

Interactive quantum advantage with noisy, shallow Clifford circuits

Nathan Ju (University of Illinois)

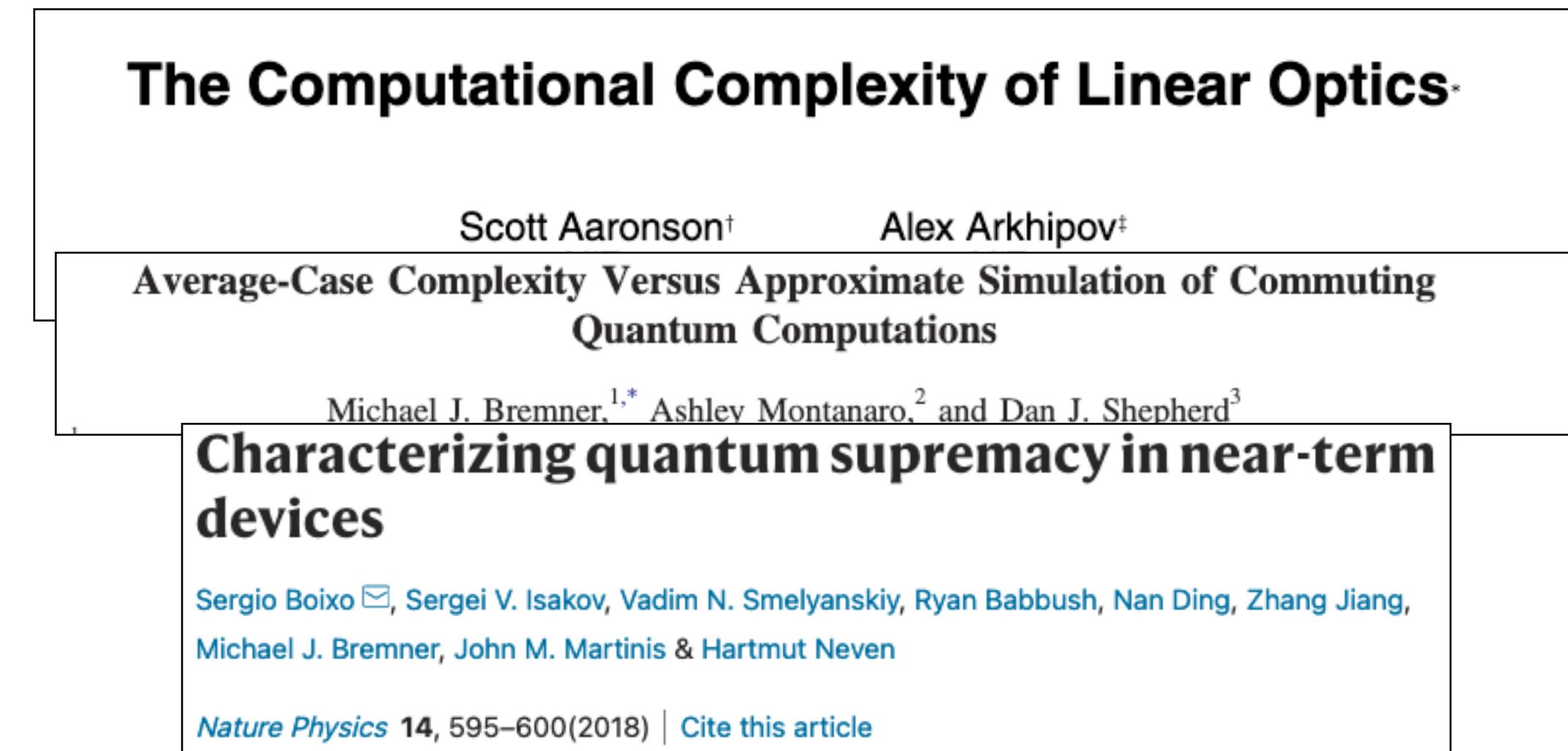
joint work with

Daniel Grier (University of Waterloo)

Luke Schaeffer (University of Waterloo)

Motivation: Quantum advantage?

Near-term, noisy quantum computers solve sampling tasks that are classically intractable, **assuming some conjectures**



Compare noisy and shallow quantum computers against shallow/weak classical computers instead, **with fewer or no conjectures?**

Noisy quantum advantage against weak circuits

Improving on this breakthrough result from 2018...

Quantum advantage with shallow circuits

Sergey Bravyi¹, David Gosset^{1,*}, Robert König^{2,†}

 See all authors and affiliations

Science 19 Oct 2018:
Vol. 362, Issue 6412, pp. 308-311
DOI: 10.1126/science.aar3106

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.

Improving on this breakthrough result from 2018...

Quantum advantage with shallow circuits

Sergey Bravyi¹, David Gosset^{1,*}, Robert König^{2,†}

 See all authors and affiliations

Science 19 Oct 2018:
Vol. 362, Issue 6412, pp. 308-311
DOI: 10.1126/science.aar3106

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

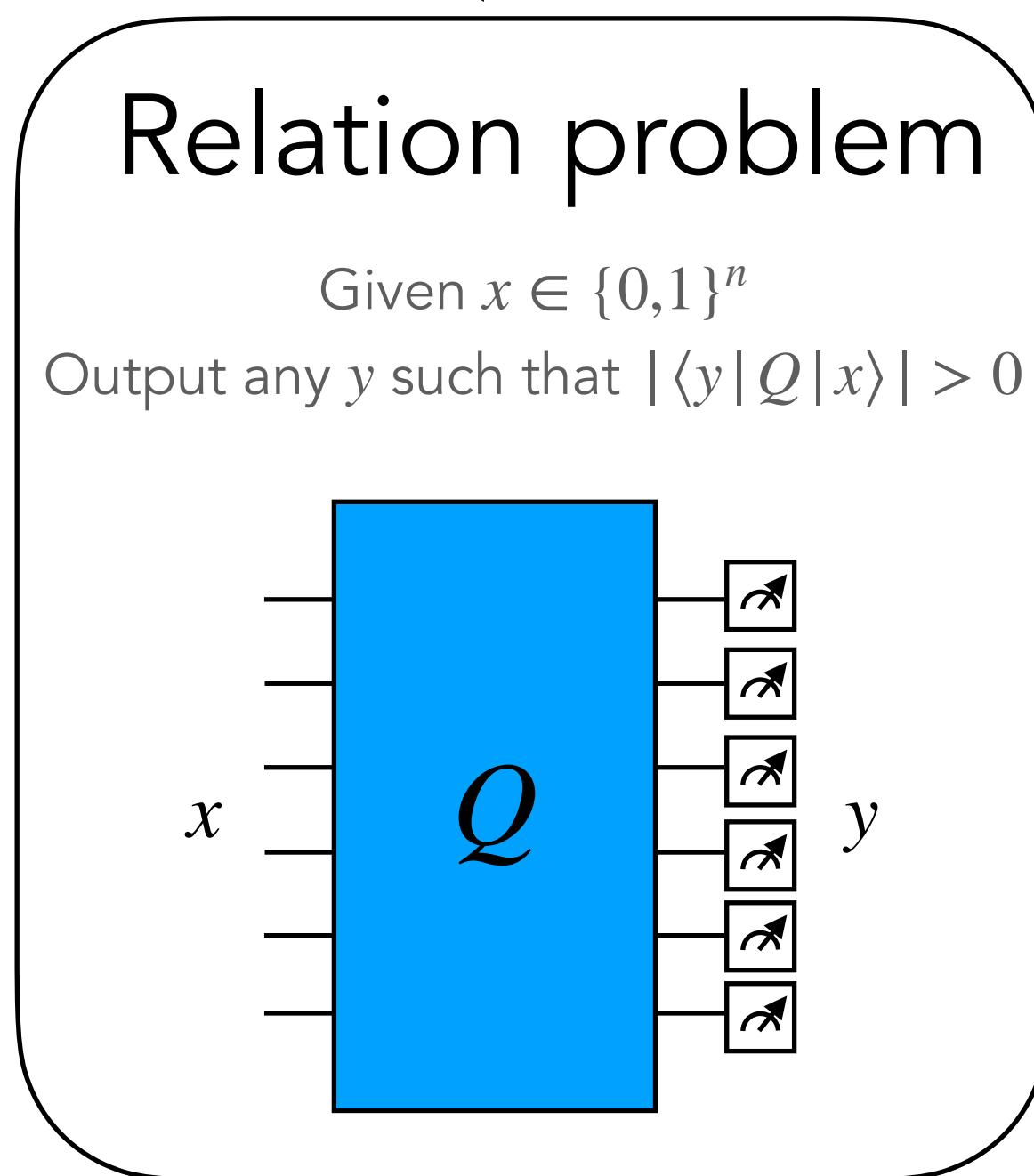
A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.



Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

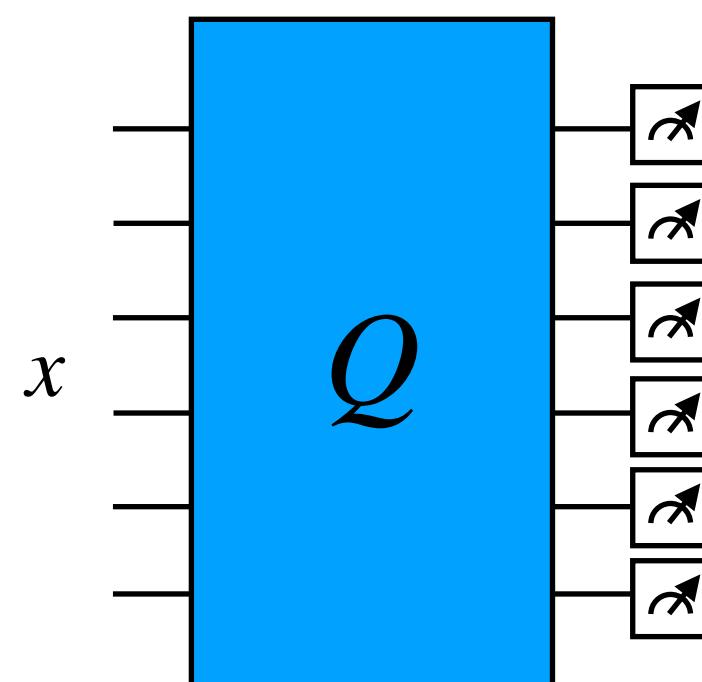
There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.

Relation problem

Given $x \in \{0,1\}^n$

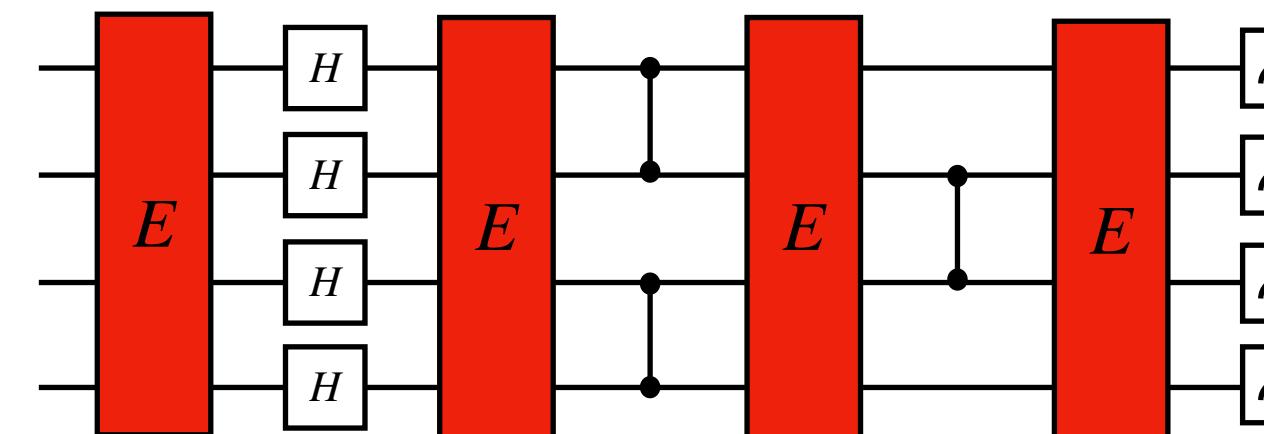
Output any y such that $|\langle y | Q | x \rangle| > 0$



Local stochastic noise model

[Aliferis, Gottesman, Preskill 2007]

Random n -qubit Pauli E is *local stochastic* with noise rate p if it acts non-trivially on qubits $F \subseteq [n]$ with probability $\leq p^{|F|}$



Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

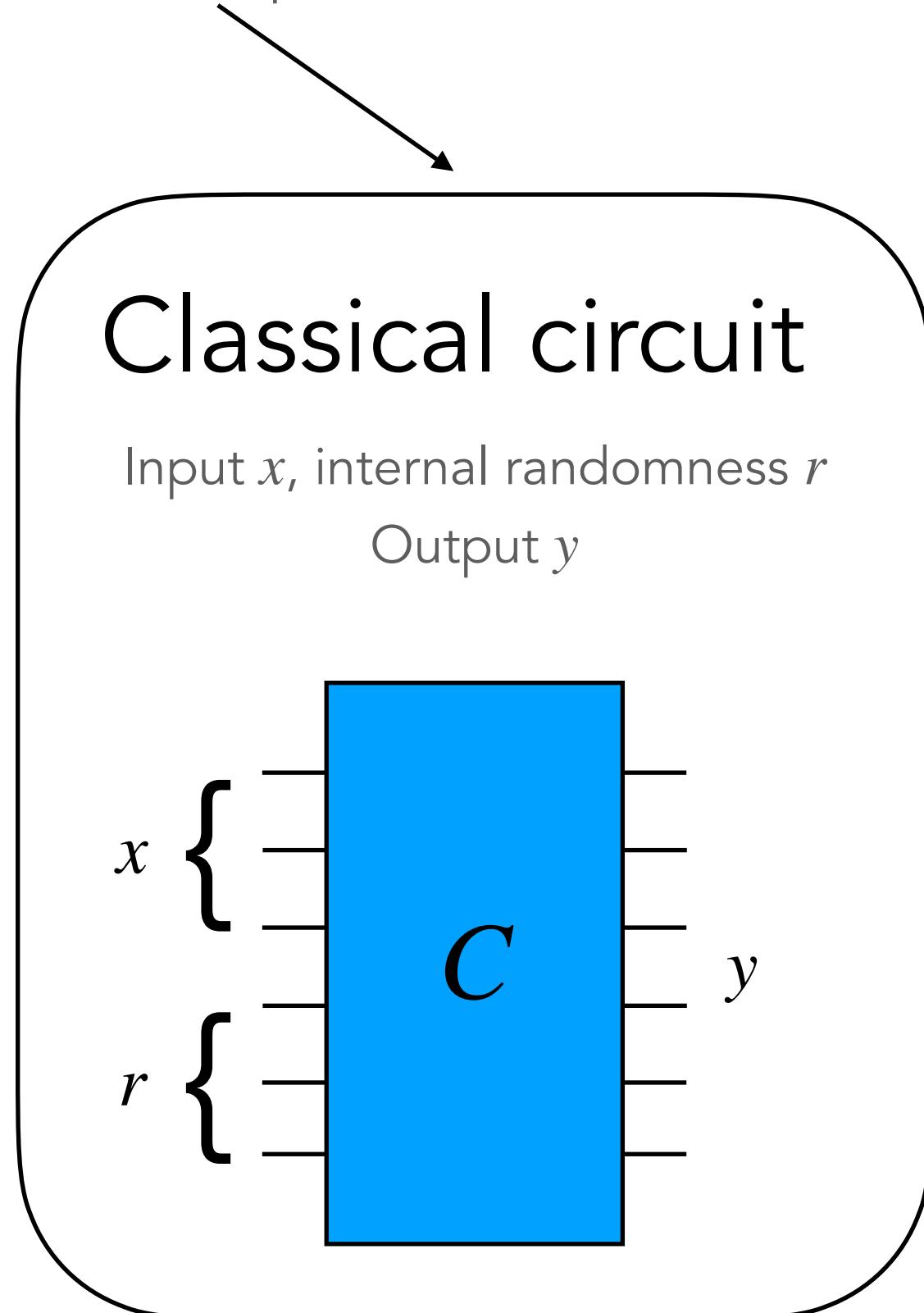
A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.

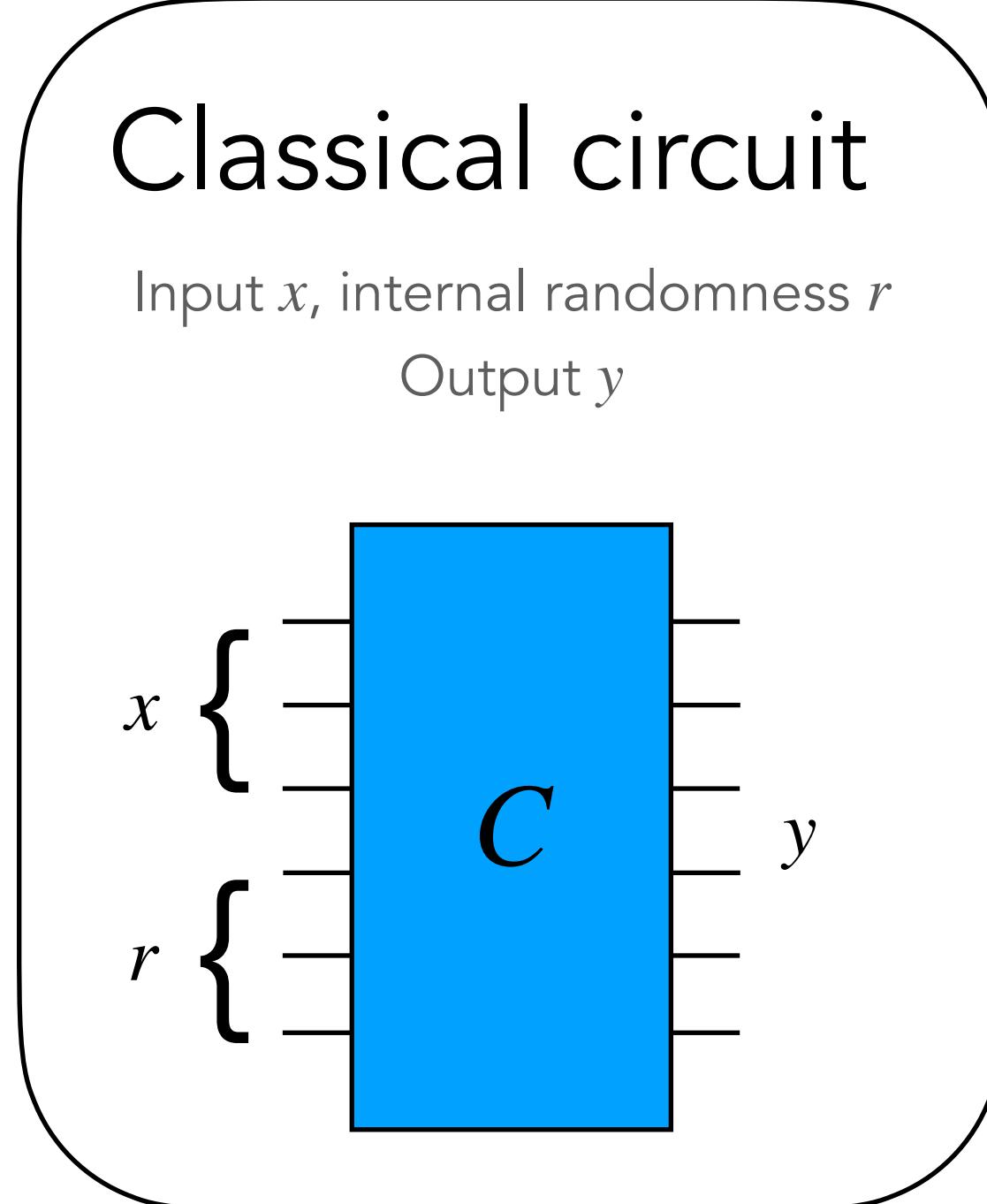


Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.



