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Motivation: Quantum advantage?
Near-term, noisy quantum computers solve sampling tasks that are 
classically intractable, assuming some conjectures

Compare noisy and shallow quantum computers against shallow/weak 
classical computers instead, with fewer or no conjectures?
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Improving on this breakthrough result from 2018… 
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Local stochastic noise model
[Aliferis, Gottesman, Preskill 2007]

Random -qubit Pauli  is local stochastic with noise rate  

if it acts non-trivially on qubits  with probability 
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F ⊆ [n] ≤ p|F|
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For the “extended” task , all  such that  are valid outputs on input .
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If  is a valid transcript for , then all  such that  
and  are valid transcripts for the “extended” problem .

ℐ
(x1, y1, x2, y2) ℐ (x1, 𝒴1, x2, 𝒴2) Dec(𝒴1) = y1

Dec(𝒴2) = y2 ℐ′￼
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C

x1

y1

x2

y2

Experimenter

⟹

Unconditional: Noisy  
vs.  separation

𝖰𝖭𝖢𝟢

𝖠𝖢𝟢[p]

Conditional: If 
, then noisy 

 vs.  separation
⊕𝖫 ⊈ (𝗊𝖠𝖢𝟢)𝖫

𝖰𝖭𝖢𝟢 𝖫
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How to prove average-case -hardness 
for the interactive problem?

⊕𝖫

Construct a worst-to-average-case 
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(different from [BGKT], who prove average-case 
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Average-case -hard: 

Let  be a classical probabilistic machine that solves the interactive 
task w/p  over uniform input. Then .
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Unconditional separation between noisy  circuits and  circuits


Conditional separation between noisy  circuits and log-space machines

𝖰𝖭𝖢𝟢 𝖠𝖢𝟢[p]

𝖰𝖭𝖢𝟢



Open problems. Questions?

• We show a -hardness threshold of . Can we go lower than this?


• Worst-to-average-case reductions with stronger randomization?


• Direct product theorems?


• We have unconditional, noisy separations for relation and interactive 
problems against constant-depth classical circuits. What about other types of 
problems, e.g., sampling?


• Can we base our conditional result on simply ?

⊕𝖫 420/421

⊕𝖫 ≠ 𝖫


