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Motivation: Quantum advantage?

Near-term, noisy quantum computers solve sampling tasks that are
classically intractable, assuming some conjectures
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Compare noisy and shallow quantum computers against shallow/weak
classical computers instead, with fewer or no conjectures?
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Bravyi, Gosset, Kénig, Tomamichel [BGKT19]:
There is a relation task solved by a noisy constant-depth quantum circuit (QNC") with probability 1 — o(1) on all inputs.
A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC") solves the task with probability at most 9/10 over a uniform input.
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/Re\a’uon prob\e Local stochastic noise model \

[Aliferis, Gottesman, Preskill 2007]

Given x € {0,1}"
Output any y such that [(y|Q|x)| >0
Random n-qubit Pauli £ is local stochastic with noise rate p

if it acts non-trivially on qubits F C [n] with probability < p!f!
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Noiseless average-case separation:
Let ¥ be a task solved by a noiseless QNC? circuit on all inputs with certainty.

Prove that a classical probabilistic machine solves .7 with probability at most 1 — 6 on a
uniformly random input.
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The task 7" is solved by a noisy QNCP circuit on all inputs w/p 1 —o(1).

A classical probabilistic machine solves ¥ with probability at most 1 — 6 on a uniformly
random input.
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Noiseless average-case separation:
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Measure in basis x,

There is an interactive task solved by a noiseless QNCP circuit on all inputs with certainty.

Let X be a classical probabilistic machine that solves the same task with probability
420/421 over uniform input. Then @L C (AC®%)*.
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Return outcomes y;,

It is average-case @L-hard to return valid Pauli measurement outcomes of a grid state™.

* = For an interactive promise problem

How to prove average-case @L-hardness
for the interactive problem?

Use the ability to classically solve the interactive
Construct a worst-to-average-case
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Open problems. Questions?

® \We show a @L-hardness threshold of 420/421. Can we go lower than this?
® \Worst-to-average-case reductions with stronger randomization?
® Direct product theorems?

® \We have unconditional, noisy separations for relation and interactive
problems against constant-depth classical circuits. What about other types ot
problems, e.g., sampling?

® Can we base our conditional result on simply @L # L7