Bounded fan-in, constant-depth classical circuits (NC^0) are fairly weak.

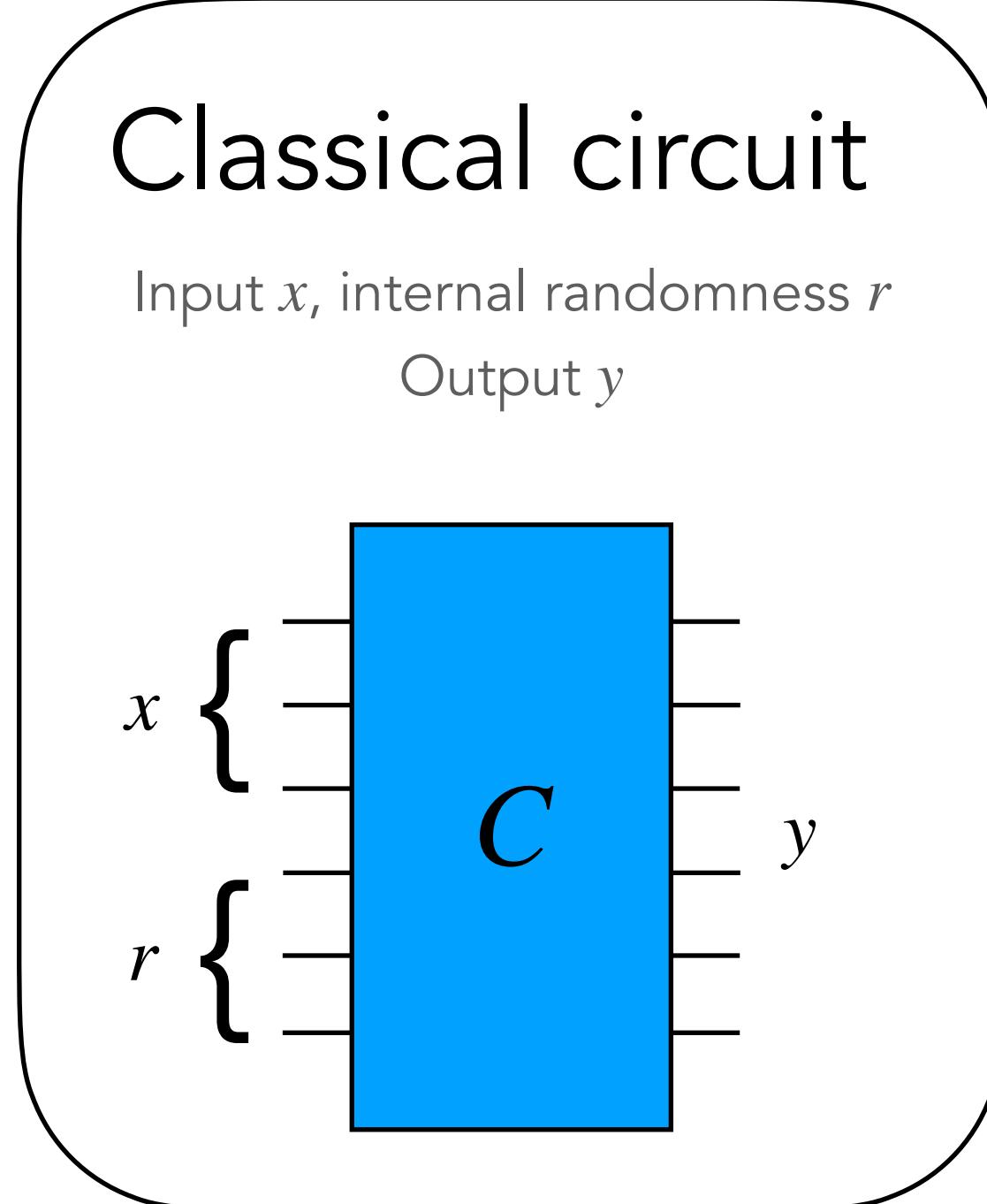
Can we increase the separation to compare against more powerful classical circuits?

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.



Bounded fan-in, constant-depth classical circuits (NC^0) are fairly weak.

Can we increase the separation to compare against more powerful classical circuits?

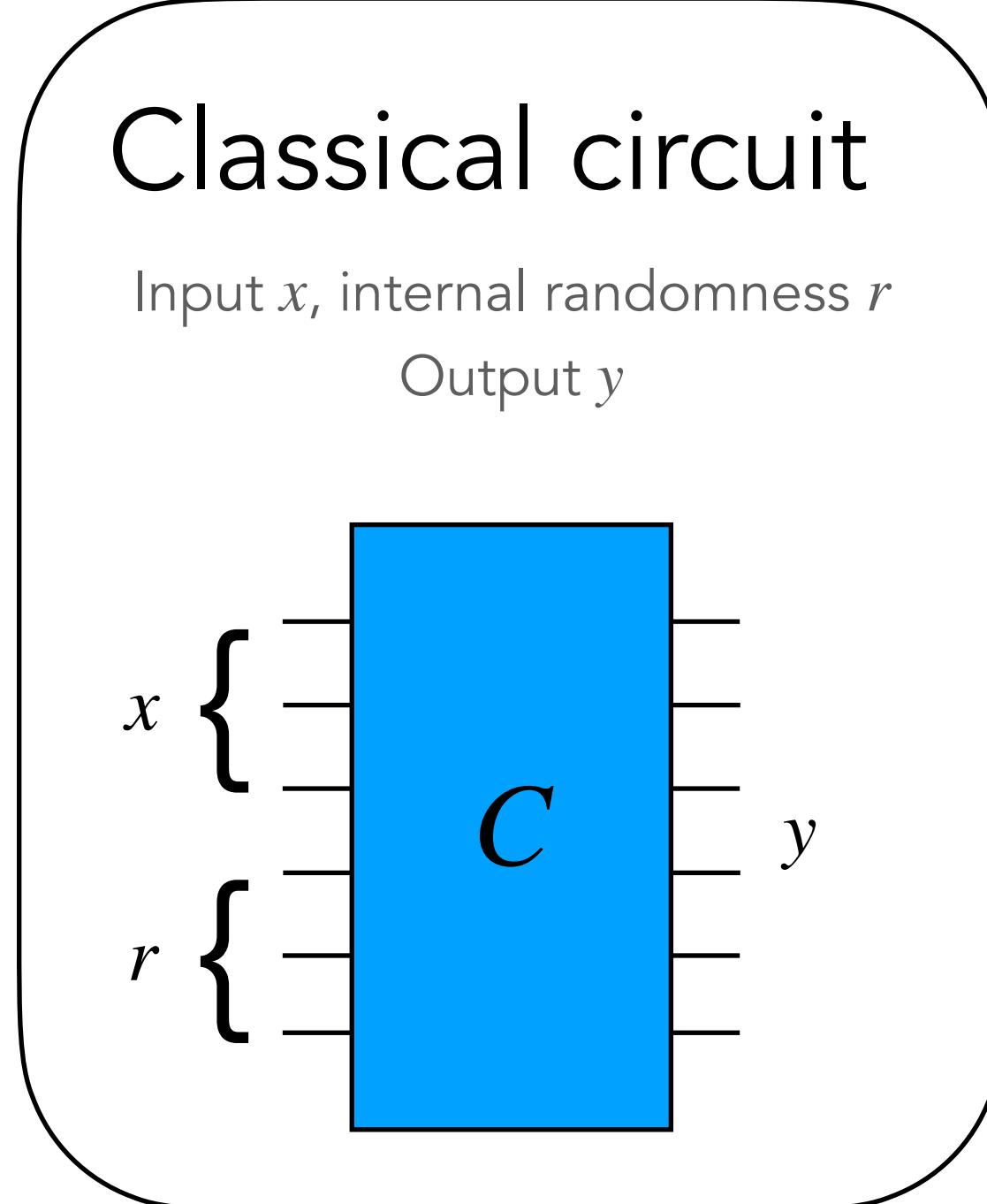
Without noise, yes: [BGK18], [CSV18], [Le19], [BKST19], [GS20]

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.



Bounded fan-in, constant-depth classical circuits (NC^0) are fairly weak.

Can we increase the separation to compare against more powerful classical circuits?

Without noise, yes: [BGK18], [CSV18], [Le19], [BKST19], [GS20]

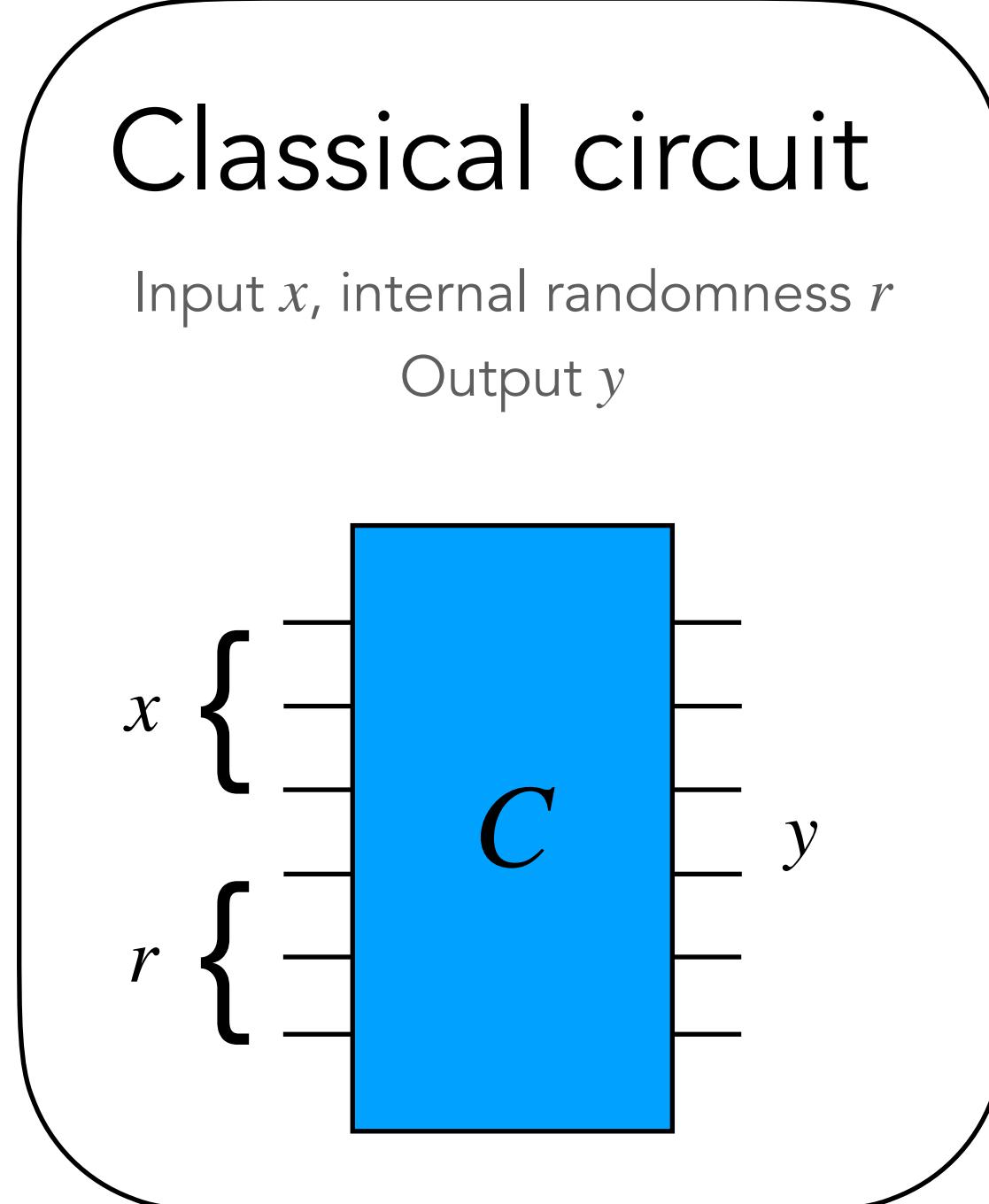
With noise?

Noisy quantum advantage against weak circuits

Bravyi, Gosset, König, Tomamichel [BGKT19]:

There is a relation task solved by a noisy constant-depth quantum circuit (QNC^0) with probability $1 - o(1)$ on all inputs.

A classical probabilistic circuit with bounded fan-in gates and constant-depth (NC^0) solves the task with probability at most $9/10$ over a uniform input.



Bounded fan-in, constant-depth classical circuits (NC^0) are fairly weak.
Can we increase the separation to compare against more powerful classical circuits?

Without noise, yes: [BGK18], [CSV18], [Le19], [BKST19], [GS20]
With noise? This work: yes!

Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
--	------------------------------	--------------------------

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)

Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
Weaker classical circuit (Below NC^0)		
Stronger classical circuit (Above NC^0)		

NC^0

Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
Weaker classical circuit (Below NC^0)		
Stronger classical circuit (Above NC^0)		

$$\text{NC}^0 \subsetneq \text{AC}^0$$

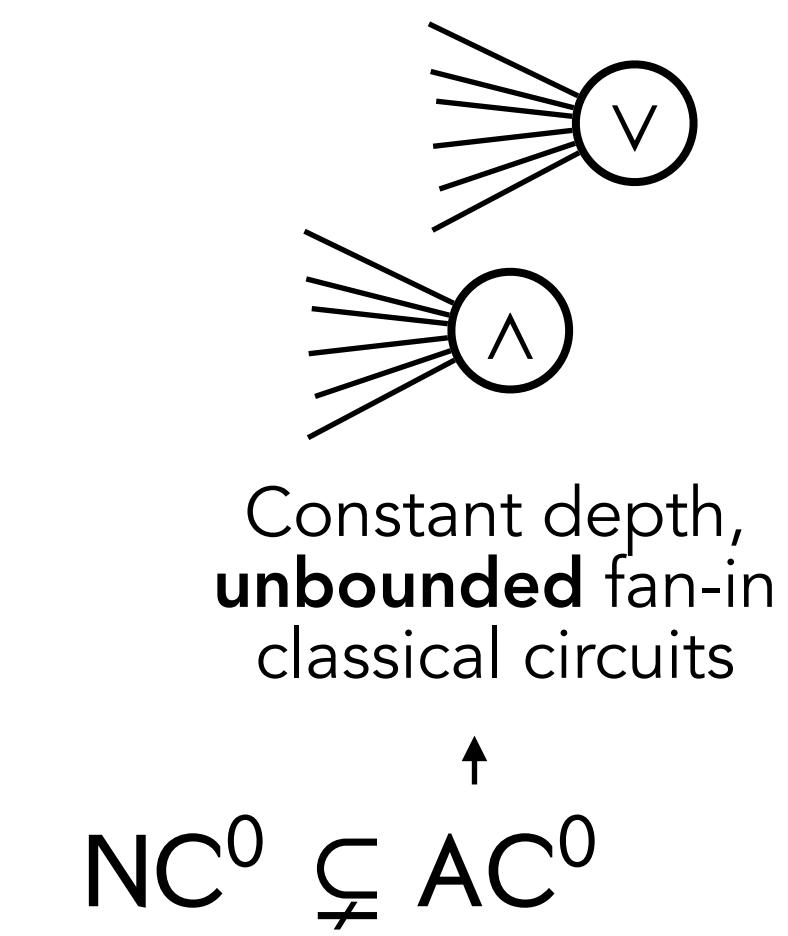
Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
--	------------------------------	--------------------------

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)



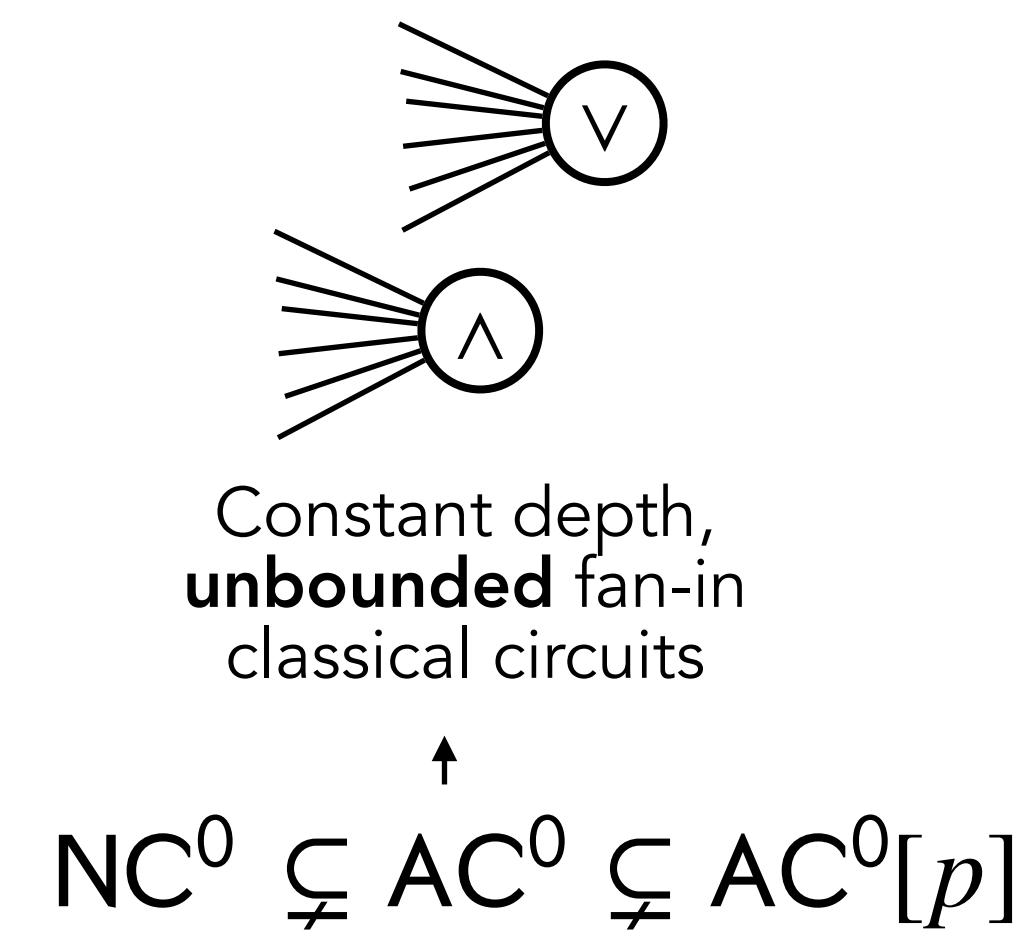
Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
--	------------------------------	--------------------------

