operator T̃ : H̃ → H̃.

Definition 4 formalizes the concept of logical operators which commutes with a set of error operators.
It turns out that the existence of a complete set of ghost logical operators for an error channel E is
essentially equivalent to the correctability of the channel.

Theorem 5. Let V : H̃ → C ⊆ H be an approximate quantum error-correcting code. Given an error
channel E : S(H) → S(H), define the associated channel EI = (E + I)/2, where I is the identity
channel. If EI is ε-correctable for C, then there exists a complete set of δ-approximate ghost logical
operators, where

δ = 25/4(dim C)2√ε. (6)

Conversely, suppose that there exists a complete set of δ-approximate ghost logical operators with respect
to EI . Then EI is an ε-correctable channel for C, where

ε = r
√

2(dim C)δ, (7)

where r is the Kraus rank of EI .

The existence of ghost logical operators presents a resolution to the non-locality of the black hole
code embedding. Together, Theorems 3 and 5 ensures that we can always find a complete set of ghost
logical operators which commutes with all operators applicable by a computationally bounded observer.
More precisely, let TB be any operator acting on the outgoing Hawking mode B. Then there exists a
corresponding ghost logical operator TEH acting on EH such that

TEH |Ψ〉EBH ≈ TB|Ψ〉EBH , and [TEH , Ea]|Ψ〉EBH ≈ 0, (8)

where {Ea} is any set of operations that the observer can apply onto the radiation E, subject to their
computational constraints. All of the approximate equalities above hold with exponentially small error
in |H|. Roughly speaking, the first equality above certifies the fact that B and its interior mode encoded
in EH remain “maximally entangled”. The second equality above says that any physically reasonable
operation performed by a computationally limited observer necessarily commutes with a complete set
of logical operators acting on the encoded mode. This ensures that such an observer cannot signal into
the black hole interior by acting on the exterior radiation, showing that our black hole code embedding
retains the usual notions of locality and causality.

Our paper establishes that, albeit in our simplified model, one can find a definition of the interior
mode that is consistent with both Hawking’s calculation and spacetime locality. The crucial ideas that
led us to this conclusion were (i) the construction of quantum error-correcting codes can correct low-
complexity errors, and (ii) the existence of ghost logical operator, which are both novel concepts to the
best of our knowledge. These concepts illuminate aspects of quantum error-correction that does not
seem to have any classical counterpart. Perhaps these ideas can be used to protect quantum information
in other setups as well.
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[7] C. Bény and O. Oreshkov, “General conditions for approximate quantum error correction and near-
optimal recovery channels,” Phys. Rev. Lett., vol. 104, p. 120501, Mar 2010.

[8] P. Hayden and A. Winter, “Weak decoupling duality and quantum identification,” IEEE Transac-
tions on Information Theory, vol. 58, p. 4914–4929, Jul 2012.

4


