
The ghost in the radiation: Robust encodings

of the black hole interior

Isaac Kim, Eugene Tang, John Preskill

Quantum Information Processing 2021 - Munich

February 4, 2021

arXiv: 2003.05451

1



The Entanglement Structure of Hawking Radiation

Consider a simple model for black hole evaporation based on the pair

creation picture for Hawking radiation:

1. We begin with a pure state |ψ〉M representing the state of the black

hole on an initial time slice.

2. Hawking radiation is then induced from pair creation.

The schematic evolution of our state is given by

|ψ〉M 7→ |ψ′〉M ⊗
1√
2

(
|00〉B̃1B1

+ |11〉B̃1B1

)
. (1)

3. Continual time evolution repeatedly produce new correlated pairs,

with the state at step N being

|ΨN〉 = |ψ′′〉M ⊗
1√
2N

N⊗
k=1

(
|00〉B̃kBk

+ |11〉B̃kBk

)
. (2)
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The Black Hole Firewall Problem

If we trace away the interior modes B̃k , then the exterior modes Bk are

left in a maximally mixed state: the Hawking radiation is thermal.

If evaporation continues until the black hole has completely radiated

away, then we are left with a mixed thermal state, violating the unitarity

of quantum mechanics.

We can sharpen the above argument using entanglement entropy.
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The Black Hole Firewall Problem

Consider some late outgoing mode BK , and denote the collection of early

modes {Bk | k < K} as E .

From the toy-model above, BK must be (maximally) entangled with its

partner mode B̃K in the interior:

S(BK B̃K ) = 0. (3)

If the final state of evaporation is to remain unitary, then BK must purify

the early radiation:

S(BKE ) < S(E ). (4)
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The Black Hole Firewall Problem

We have the conditions:

S(ABC ) + S(B) ≤ S(AB) + S(BC ), (5)

S(BK B̃K ) = 0, (6)

S(BKE ) < S(E ). (7)

Collectively, these conditions are contradictory:

S(BK ) + S(E ) = S(BK ) + S(EBK B̃K ) (9)

≤ S(BK B̃K ) + S(BKE ) (10)

= 0 + S(BKE ) (11)

< S(E ) (12)

This formulation of the black hole information problem is called the

firewall paradox.
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The Black Hole Firewall Problem

There are several proposed solutions of the firewall paradox, each with its

own merits and flaws. We will focus on the B̃ ⊆ E proposal.

Problem: An outgoing mode B must be entangled with both an interior

mode B̃ and the early radiation E . Violation of monogamy.

Solution: Identify the two problematic subsystems. Embed the interior

partner mode B̃ within the exterior radiation E .

Appears to cause just as many problems as it solves:

• If the interior is actually embedded within the exterior, how can such

an embedding respect the causal structure of the black hole?

• How do we protect the interior from outside observers?

• How can such an embedding be realized in practice?
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Black Holes as Quantum Error-Correcting Codes

1. We postulate that black holes are efficient “scramblers” in a very

precise way, namely that the exterior Hawking radiation emitted by a

black hole is a computationally pseudorandom state.

2. Through the pseudorandomness hypothesis, we show that black

holes define a natural encoding of each interior mode into the

exterior Hawking radiation.

3. Such an encoding forms an error-correcting code which protects

against all operations with sufficiently small complexity.

A sufficiently powerful observer can detect violations of causality and

locality, but only provided that they are able to perform operations which

are of exponential complexity in the entropy of the remaining black hole.
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Pseudorandomness

A quantum state ρ is said to be computationally pseudorandom if for all

polynomial time algorithms A, we have∣∣∣∣Pr[A(ρ) = 1]− Pr[A(σ) = 1]

∣∣∣∣ = error. (13)

Not clear if pseudorandom states even exists. Assuming standard

cryptographic primitives, it can be shown that there exists efficiently

computable pseudorandom quantum states [1711.00385].

Harlow and Hayden [1301.4504] argued that any experiment witnessing

firewalls must be exponentially complex.

Exponentially complex operations are unphysical. A physically theory

should come with restrictions not just to low energies, but also low

complexities.

Hawking radiation appears thermal to a computationally bounded

observer.
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Let |Ψ〉EBH denote the state of the black hole and the exterior radiation.

Let σEB = IEB/dEB be the maximally mixed state of EB, and let

ρEB = TrH(|Ψ〉〈Ψ|).

Definition: We say that the state |Ψ〉EBH is pseudorandom on the

radiation EB if there exists some constant α > 0 such that∣∣∣∣Pr[M(ρEB) = 1]− Pr[M(σEB) = 1]

∣∣∣∣ ≤ 2−α|H|, (14)

for any two-outcome measurement M with quantum complexity

polynomial in |H|, the entropy of the remaining black hole.