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)



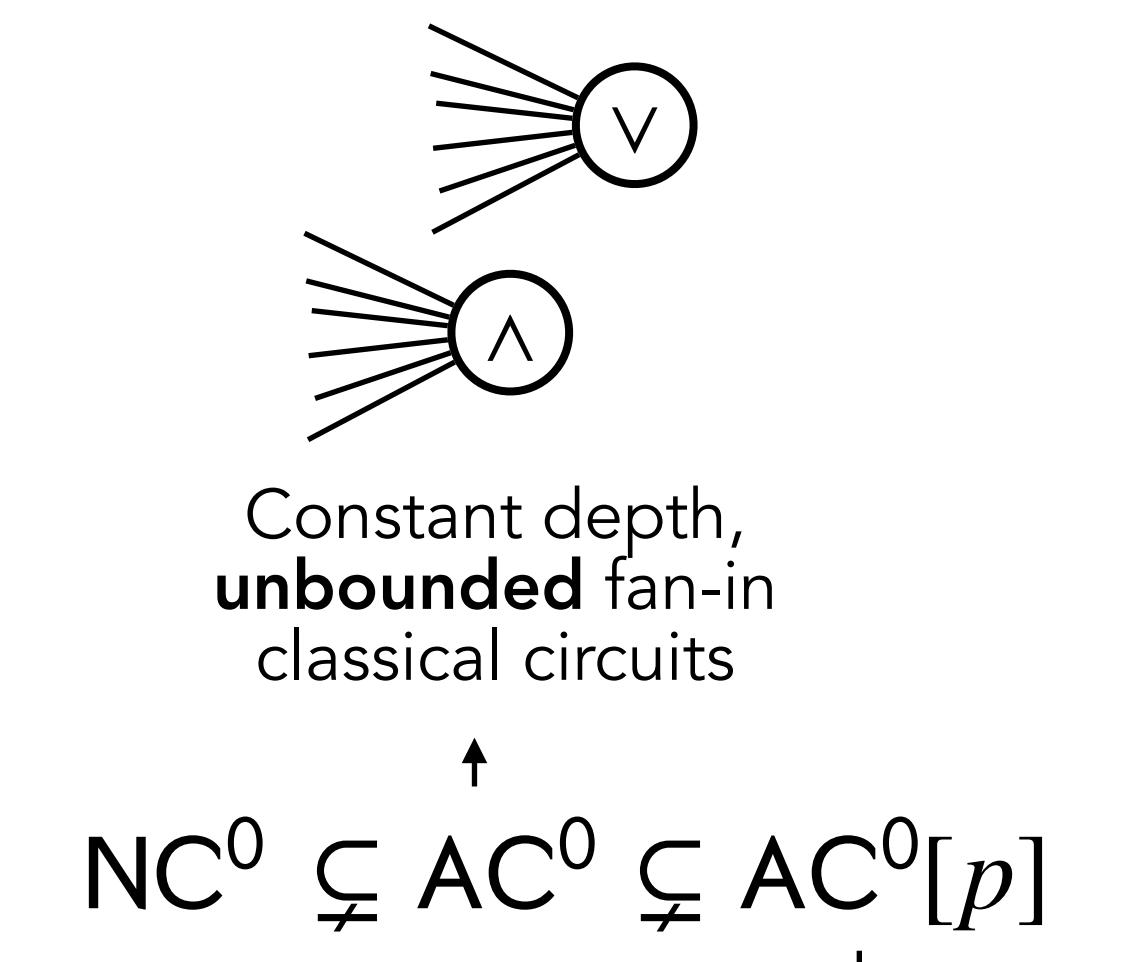
Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
--	------------------------------	--------------------------

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)



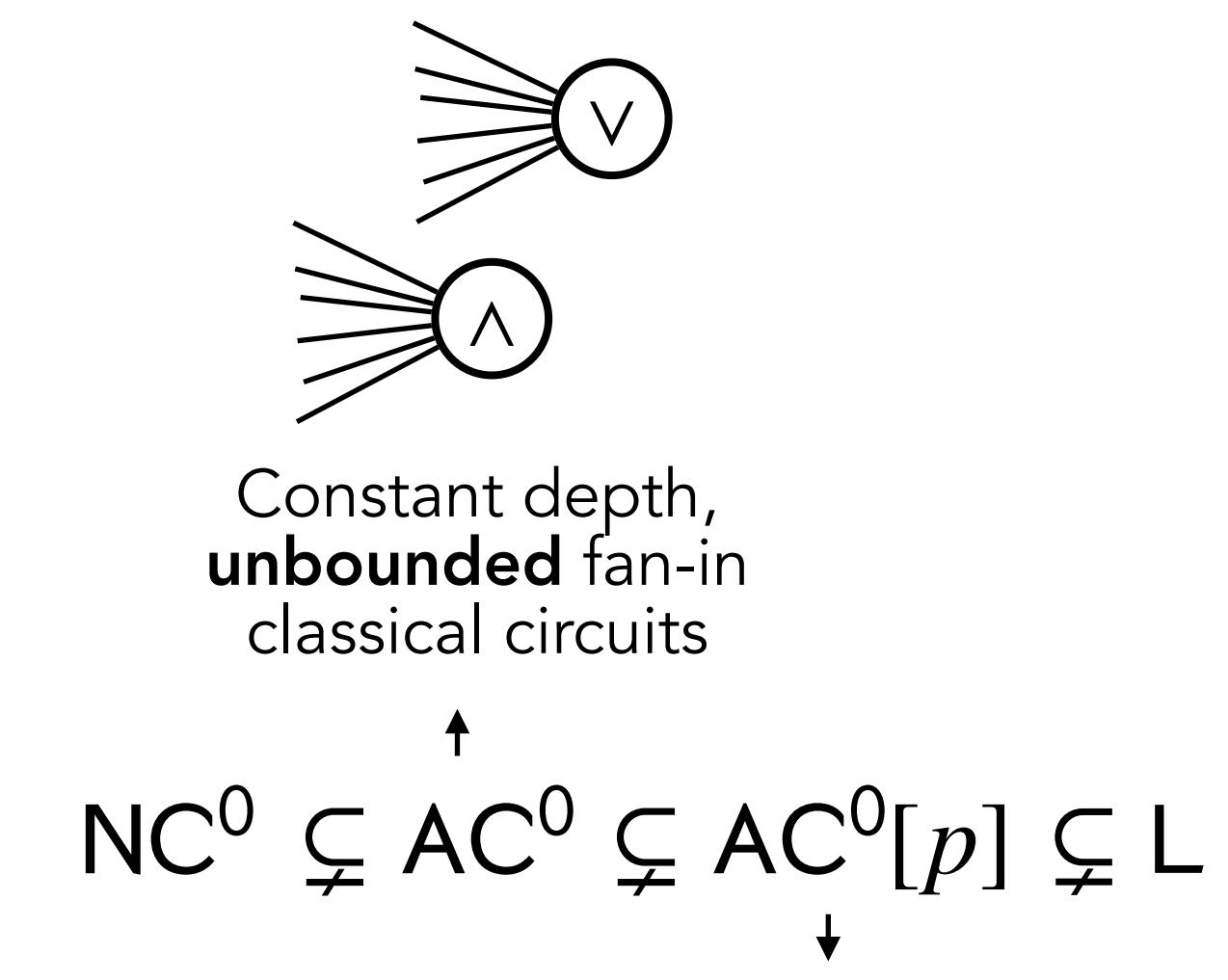
Can we get a best-of-both-worlds situation?

Separation between:

	Noiseless quantum circuit	Noisy quantum circuit
--	------------------------------	--------------------------

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)



Can we get a best-of-both-worlds situation?

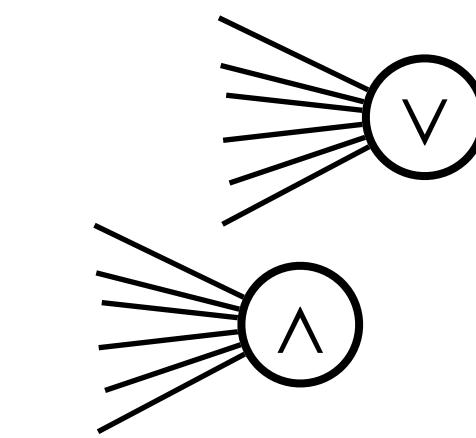
Separation between:

Weaker
classical circuit
(Below NC^0)

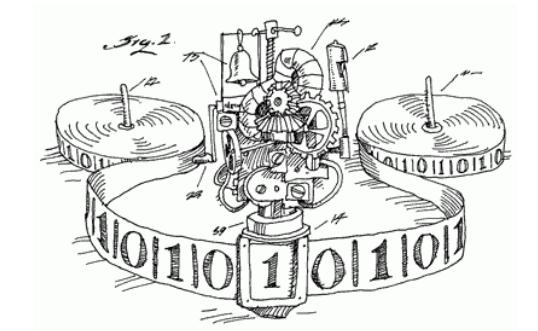
Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L}$$

AC^0 circuits with
 MOD_p gates

Can we get a best-of-both-worlds situation?

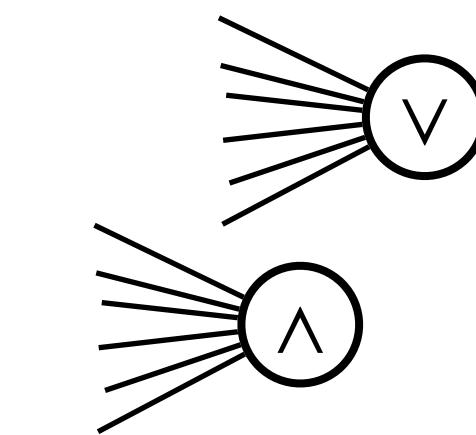
Separation between:

Weaker
classical circuit
(Below NC^0)

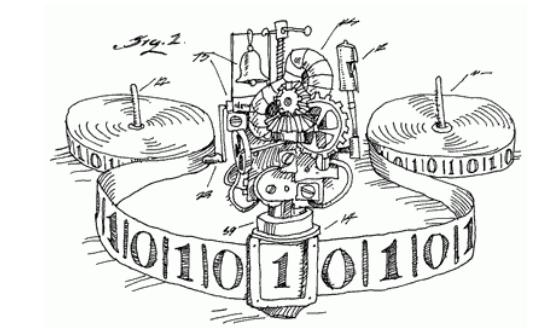
Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$

AC^0 circuits with
 MOD_p gates

Can we get a best-of-both-worlds situation?

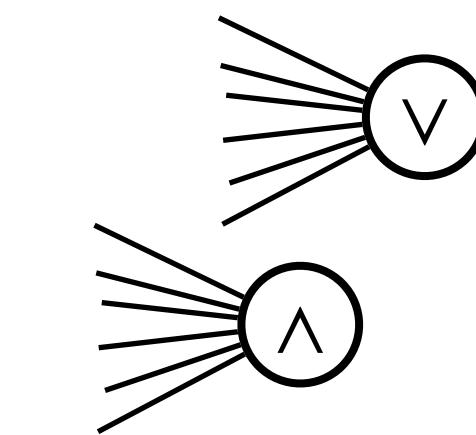
Separation between:

Weaker
classical circuit
(Below NC^0)

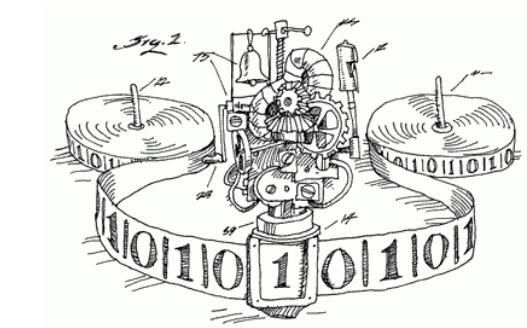
Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$

AC^0 circuits with
 MOD_p gates

Complete problem:
Parity of $s \rightarrow t$
paths in a DAG

Can we get a best-of-both-worlds situation?

Separation between:

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)

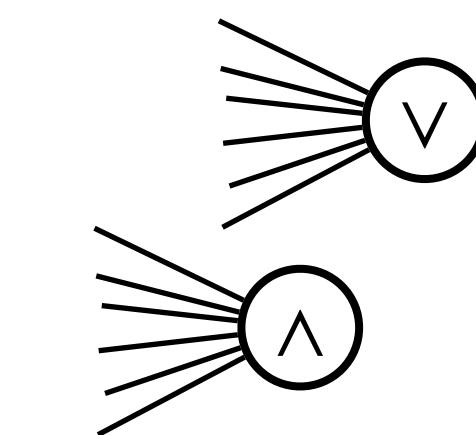
Noiseless
quantum circuit

[BGK18]

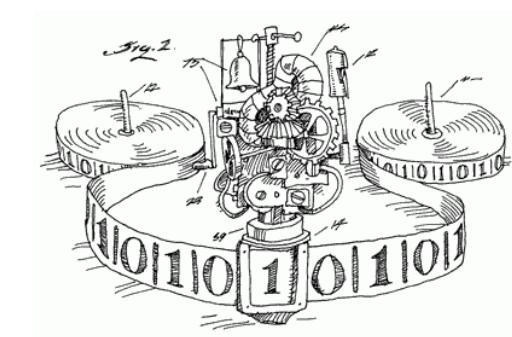
[CSV18]

[Le19]

Noisy
quantum circuit



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$

AC^0 circuits with
 MOD_p gates

Complete problem:
Parity of $s \rightarrow t$
paths in a DAG

Can we get a best-of-both-worlds situation?

Separation between:

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit

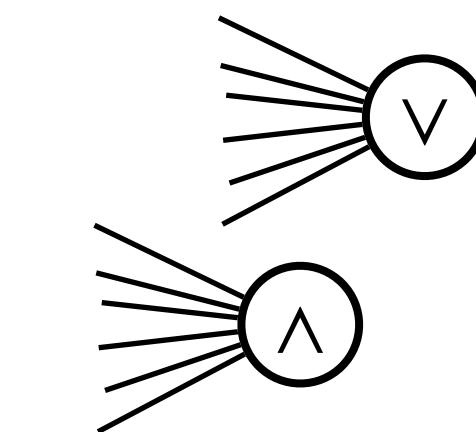
[BGK18]

[CSV18]

[Le19]

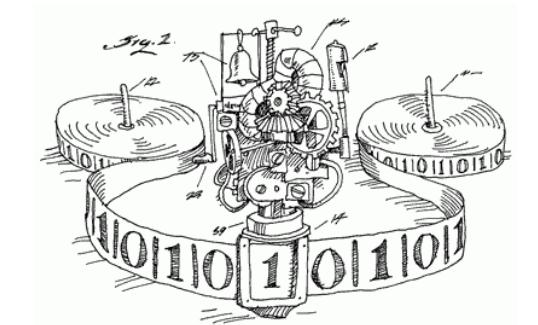
[BKST19]

[GS20] :
Interactive problem



Constant depth,
unbounded fan-in
classical circuits

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$



Log-space
Turing Machines

AC⁰ circuits with
 MOD_p gates

Complete problem:
Parity of $s \rightarrow t$
paths in a DAG

Can we get a best-of-both-worlds situation?

Separation between:

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit

[BGK18]

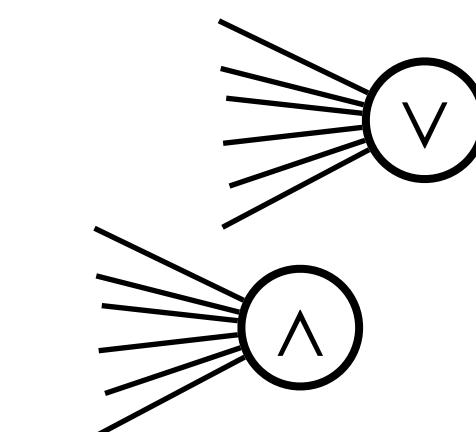
[CSV18]

[Le19]

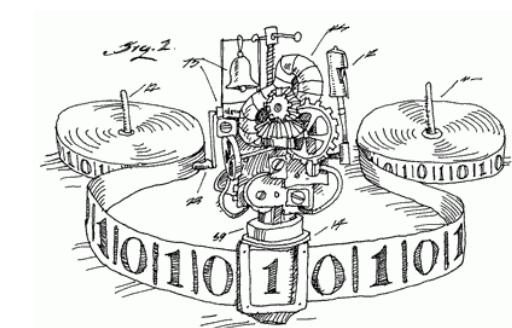
[BGKT19]

[BKST19]

[GS20] :
Interactive problem



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$

AC^0 circuits with
 MOD_p gates

Complete problem:
Parity of $s \rightarrow t$
paths in a DAG

Can we get a best-of-both-worlds situation?

Separation between:

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit

[BGK18]

[CSV18]

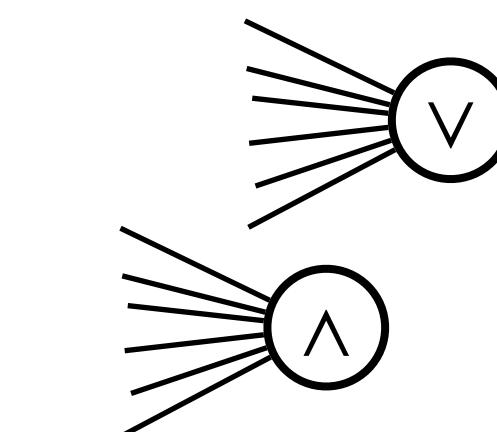
[Le19]

[BGKT19]

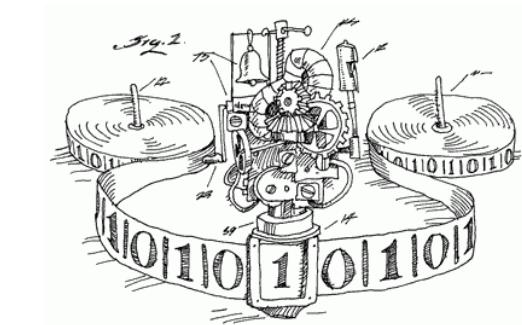
[BKST19]

[GS20] :
Interactive problem

This work:
Make these results
noisy separations



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$

AC^0 circuits with
 MOD_p gates

Complete problem:
Parity of $s \rightarrow t$
paths in a DAG

Can we get a best-of-both-worlds situation?

