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A major goal in quantum complexity theory is identifying problems which are efficiently solv-
able by quantum computers and not efficiently solvable by classical computers. If willing to believe
certain conjectures, one can be convinced of this separation by the discovery of quantum algorithms
that solve classically hard problems. For example, the belief that classical computers cannot effi-
ciently factor integers contrasts with Shor’s algorithm for factoring integers on a quantum computer
[Sho97|. However, a demonstration of Shor’s algorithm on instances that are not efficiently solvable
by classical computers would require quantum resources far out of reach of near-term capabilities.
This has spurred developments in devising sampling problems that separate efficient, near-term
quantum computers and classical computers like IQP circuit sampling |[BJS10|, BosonSampling
[AA11], and random circuit sampling [Boi+18|. However, convincing evidence that noisy quantum
computers outperform classical computers in these tasks suffers from the necessity of assuming some
non-standard complexity-theoretic conjectures that are often native to each proposal.

Surprisingly, if you restrict to the setting of constant-depth circuits, a noisy, unconditional
separation is possible. At first, these unconditional separations were known only in the noiseless
setting. That line of work was initiated by pioneering work of Bravyi, Gosset, and Konig |[BGK18|
who showed a strict separation between constant-depth quantum circuits (QNCO) and constant-
depth classical circuits with bounded fan-in gates (NC®). The separation is based on the relation
problerrﬂ associated with measuring the outputs of a shallow Clifford circuit, which they called
the Hidden Linear Function (HLF) problem due to certain algebraic properties of the output.
Furthermore, they show that NCY cannot even solve this problem on average, a result which was
later strengthened in several ways |[CSV18; Le 19 |[Ben+19|. Nevertheless, these works still assumed
that the quantum circuit solving the task was noise free.

Follow-up work of Bravyi, Gosset, Konig, and Tomamichel [Bra+20] showed that it was possible
to encode the qubits of the quantum circuit in such a way that it both preserved the separation
and also allowed the quantum circuit to err with some constant probability. Interestingly, this
was accomplished not by explicitly carrying out the quantum error correction procedure, but by
simply measuring the syndrome qubits of the code and requiring the classical circuit to do the
same. In fact, their procedure provided a more-or-less general recipe for taking a constant-depth
quantum /classical circuit separation and turning it into a separation in which the quantum circuit
was also allowed noise.

This raises an obvious question: how many circuit separations can we upgrade in this way? NC°
circuits are fairly weak—they cannot even compute the logical AND of all input bits—and so we
would like to show that even larger classes of classical devices cannot solve a problem that a noisy
shallow quantum circuit can.

As a warm-up, we first consider the separation of Bene Watts, Kothari, Schaeffer, and Tal
[Ben+19], which shows that constant-depth classical circuits with unbounded fan-in gates (AC°)

!Generally speaking, a relation problem is defined by a relation R € £* x ©*. Given an input , the task is to find
some y such that (z,y) € R.



cannot solve the HLF problem on averageﬂ Combining this result with the general error-correction
recipe for relation problems, we arrive at the following result:

Theorem 1. There is a relation task solved by a noz’s QNCO circuit with probability 1 —-o(1) on all
inputs. On the other hand, any AC? circuit can solve the problem on at most a exp(—n®) fraction
of inputs for some constant a > 0.

The result of Bene Watts et al. is the strongest known low-depth separation of its kind, but
stronger separations are known for tasks which admit some amount of interactivity. Consider the
shallow Clifford measurement problem discussed above, where the measurements are made in two
rounds. In the first round, the quantum device is given the bases in which to measure some of the
qubits and returns their measurement outcomes; and in the second round, the quantum device is
given bases in which to measure the remaining qubits and returns their measurement outcomes.
Grier and Schaeffer [GS20] show that any classical device which can solve such problems must be
relatively powerful. More specifically, if the initial Clifford state is a constant-width grid state,
then the classical device can be used to solve problems in NC! (log-depth circuits of bounded fan-in
gates); and if the starting state is a poly-width grid state, then the classical device can be used to
solve problems in @L (which can be thought of as the complete class for Clifford circuits, or more
specifically, poly-depth circuits of CNOT gates)ﬂ Because AC” [p] ¢ NC! unconditionally, the above
interactive task can be solved by a QNC? circuit but not an ACO[p] circuit, i.e., an AC? circuit with
unbounded MOD,, gatesﬂ for some prime p.