The pseudorandomness hypothesis can be seen as an axiomization of the

thermality of Hawking radiation as restricted to low-complexity observers.
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Implications of Pseudorandomness

We show the following:

1. There exists an encoding V : HB̃ → HEH of each interior mode B̃

into the Hilbert space of the exterior radiation.

2. The encoding V defines a quantum error-correcting code, which we

call the black hole code.

3. The black hole code protects against all operations performed by a

computationally bounded observer. Specifically, the code corrects

against all channels of sufficiently small complexity and Kraus rank.

4. Moreover, there exists a complete set of logical operators, the ghost

operators, which commutes with all correctable errors of the code.

The ghost operators serve as witness to the smoothness of the

horizon and the preservation of causality.
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The Decoupling Bound

The pseudorandomness hypothesis immediately allows us to prove a key

decoupling bound.

Theorem (Decoupling Bound): Let ρOEBH denote any state obtained

from ωO ⊗ |Ψ〉EBH by acting with some polynomial-size circuit UE . Then

‖ρOB − ρO ⊗ ρB‖1 ≤ 6 · 2−(α|H|−|O|). (19)
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The Black Hole Encoding

The decoupling bound allows us to define a natural code subspace

associated with the black hole. Letting |Ψ〉EBH denote the state of the

black hole and radiation, we define an operator VΨ : HB̃ → HEH by

VΨ|i〉B̃ = 2
(
IEH ⊗ 〈ω|BB̃

) (
|Ψ〉EHB ⊗ |i〉B̃

)
. (20)

One can use the decoupling bound to show that VΨ is ε-close to an

isometric embedding, where ε = 2 · 2−α|H|.

The code subspace defined by VΨ will be called the black hole encoding,

which defines the desired embedding of the partnered interior modes B̃

into the exterior radiation (more precisely, into EH). 15



The Information-Disturbance Tradeoff

Having identified a suitable codespace, we now characterize its

error-correcting capabilities.

The information-disturbance relation says that a code can protect

quantum information from noise if and only if the environment of the

noise channel E learns nothing about the logical information.
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The Black Hole Error-Correcting Code

Compare the information-disturbance tradeoff to the decoupling

condition:

This shows that the black hole code corrects against all channels of

polynomial complexity in |H| which have sufficiently low-rank.

Theorem: Let E be an error channel on E with purification UE . Suppose

that the decoupling bound holds. Then E is ε-correctable for VΨ, where

ε =

√
3

2
· 2−(α|H|−|O|)/2. (22)
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Ghost Logical Operators

We can recast the error-correcting conditions of the black hole code into

an algebraic form.

Let TB̃ be an operator which acts on the interior mode B̃. By

microcausality, any operator O that an exterior agent can apply onto the

early radiation should commute with TB̃ , i.e.,

[O,TB̃ ] = 0. (23)

The corresponding logical operator TEH on the code subspace should

satisfy the same relation when restricted to the code subspace:

[O,TEH ]|Ψ〉EBH = 0. (24)

We will call operators which satisfy such a relation ghost logical

operators.
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Ghost Logical Operators

Theorem: Let TB be any operator acting on an outgoing mode B. Then

there exists a corresponding logical operator TEH such that

TB |Ψ〉EBH ≈ TEH |Ψ〉EBH , (25)

[Ea,TEH ]|Ψ〉EBH ≈ 0, (26)

where {Ea} is some set of operators that a computationally bounded

external observer can apply on the radiation (such that the decoupling

bound holds).

The first relation serves as a witness to the entanglement between the

outgoing mode and the encoded interior mode, as required for the

existence of a smooth horizon.

The second relation serves as a witness to microcausality between the

encoded interior and an external observer, as required to maintain the

correct causal structure.
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Conclusion

• We find that the B̃ ⊆ E proposal for the firewall problem can be

given reasonable meaning within the context of quantum

information theory and quantum complexity.

• Under a reasonable pseudorandomness hypothesis, black holes form

natural error-correcting codes protecting against low-complexity

operations.

• Error-correcting properties of black holes lead to the existence of

ghost operators, which certify the preservation of geometry and

causality.

• Operations with large complexity or high rank can see violations of

causality and create firewalls. Effective field theory should be

restricted to low complexity, not simply low energy.
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Epilogue

Many questions remain:

• Is there a more robust relationship between our ghost operators and

the entanglement islands proposal? To the Python’s Lunch?

• More precise relation to Papadodimas and Raju’s mirror operators?

• Can we make use of holography in our construction?

• Is there anything more we can say about the complexity of the

Ads/CFT dictionary, or the quantum Church-Turing thesis?

• What exactly happens at the end stages of black hole evaporation,

when the black hole is no-longer macroscopic?

• What is the role of state dependence?

• Do the ghost logical operators we construct have practical uses for

quantum information theory in general?
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