Separation between:

Weaker
classical circuit
(Below NC^0)

Stronger
classical circuit
(Above NC^0)

Noiseless
quantum circuit

Noisy
quantum circuit

[BGK18]

[CSV18]

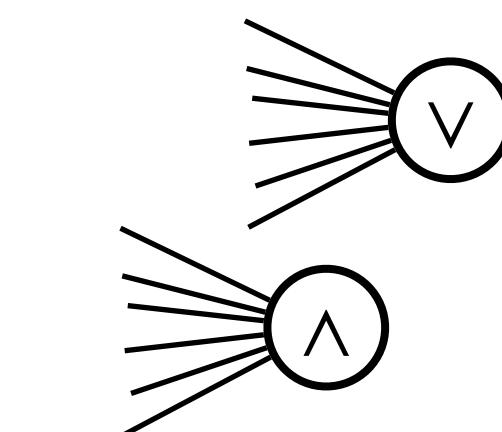
[Le19]

[BGKT19]

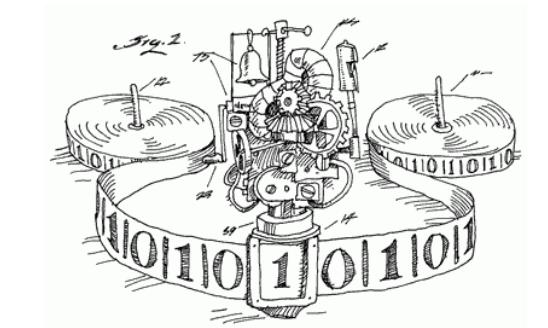
[BKST19]

[GS20] :
Interactive problem

This work:
Make these results
noisy separations



Constant depth,
unbounded fan-in
classical circuits



Log-space
Turing Machines

$$\text{NC}^0 \subsetneq \text{AC}^0 \subsetneq \text{AC}^0[p] \subsetneq \text{L} \subseteq \oplus\text{L}$$

AC⁰ circuits with
 MOD_p gates

Complete problem:
Parity of $s \rightarrow t$
paths in a DAG

Outline: Three steps to prove a noisy separation

Noiseless average-case separation:

Let \mathcal{I} be a task solved by a **noiseless** QNC⁰ circuit on all inputs with certainty.

Prove that a classical probabilistic machine solves \mathcal{I} with probability at most $1 - \delta$ on a uniformly random input.

Outline: Three steps to prove a noisy separation

Noiseless average-case separation:

Let \mathcal{I} be a task solved by a **noiseless** QNC⁰ circuit on all inputs with certainty.

Prove that a classical probabilistic machine solves \mathcal{I} with probability at most $1 - \delta$ on a uniformly random input.

This step will require new ideas!

Outline: Three steps to prove a noisy separation

Noiseless average-case separation:

Let \mathcal{I} be a task solved by a **noiseless** QNC⁰ circuit on all inputs with certainty.

Prove that a classical probabilistic machine solves \mathcal{I} with probability at most $1 - \delta$ on a uniformly random input.

This step will require new ideas!

+

Extend the definition of the problem to account for noise [BGKT19]:

Let \mathcal{I} be the task above. Suppose y is a valid output on input x .

For the “extended” task \mathcal{I}' , all \mathcal{Y} such that $Dec(\mathcal{Y}) = y$ are valid outputs on input x .

Outline: Three steps to prove a noisy separation

Noiseless average-case separation:

Let \mathcal{I} be a task solved by a **noiseless** QNC⁰ circuit on all inputs with certainty.

Prove that a classical probabilistic machine solves \mathcal{I} with probability at most $1 - \delta$ on a uniformly random input.

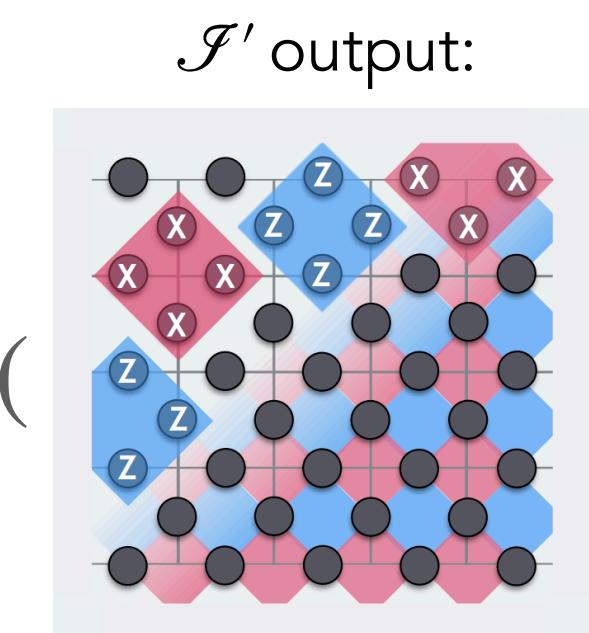
This step will require new ideas!

+

Extend the definition of the problem to account for noise [BGKT19]:

Let \mathcal{I} be the task above. Suppose y is a valid output on input x .

For the “extended” task \mathcal{I}' , all \mathcal{Y} such that $Dec(\mathcal{Y}) = y$ are valid outputs on input x .



$Dec($

\mathcal{I}' output:
 \mathcal{I} output:
) = y

Outline: Three steps to prove a noisy separation

Noiseless average-case separation:

Let \mathcal{I} be a task solved by a **noiseless** QNC⁰ circuit on all inputs with certainty.

Prove that a classical probabilistic machine solves \mathcal{I} with probability at most $1 - \delta$ on a uniformly random input.

This step will require new ideas!

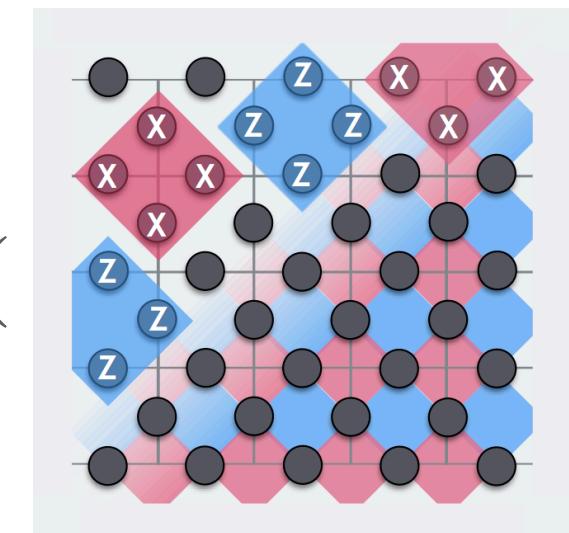
+

Extend the definition of the problem to account for noise [BGKT19]:

Let \mathcal{I} be the task above. Suppose y is a valid output on input x .

For the “extended” task \mathcal{I}' , all \mathcal{Y} such that $Dec(\mathcal{Y}) = y$ are valid outputs on input x .

\mathcal{I}' output:



\mathcal{I} output:

$Dec($

$) = y$

=

Noisy separation:

The task \mathcal{I}' is solved by a **noisy** QNC⁰ circuit on all inputs w/p $1 - o(1)$.

A classical probabilistic machine solves \mathcal{I}' with probability at most $1 - \delta$ on a uniformly random input.

Main result

Noiseless average-case separation (This work):

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus L \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Main result

Noiseless average-case separation (This work):

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

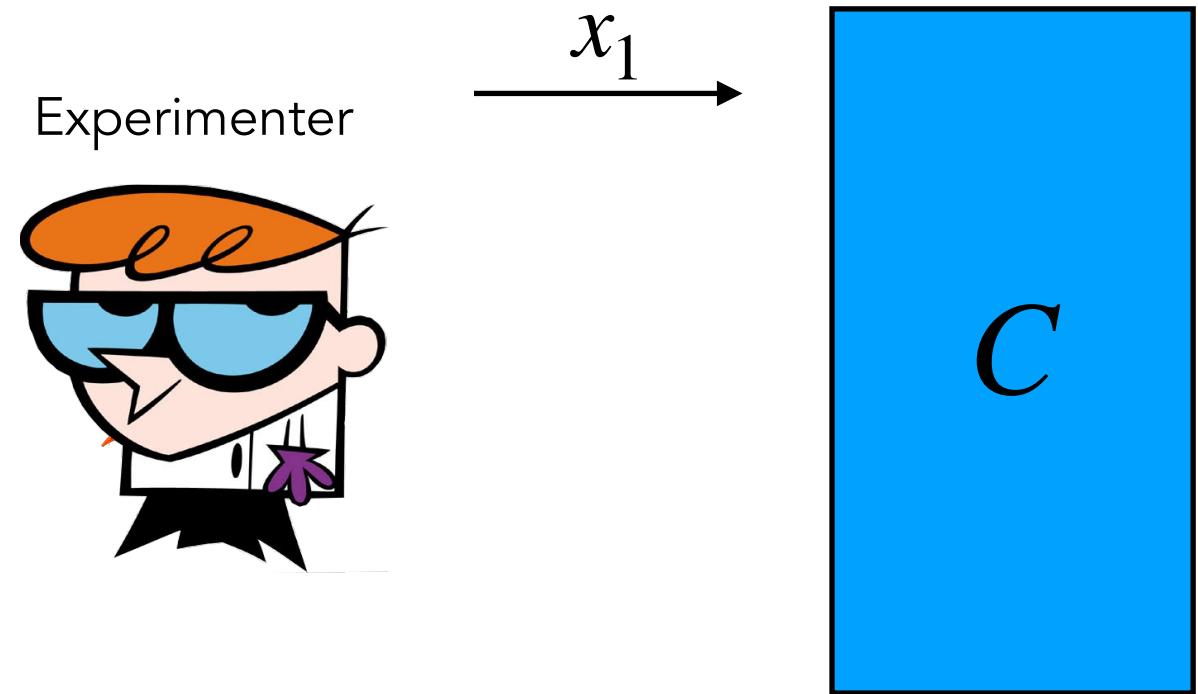
Experimenter

C

Main result

Noiseless average-case separation (This work):

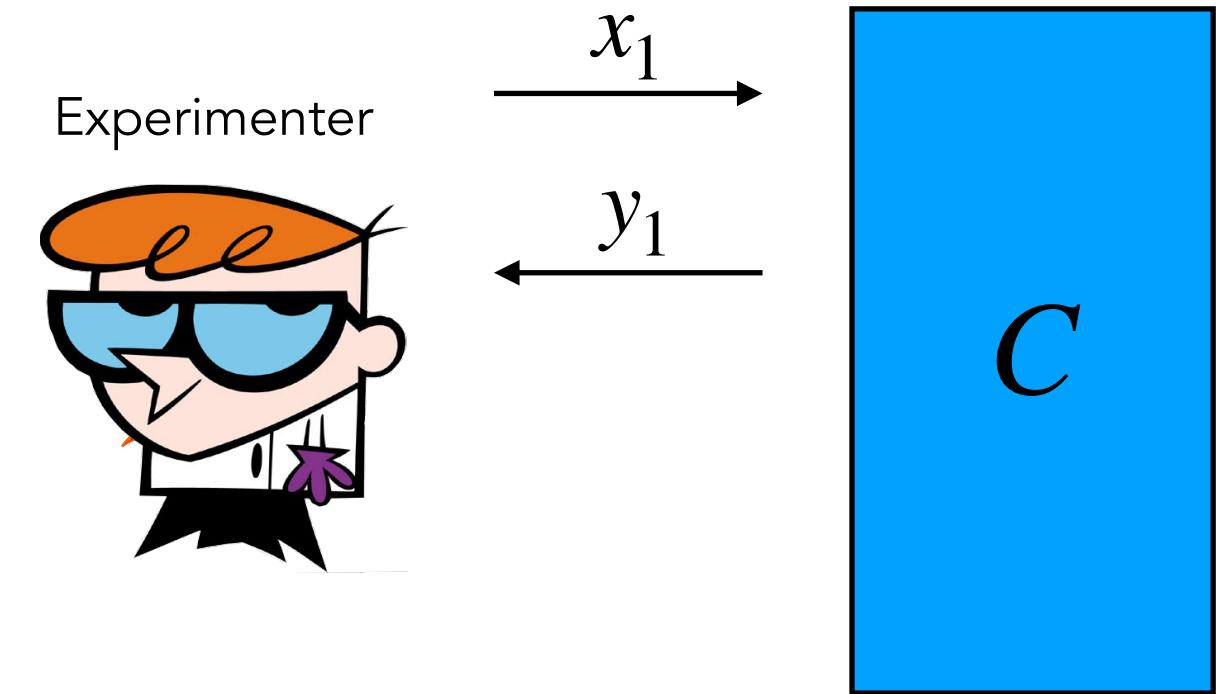
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



Main result

Noiseless average-case separation (This work):

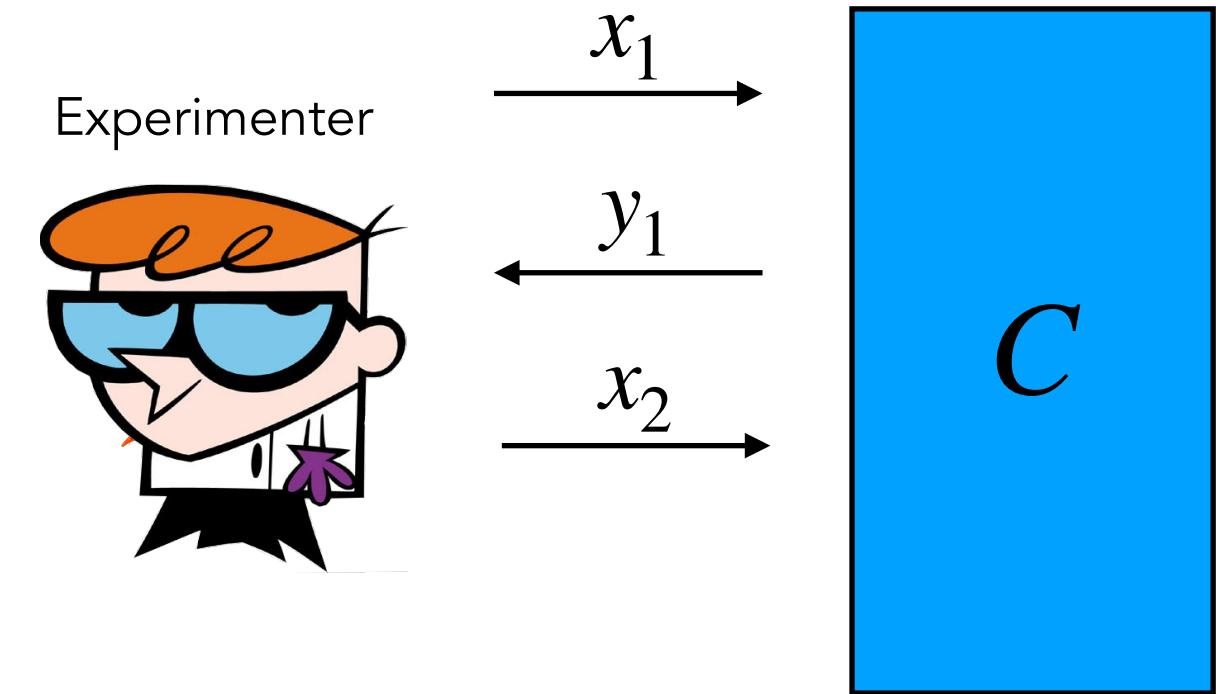
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



Main result

Noiseless average-case separation (This work):

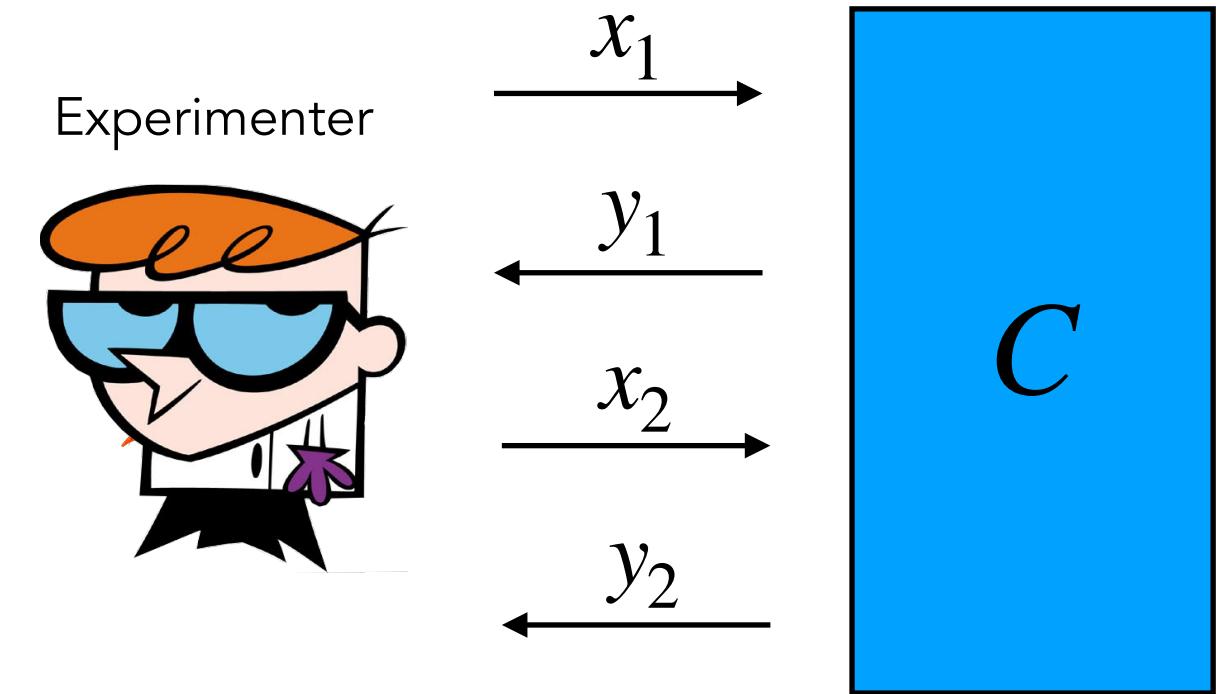
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



Main result

Noiseless average-case separation (This work):

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



Main result

Noiseless average-case separation (This work):

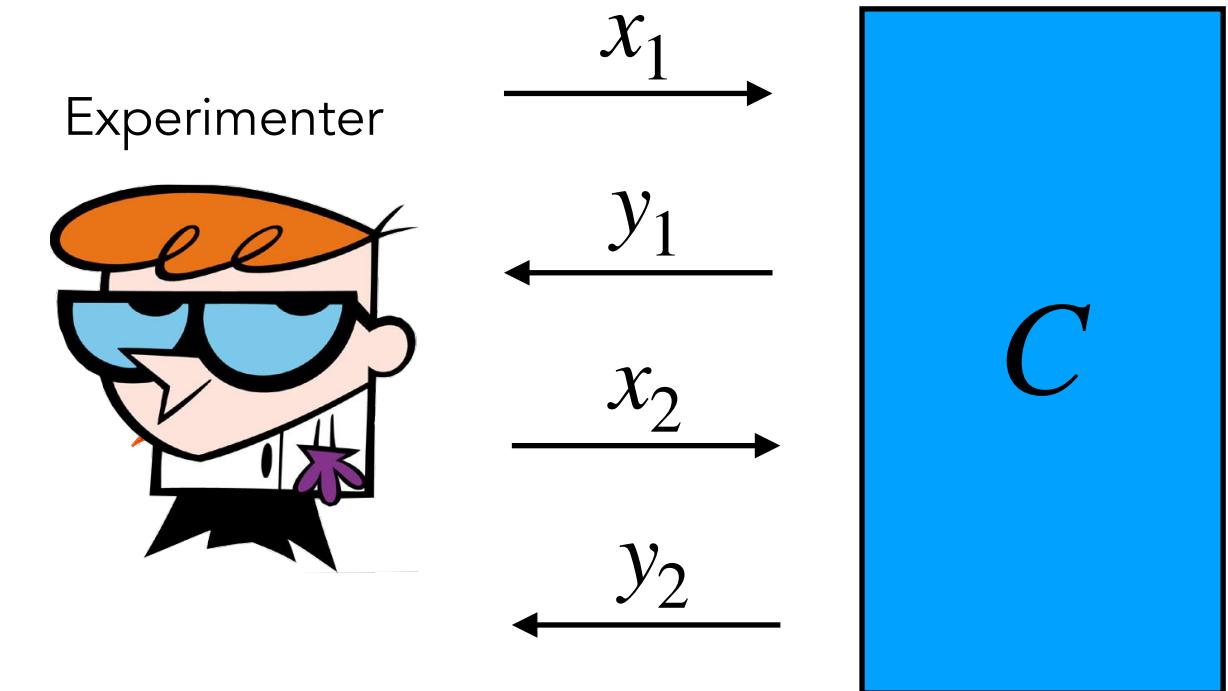
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

+

Extend the definition of the interactive problem to account for noise [BGKT19]:

Let \mathcal{I} be the interactive problem above.