One of the contributions of this work is massaging the noisy circuit separation recipe for relations
problems into a recipe for interactive problems as well. Starting from an interactive protocol which
exhibits a separation with a noise-free quantum circuit, there are three key steps to upgrade the
separation to the noisy setting:

1. Augment the interactive protocol with the surface code encoding of Bravyi et al. [Bra+20].
This is straightforward, but it’s worth noting that it changes the problem definition—not just
because there are more physical qubits due to the encoding, but because we cannot prepare
the initial state exactly or decode the syndrome in constant depth. As for the relational case,
the burden of these steps is offloaded into the problem definition.

2. Show classical average-case hardness. That is, show that even when the classical circuit
simulating the interactive protocol is allowed to err on some constant fraction of its inputs,
it can still be leveraged to solve a hard problem (e.g., a problem in NC! or ®L). This step is
the most involved, and new ideas will be required to upgrade existing interactive separations
in this way.

3. Connect to separations of classical complexity classes. In some cases, this will lead to an
unconditional separation between noisy shallow quantum circuits and shallow classical circuits,
and in some cases this will lead to a conditional separation. We note that these separations will
not be identical to those obtained in Ref |[GS20| due to the fact that we use quasipolynomial-
size circuits to decode the syndrome qubits of the surface code.

Fortunately, it was shown in Ref |GS20| that Step holdsﬁ for the NC'-hardness result. We
immediately obtain the following separation:

2The authors of that paper refer to their task as the “Relaxed Parity Halving Problem,” but it is still essentially
the problem of measuring the outputs of a constant-depth Clifford circuit.

3We employ the same local stochastic noise model used in [Bra+4-20]. See the main text for details.

It is known that NC* c @L c NC2.

®The MOD,, gates outputs 1 iff the sum of the inputs bits is 0 mod p.

5 Although it is not strictly required, we prove a slightly stronger average-case hardness result in the paper.



Theorem 2. There is a two-round interactive task solved by a noisy QNC® circuit with probability
1-0(1) on all inputs. Any AC°[p] circuit (for primes p > 2) fails the task with some constant
probability.

Unfortunately, Step [2] is left as an open question in Ref [GS20| for the @L-hardness result. The
second major contribution of this paper is to show that we can, in fact, obtain average-case hardness
for this setting:

Theorem 3. There is a two-round interactive task solved by a QNC® circuit with certainty. There
exists a constant § > 0 such that any sufficiently powerful classical device which solves the task with
probability at least 1 —§ can also solve problems in ®L. That is,

oL c (BPACO)®
where R is an oracle for the classical solution.

The proof of this theorem borrows an idea from cryptography called randomized encodings. In
particular, we will employ the construction of Applebaum, Ishai, and Kushilevitz |[AIKO06| which
randomizes instances of the following problem—given a layered DAG, determine the parity of the
number of paths from vertex s to vertex t. In fact, we will use that this problem reduces to the ®L-
hardness result in [GS20|. Importantly, we show that when we compose the randomized encoding
with the rest of the reduction, the distribution over inputs in the promise will be fairly uniform.
This leads to a general way to boost the randomization in worst-to-average-case reductions using
the framework in |GS20].

Using the recipe for interactive circuit separations, we obtain the following consequence:

Theorem 4. There is a two-round interactive task solved by a noisy QNC° circuit with probability
1-0(1) on all inputs. Assuming ®L ¢ (qBPAC®)\, any log-space machine fails the task with some
constant probability.

Let us briefly unpack the @L ¢ (qBPACO)L assumption. First, consider the plausible assumption
that ®L ¢ L. An L machine is deterministic, while a @L machine is non-deterministic and accepts if
the parity of accepting paths is zero. On the other hand, it is well-known that the parity function is
not in gBPAC? (i.e., random AC circuits of quasipolynomial size). Therefore, one might also expect
that (qBPACY) is insufficiently powerful to compute ®L functions.

We do not attempt to give an exhaustive list of separations obtainable from Theorem [3] Much
like the results of [GS20|, there is an inherent tradeoff to the separation. We can weaken the
assumption at the expense of weakening the separation.

Finally, we explore the regime between the NC!-hardness result (i.e., an interactive task on
constant-width grids) and the @L-hardness result (i.e., an interactive task on poly-width grids).
To this end, we consider the interactive task on general width-w grids, and connect them to the
problem of solving width-w permutation branching programs. We prove the analogue of Theorem
in this setting, which once again leads to conditional separations between noisy shallow quantum
circuits and complexity classes solved by width-w permutation branching programs.
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