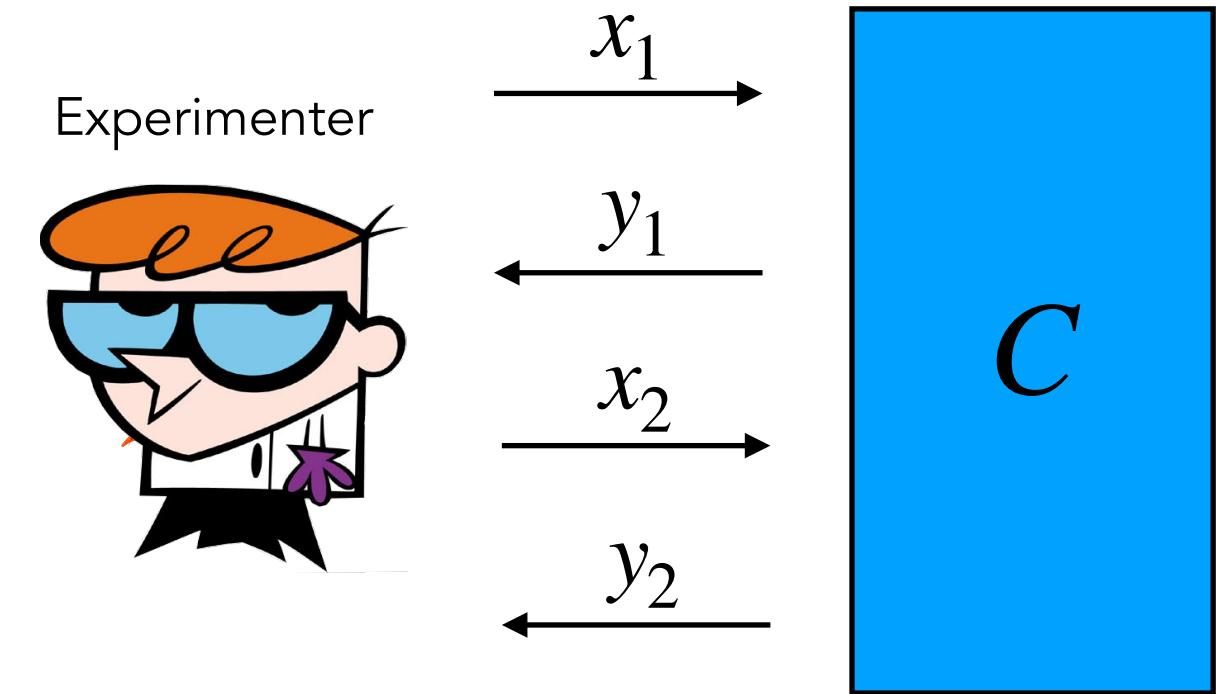
If (x_1, y_1, x_2, y_2) is a valid transcript for \mathcal{I} , then all $(x_1, \mathcal{Y}_1, x_2, \mathcal{Y}_2)$ such that $\text{Dec}(\mathcal{Y}_1) = y_1$ and $\text{Dec}(\mathcal{Y}_2) = y_2$ are valid transcripts for the “extended” problem \mathcal{I}' .



Main result

Noiseless average-case separation (This work):

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



+

Extend the definition of the interactive problem to account for noise [BGKT19]:

Let \mathcal{I} be the interactive problem above.

If (x_1, y_1, x_2, y_2) is a valid transcript for \mathcal{I} , then all $(x_1, \mathcal{Y}_1, x_2, \mathcal{Y}_2)$ such that $\text{Dec}(\mathcal{Y}_1) = y_1$ and $\text{Dec}(\mathcal{Y}_2) = y_2$ are valid transcripts for the “extended” problem \mathcal{I}' .

=

Noisy separation:

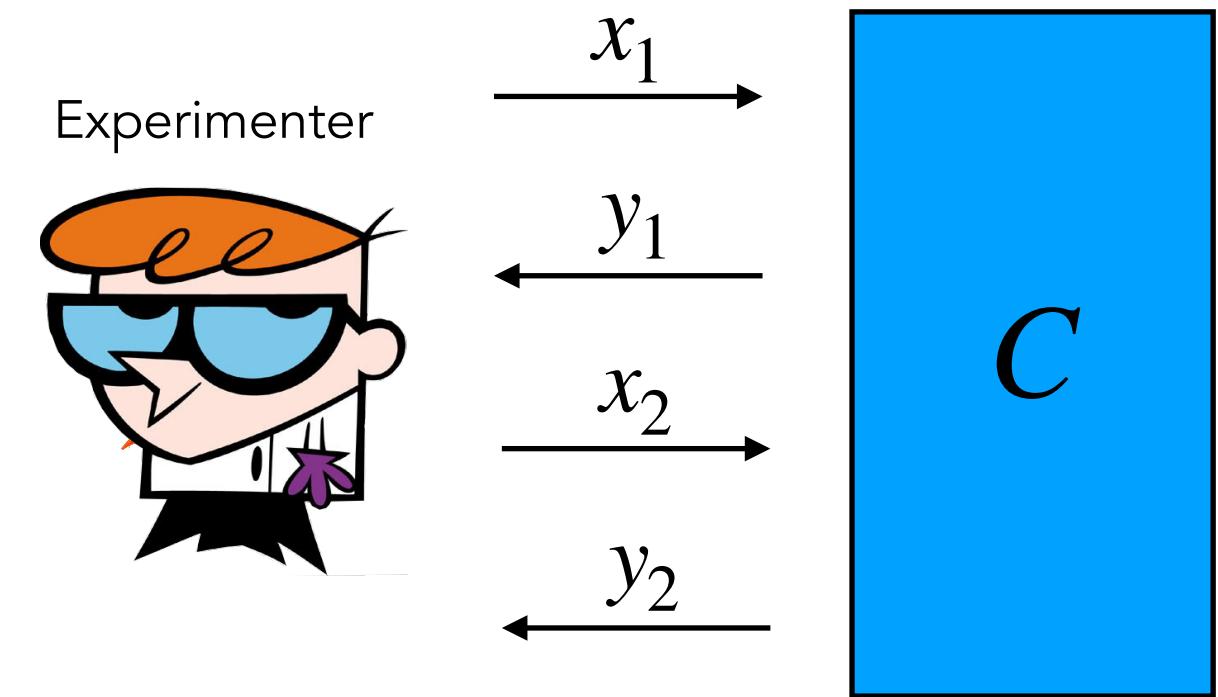
There is an interactive task solved by a **noisy** QNC^0 circuit on all inputs w/p $1 - o(1)$.

Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{qAC}^0)^{\mathcal{R}}$.

Main result

Noiseless average-case separation (This work):

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



+

Extend the definition of the interactive problem to account for noise [BGKT19]:

Let \mathcal{I} be the interactive problem above.

If (x_1, y_1, x_2, y_2) is a valid transcript for \mathcal{I} , then all $(x_1, \mathcal{Y}_1, x_2, \mathcal{Y}_2)$ such that $\text{Dec}(\mathcal{Y}_1) = y_1$ and $\text{Dec}(\mathcal{Y}_2) = y_2$ are valid transcripts for the “extended” problem \mathcal{I}' .

=

Noisy separation:

There is an interactive task solved by a **noisy** QNC^0 circuit on all inputs w/p $1 - o(1)$. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{qAC}^0)^{\mathcal{R}}$.

Unconditional: Noisy QNC^0
vs. $\text{AC}^0[p]$ separation

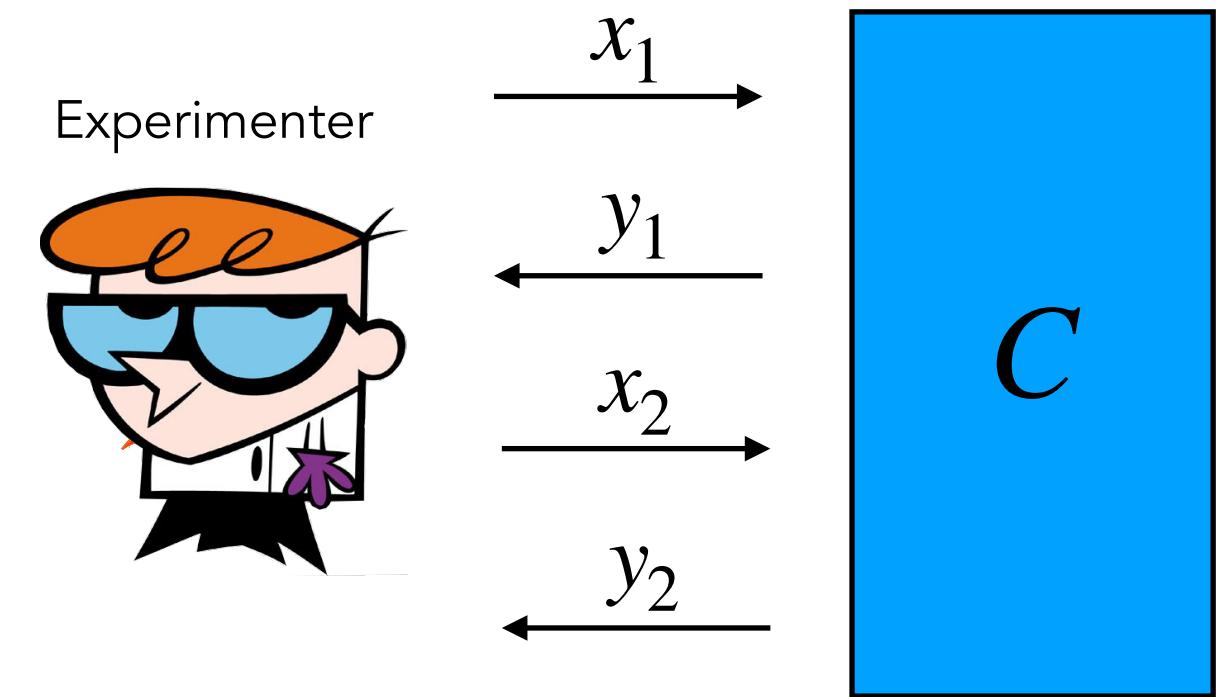
Conditional: If
 $\oplus\text{L} \not\subseteq (\text{qAC}^0)^{\text{L}}$, then noisy
 QNC^0 vs. L separation

\Rightarrow

Main result

Noiseless average-case separation (This work):

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus L \subseteq (\text{AC}^0)^{\mathcal{R}}$.



+

Extend the definition of the interactive problem to account for noise [BGKT19]:

Let \mathcal{I} be the interactive problem above.

If (x_1, y_1, x_2, y_2) is a valid transcript for \mathcal{I} , then all $(x_1, \mathcal{Y}_1, x_2, \mathcal{Y}_2)$ such that $\text{Dec}(\mathcal{Y}_1) = y_1$ and $\text{Dec}(\mathcal{Y}_2) = y_2$ are valid transcripts for the “extended” problem \mathcal{I}' .

=

Noisy separation:

There is an interactive task solved by a **noisy** QNC^0 circuit on all inputs w/p $1 - o(1)$. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus L \subseteq (\text{qAC}^0)^{\mathcal{R}}$.

Unconditional: Noisy QNC^0
vs. $\text{AC}^0[p]$ separation

Conditional: If
 $\oplus L \not\subseteq (\text{qAC}^0)^L$, then noisy
 QNC^0 vs. L separation

Noiseless average-case separation

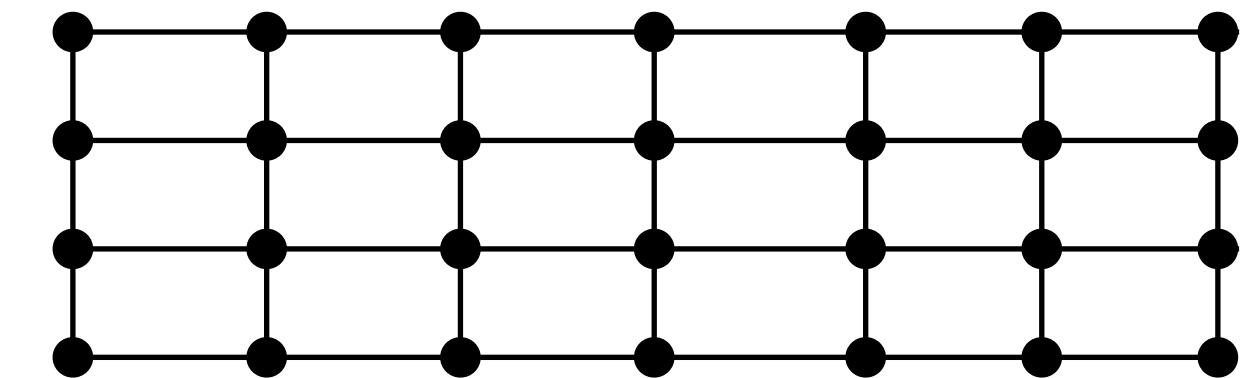
Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

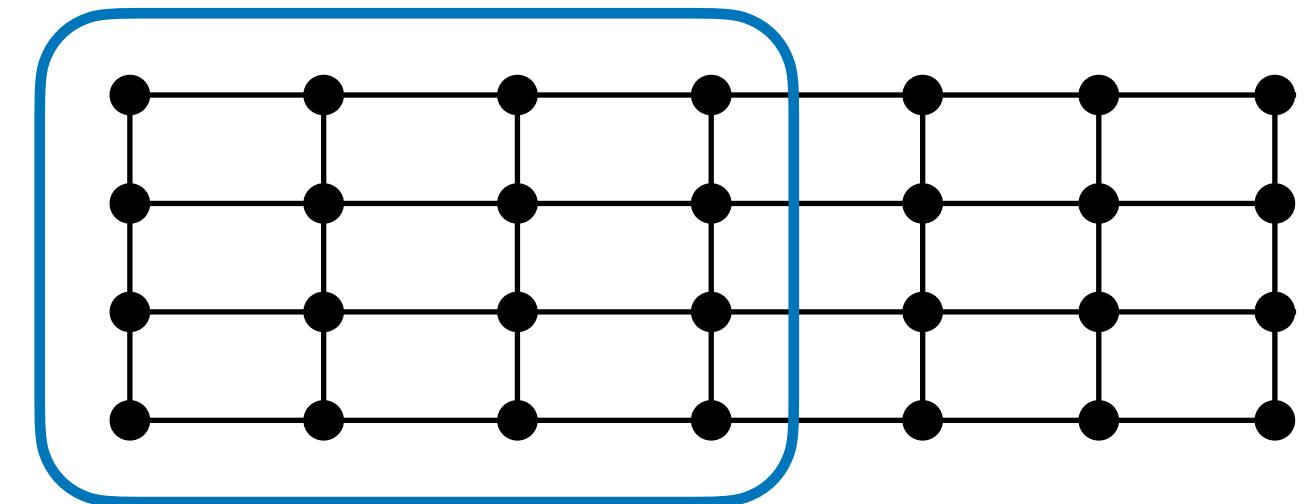


Noiseless average-case separation

Round 1:

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.



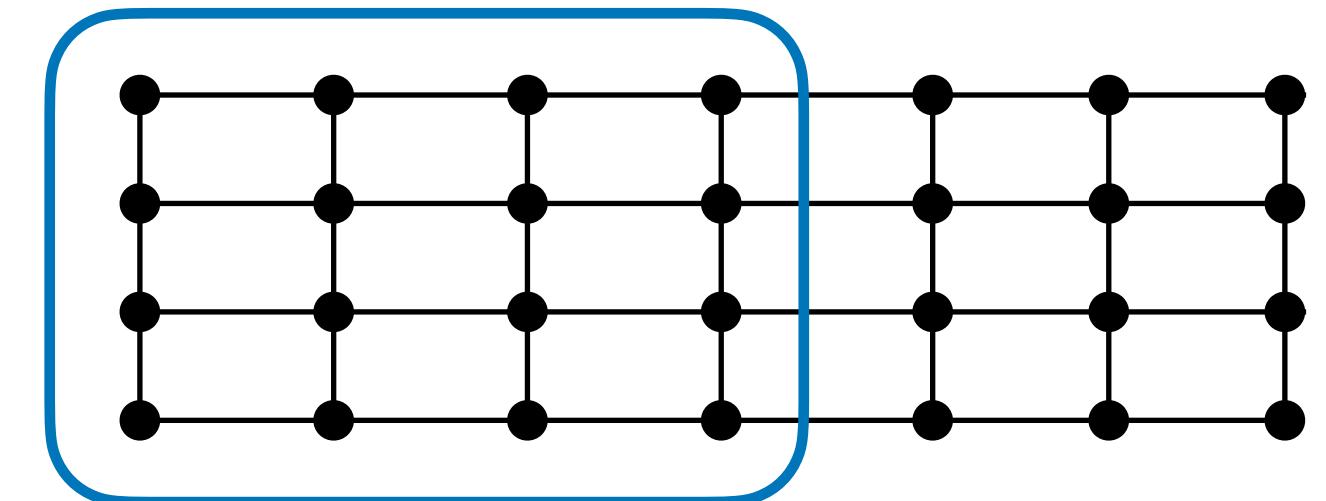
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

Measure in basis x_1



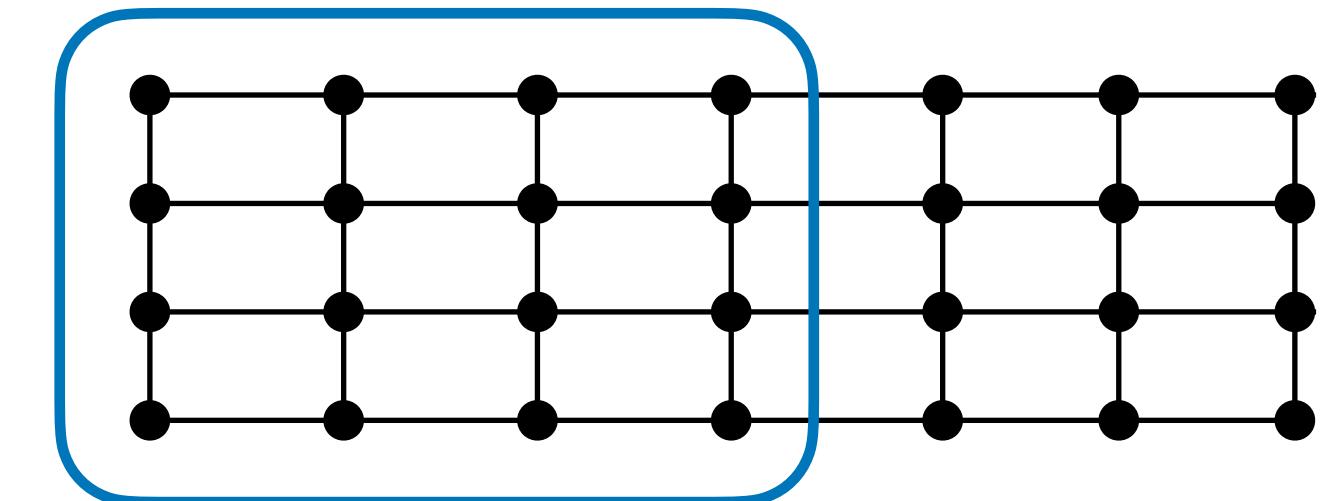
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

Measure in basis x_1



Return outcomes y_1

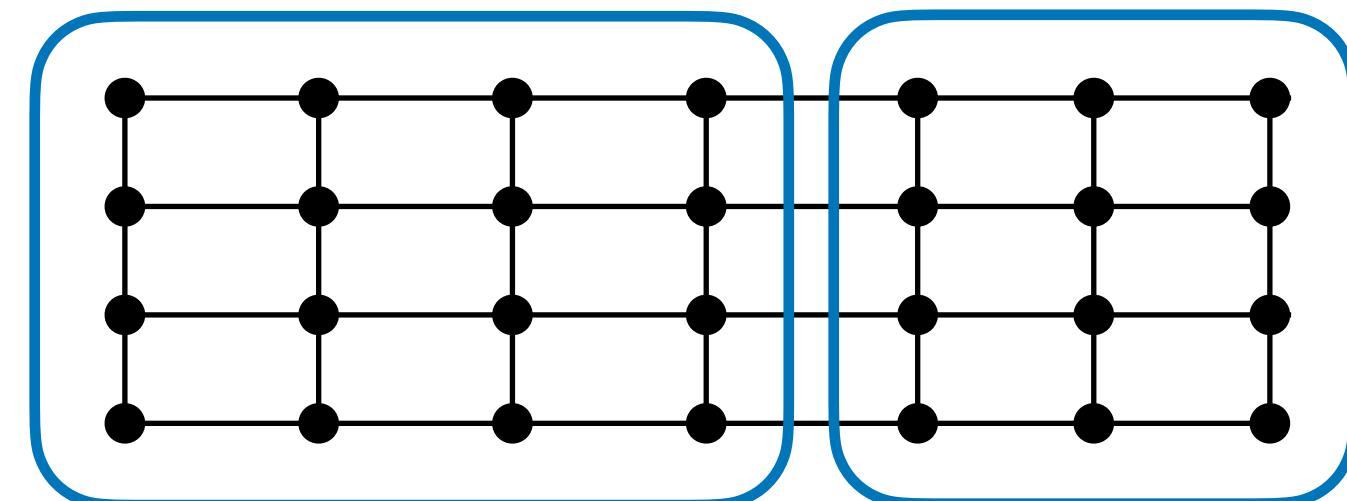
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

Measure in basis x_1



Return outcomes y_1

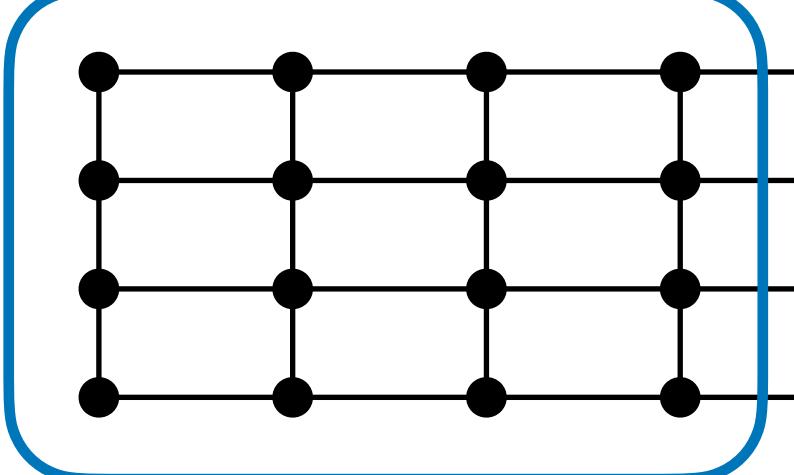
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

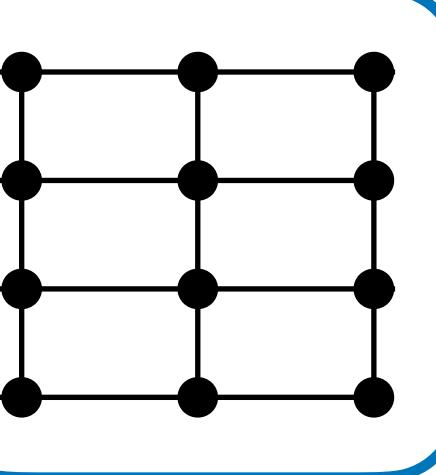
Round 1:

Measure in basis x_1



Round 2:

Measure in basis x_2



Return outcomes y_1

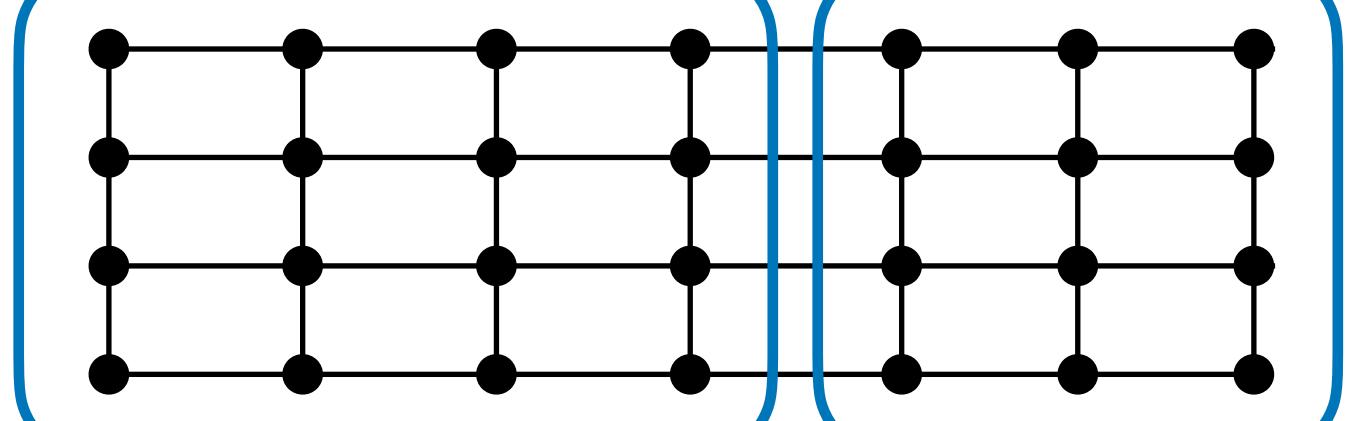
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

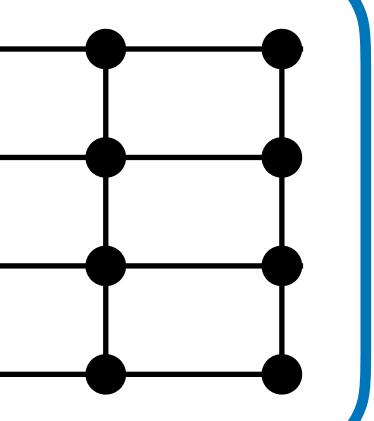
Measure in basis x_1



Return outcomes y_1

Round 2:

Measure in basis x_2



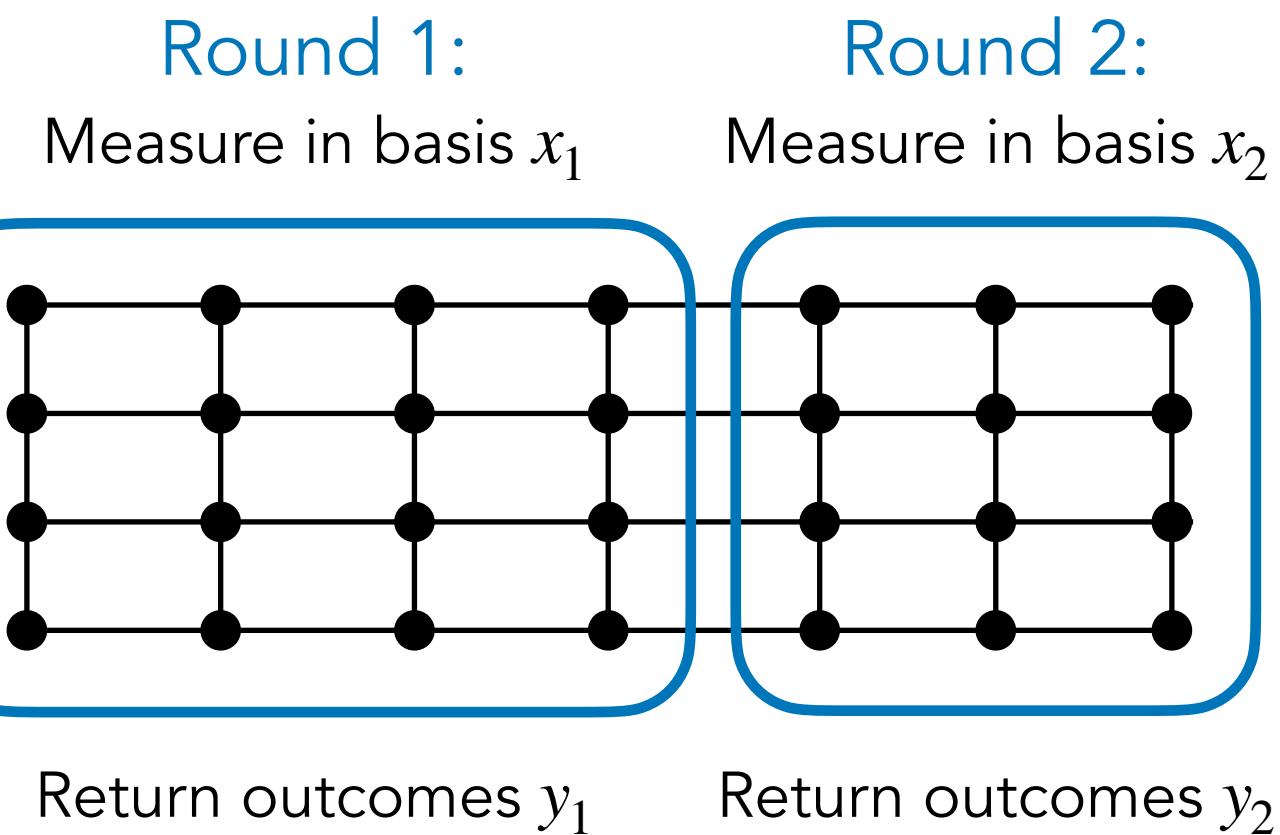
Return outcomes y_2

Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

promise



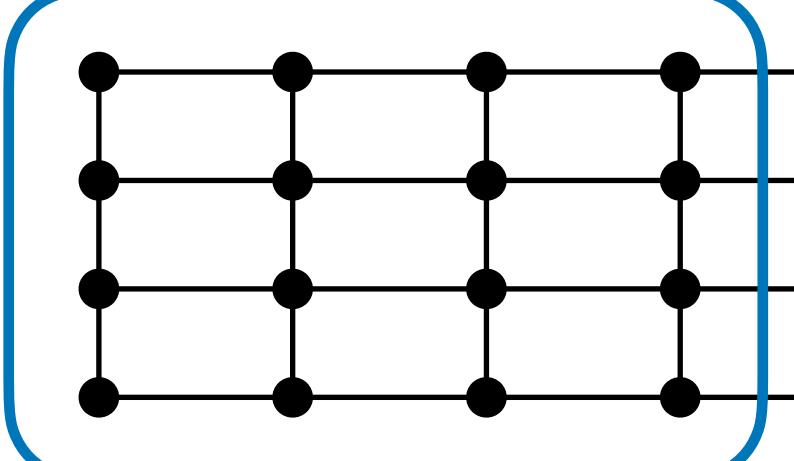
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

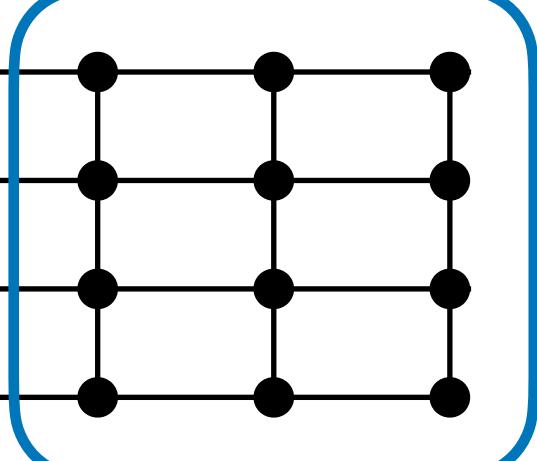
Measure in basis x_1



Return outcomes y_1

Round 2:

Measure in basis x_2



Return outcomes y_2

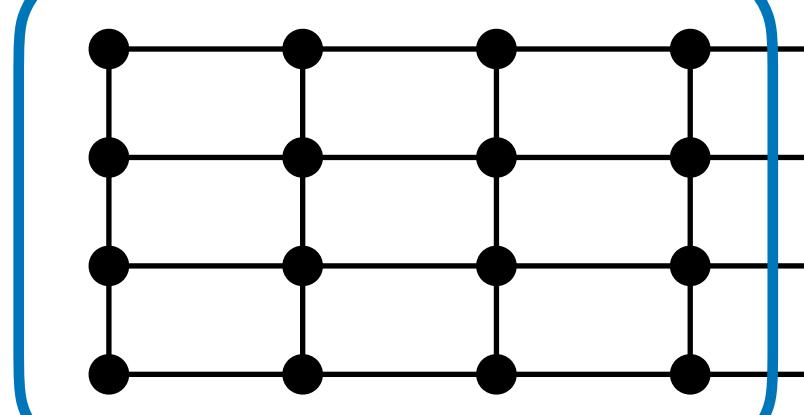
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

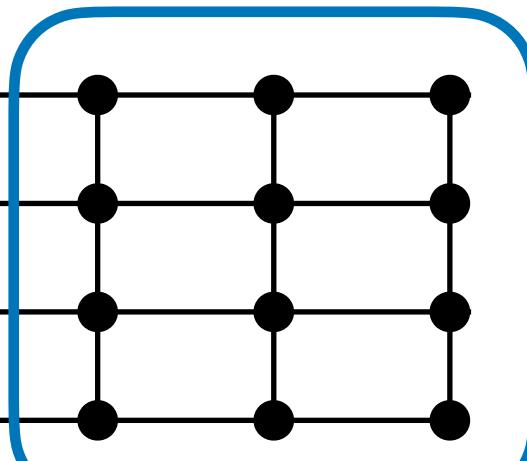
Measure in basis x_1



Return outcomes y_1

Round 2:

Measure in basis x_2



Return outcomes y_2

It is **average-case** $\oplus\text{L}$ -hard to return valid Pauli measurement outcomes of a grid state*.

* = For an interactive promise problem

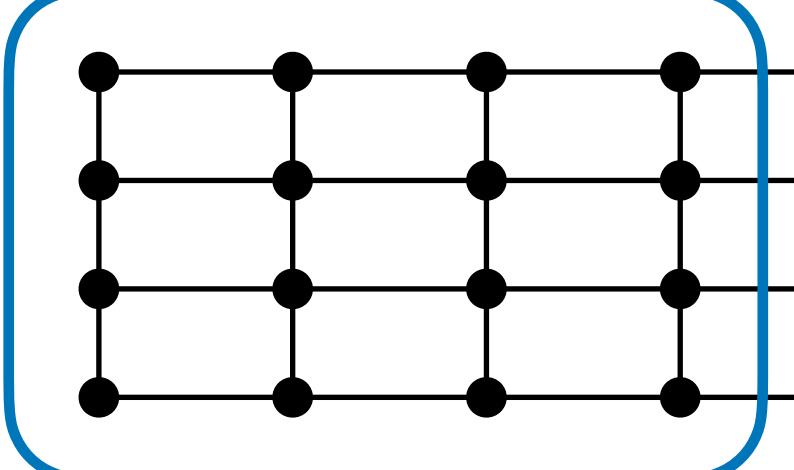
Noiseless average-case separation

Noiseless average-case separation:

There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:

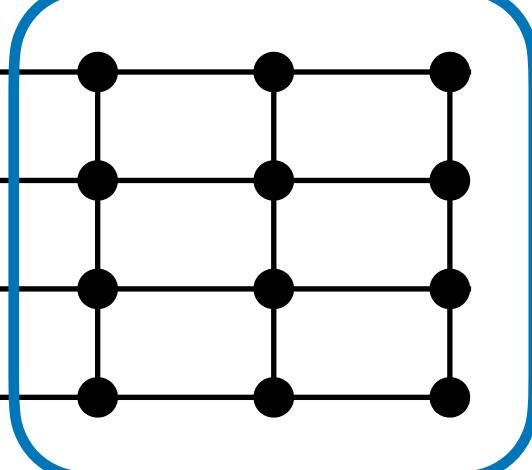
Measure in basis x_1



Return outcomes y_1

Round 2:

Measure in basis x_2



Return outcomes y_2

It is **average-case** $\oplus\text{L}$ -hard to return valid Pauli measurement outcomes of a grid state*.

* = For an interactive promise problem

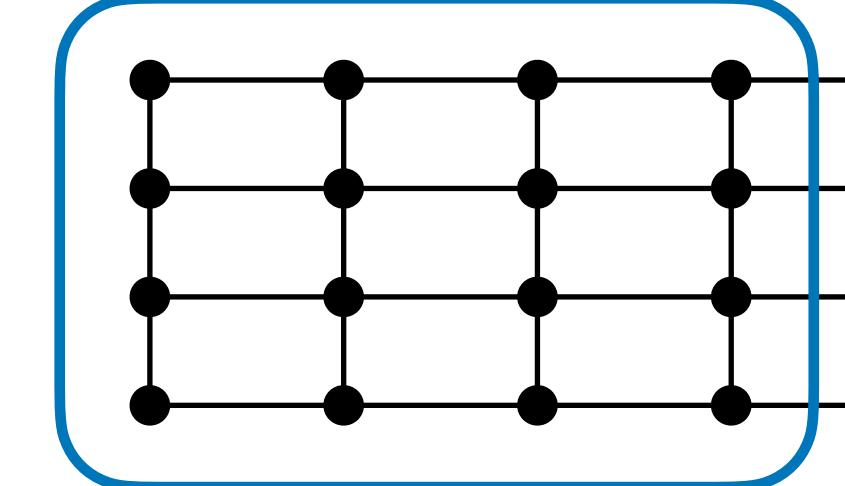
How to prove average-case $\oplus\text{L}$ -hardness
for the interactive problem?

Noiseless average-case separation

Noiseless average-case separation:

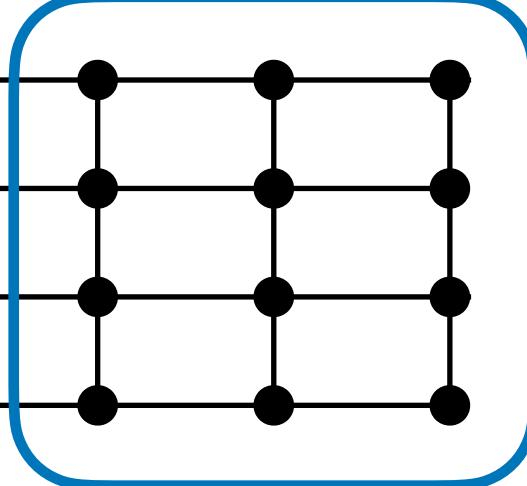
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:
Measure in basis x_1



Return outcomes y_1

Round 2:
Measure in basis x_2



Return outcomes y_2

It is **average-case** $\oplus\text{L}$ -hard to return valid Pauli measurement outcomes of a grid state*.

* = For an interactive promise problem

How to prove average-case $\oplus\text{L}$ -hardness
for the interactive problem?

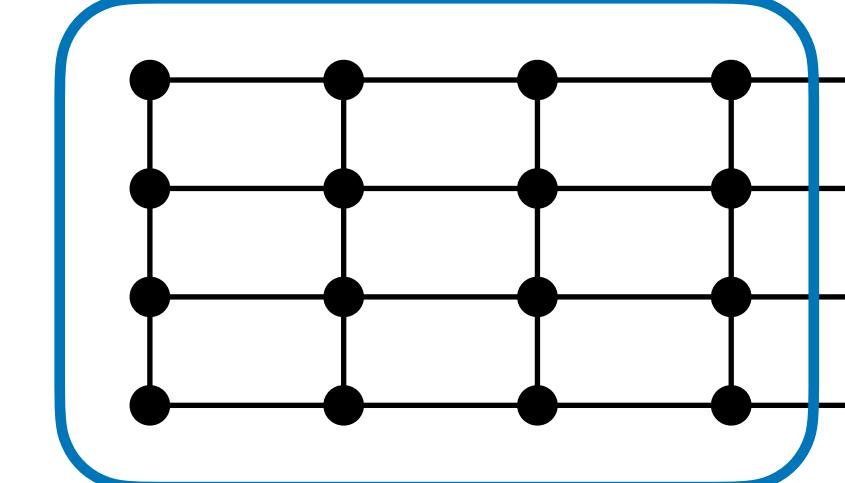
Construct a worst-to-average-case
reduction from a $\oplus\text{L}$ -hard problem.

Noiseless average-case separation

Noiseless average-case separation:

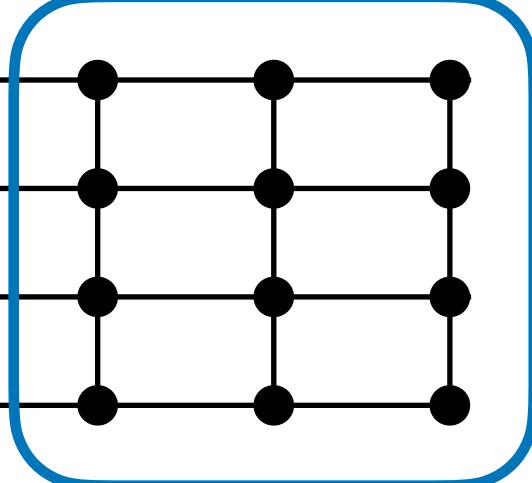
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:
Measure in basis x_1



Return outcomes y_1

Round 2:
Measure in basis x_2



Return outcomes y_2

It is **average-case** $\oplus\text{L}$ -hard to return valid Pauli measurement outcomes of a grid state*.

* = For an interactive promise problem

How to prove average-case $\oplus\text{L}$ -hardness
for the interactive problem?

Construct a **worst-to-average-case**
reduction from a $\oplus\text{L}$ -hard problem.

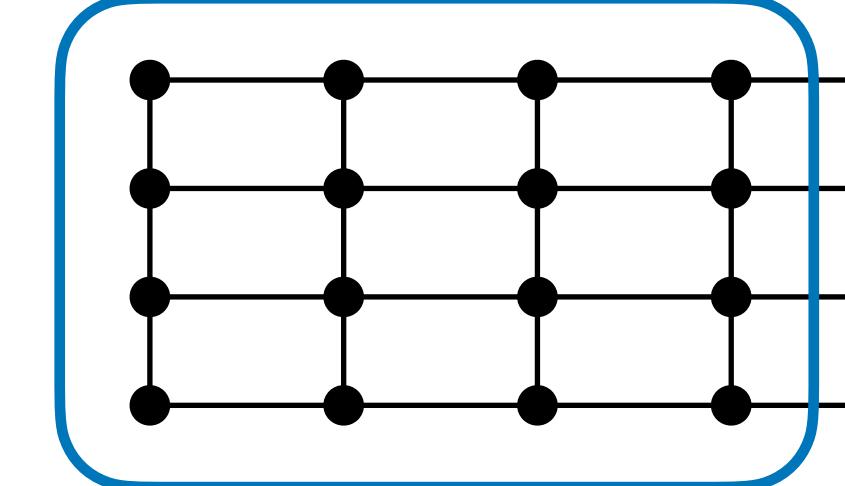
Use the ability to classically solve the interactive problem on **random** (average-case) instances to solve a **worst-case** $\oplus\text{L}$ -hard problem instance

Noiseless average-case separation

Noiseless average-case separation:

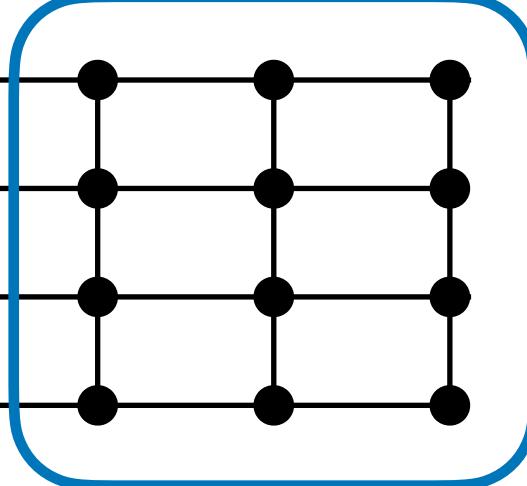
There is an interactive task solved by a **noiseless** QNC^0 circuit on all inputs with certainty. Let \mathcal{R} be a classical probabilistic machine that solves the same task with probability $420/421$ over uniform input. Then $\oplus\text{L} \subseteq (\text{AC}^0)^{\mathcal{R}}$.

Round 1:
Measure in basis x_1



Return outcomes y_1

Round 2:
Measure in basis x_2



Return outcomes y_2

It is **average-case** $\oplus\text{L}$ -hard to return valid Pauli measurement outcomes of a grid state*.

* = For an interactive promise problem

How to prove average-case $\oplus\text{L}$ -hardness
for the interactive problem?

Construct a **worst-to-average-case**
reduction from a $\oplus\text{L}$ -hard problem.

(different from [BGKT], who prove average-case
hardness using nonlocal games instead)

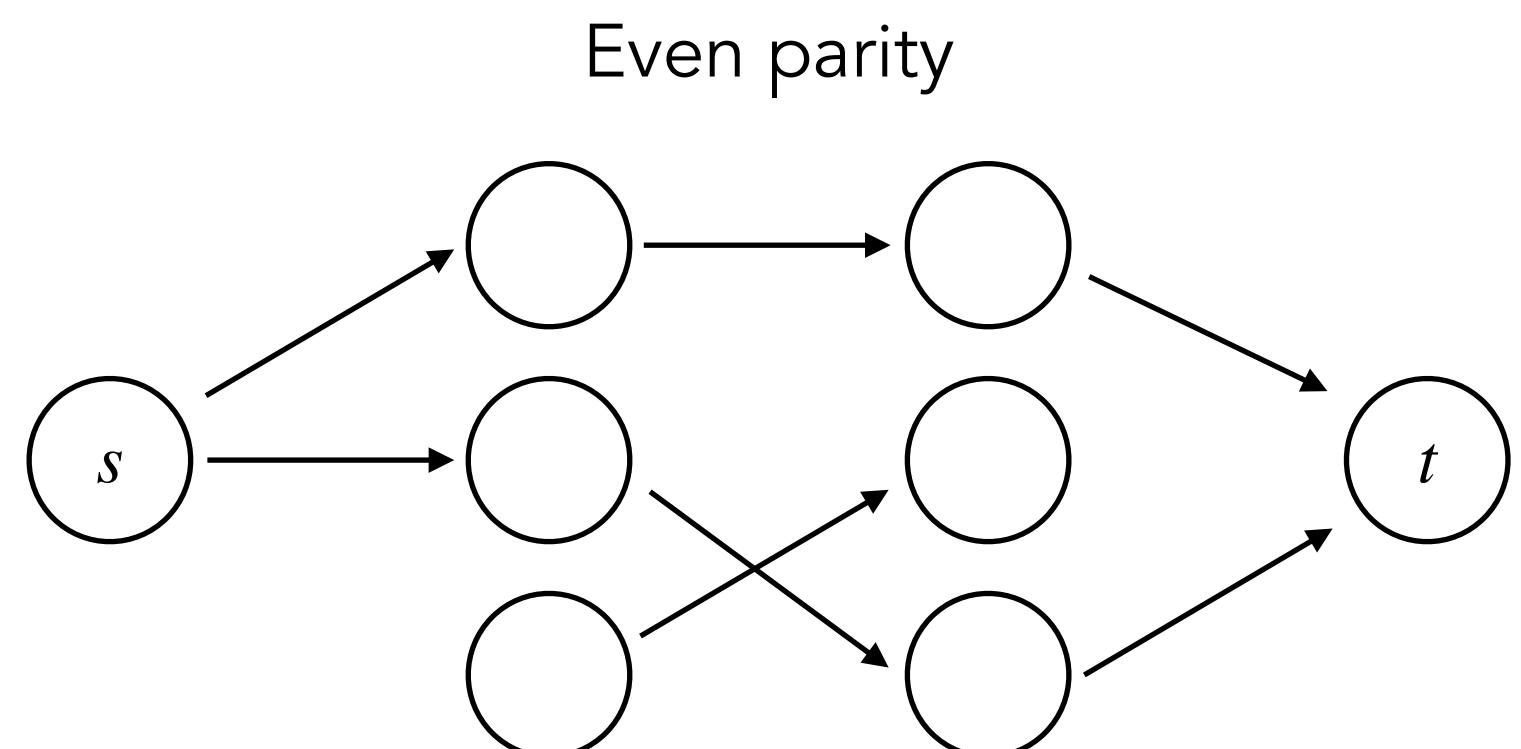
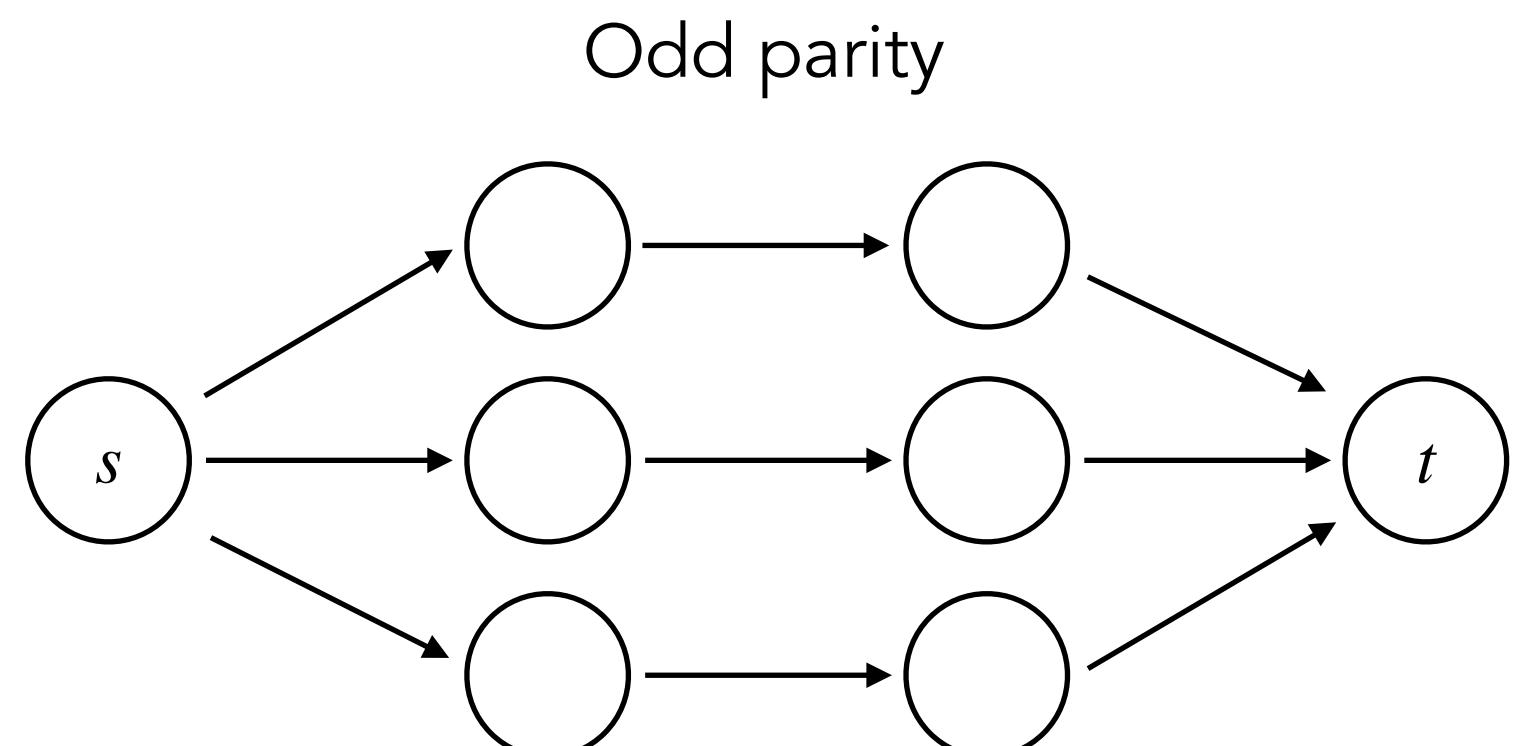
Use the ability to classically solve the interactive problem on **random** (average-case) instances to solve a **worst-case** $\oplus\text{L}$ -hard problem instance

Worst-case $\oplus\text{L}$ -hard problems

It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.

Worst-case $\oplus L$ -hard problems

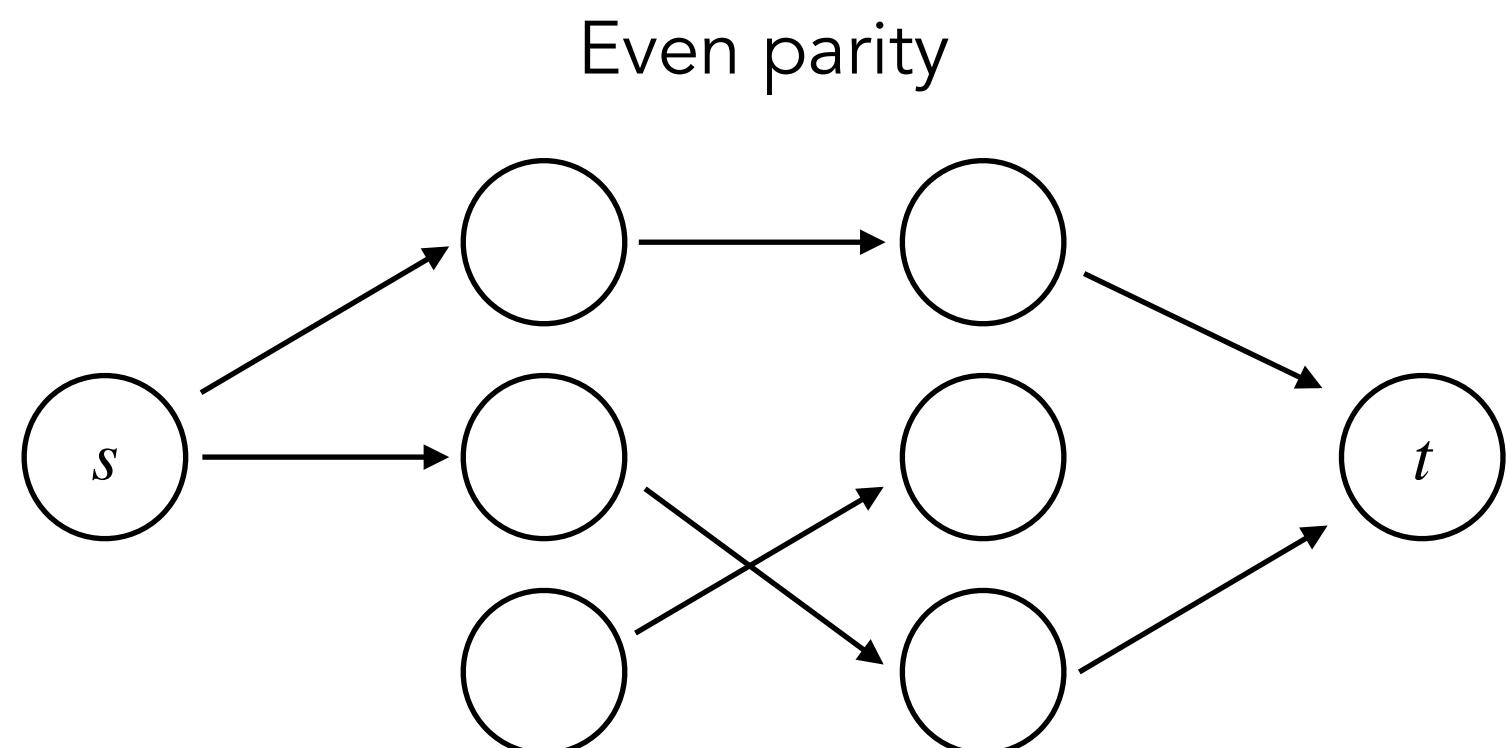
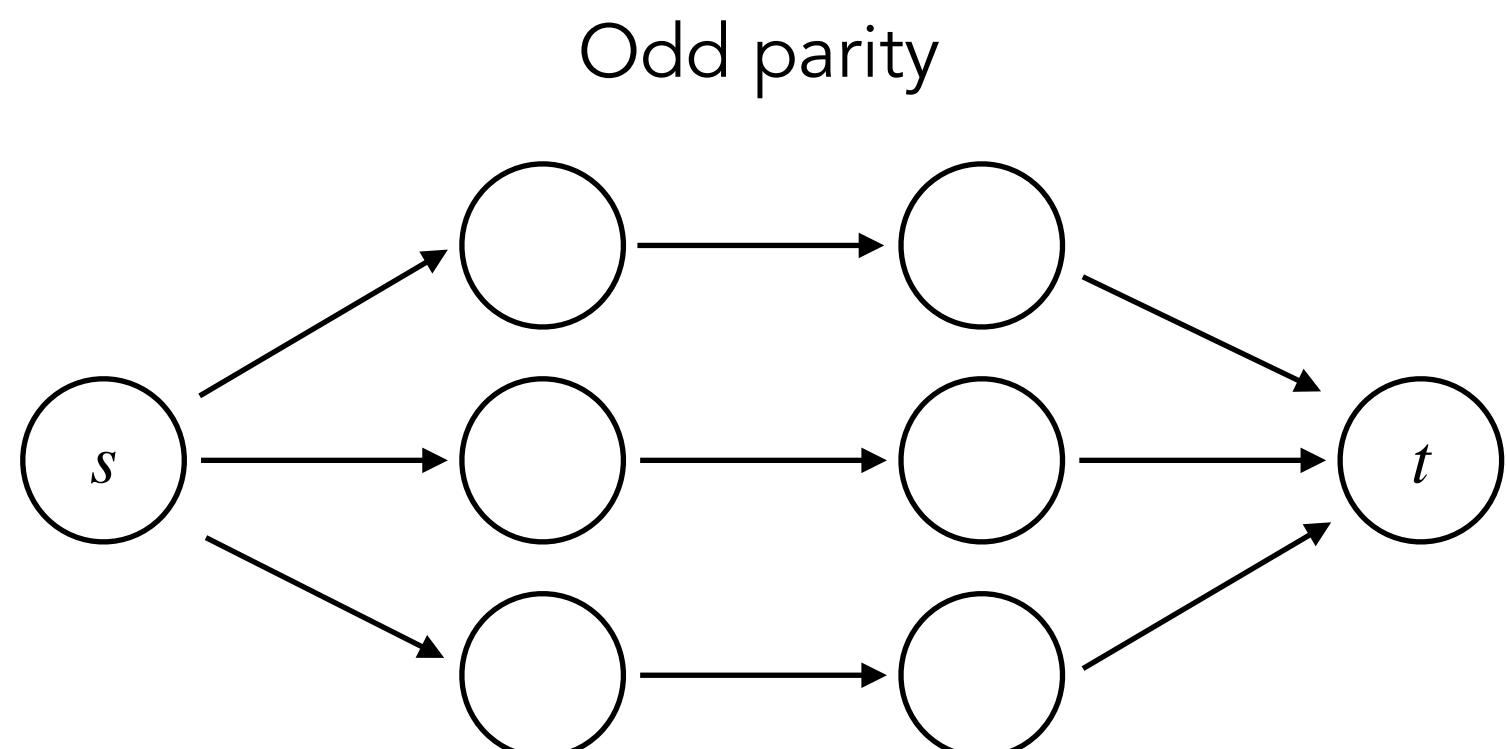
It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.

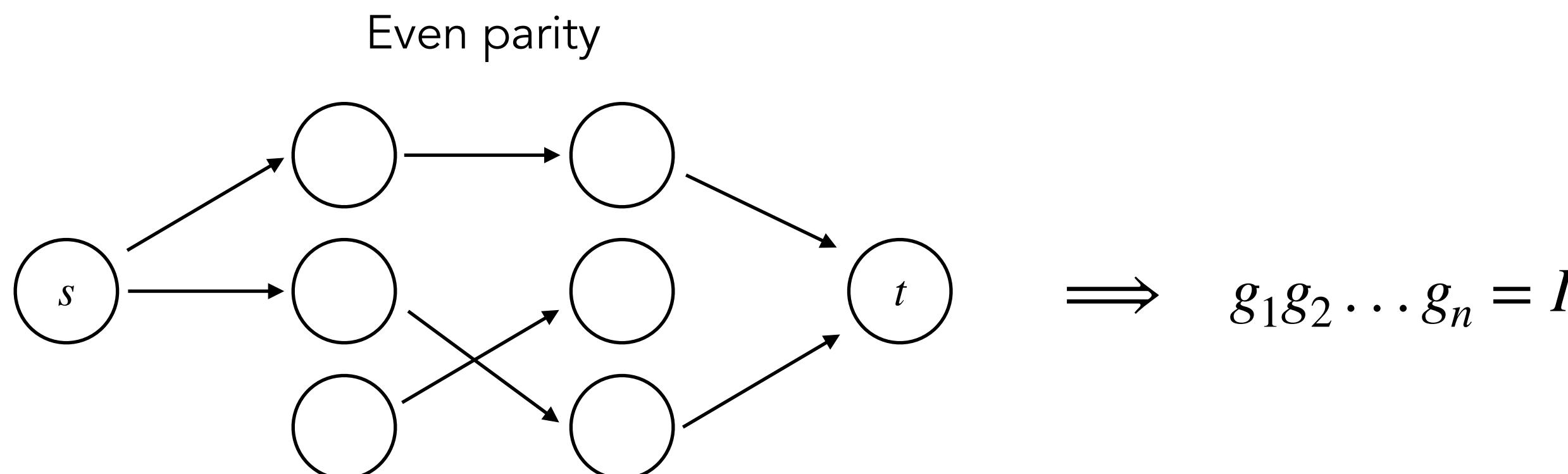
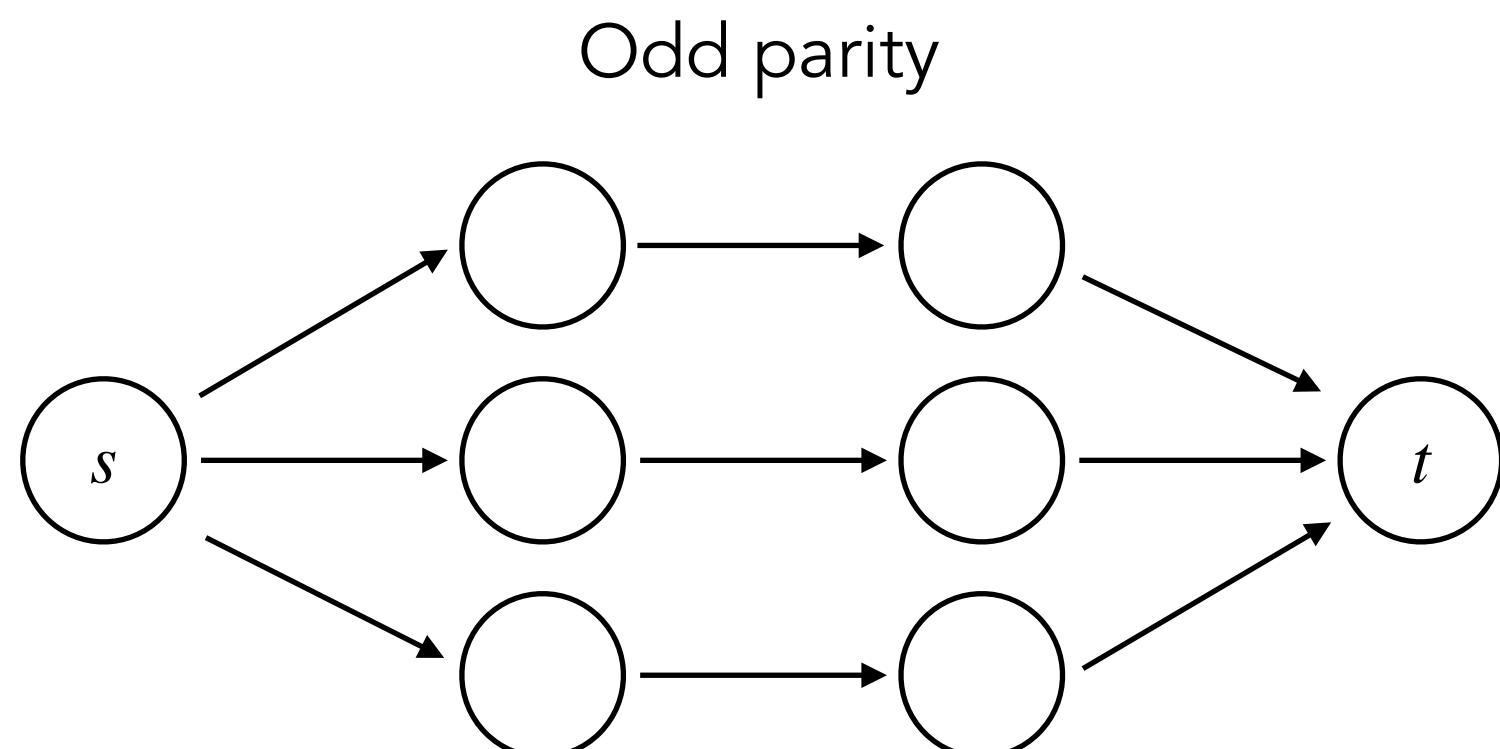
[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.



Worst-case $\oplus\text{L}$ -hard problems

It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.

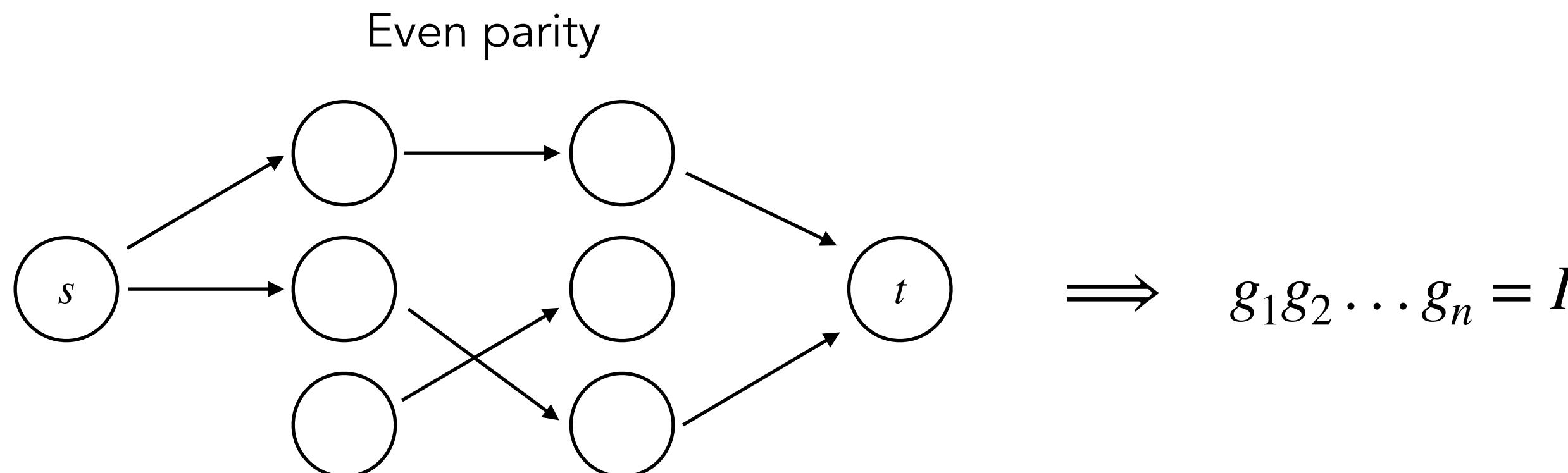
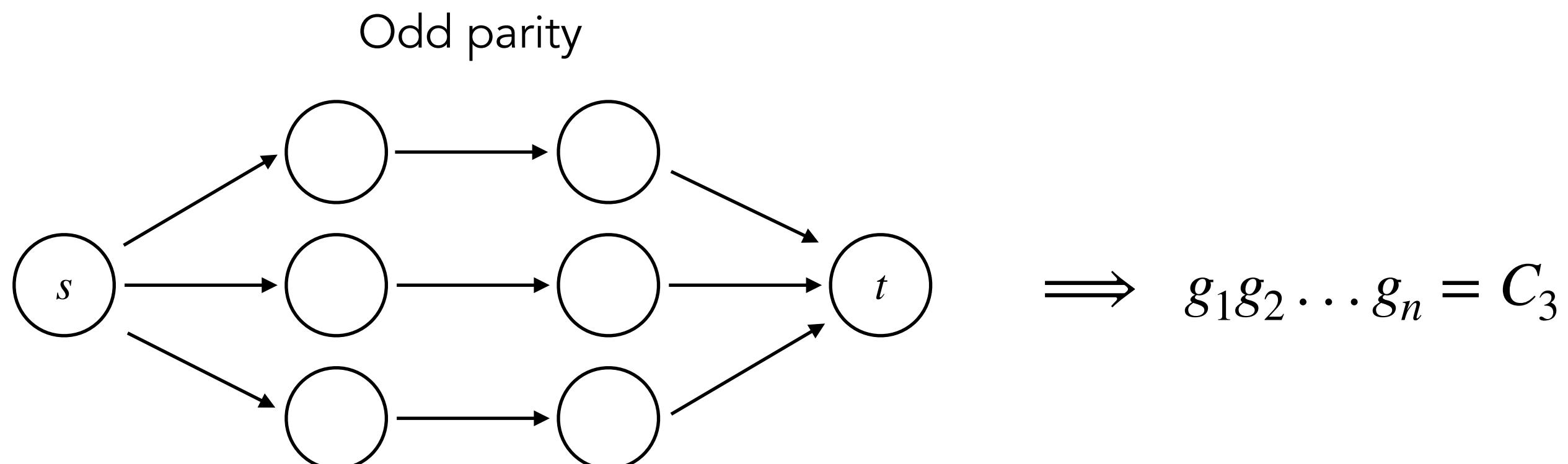
[GS20]: It is also $\oplus\text{L}$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.

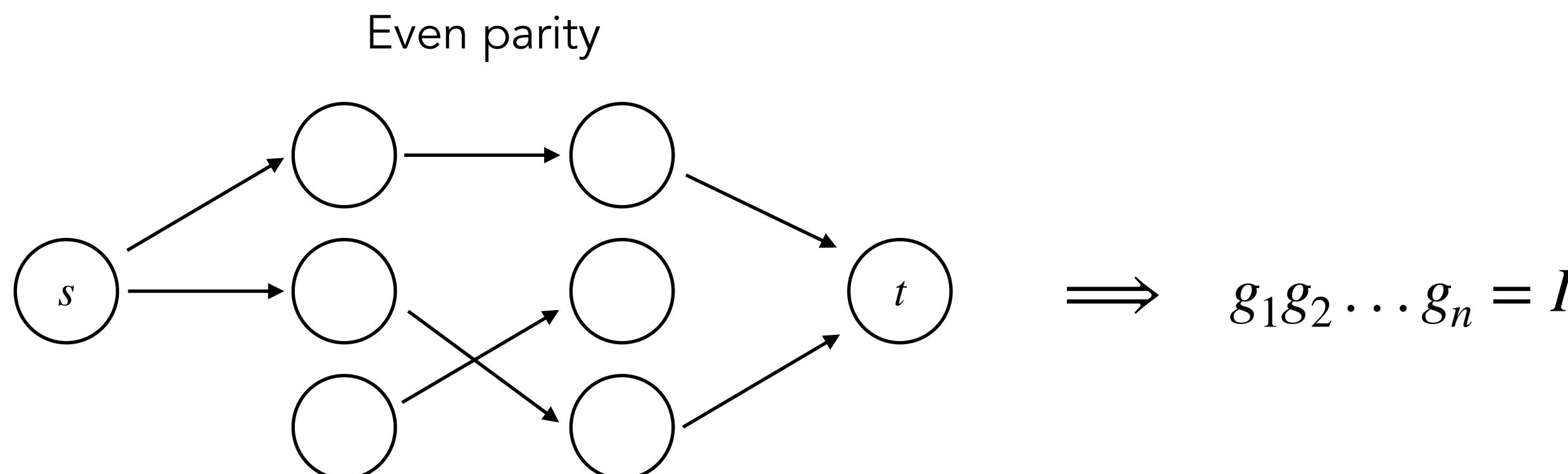
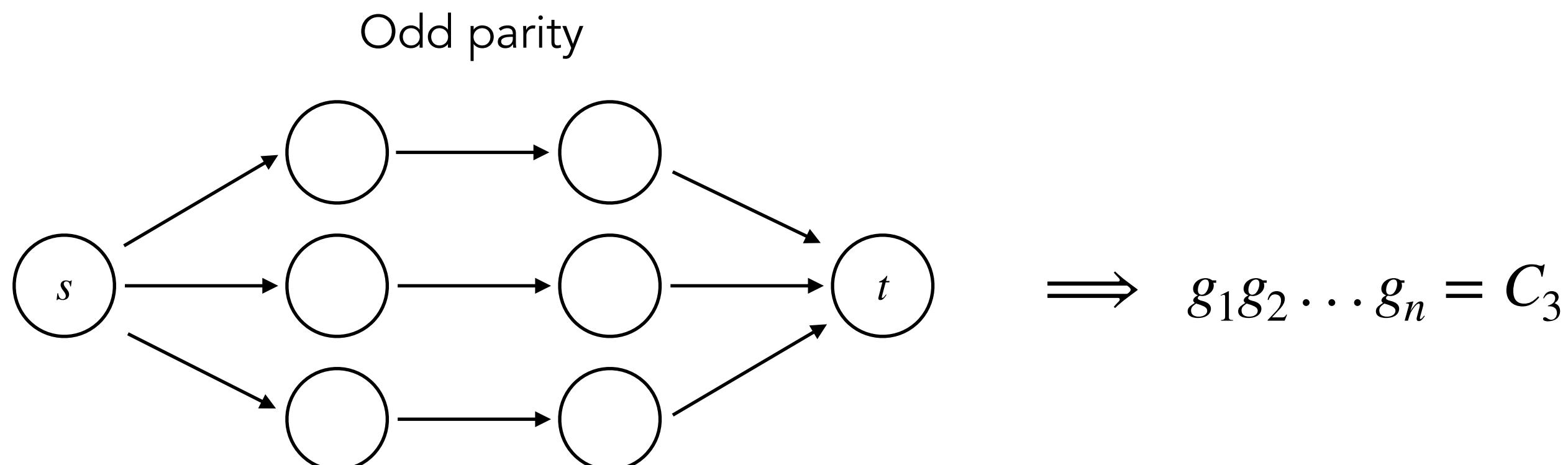
[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.

[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.

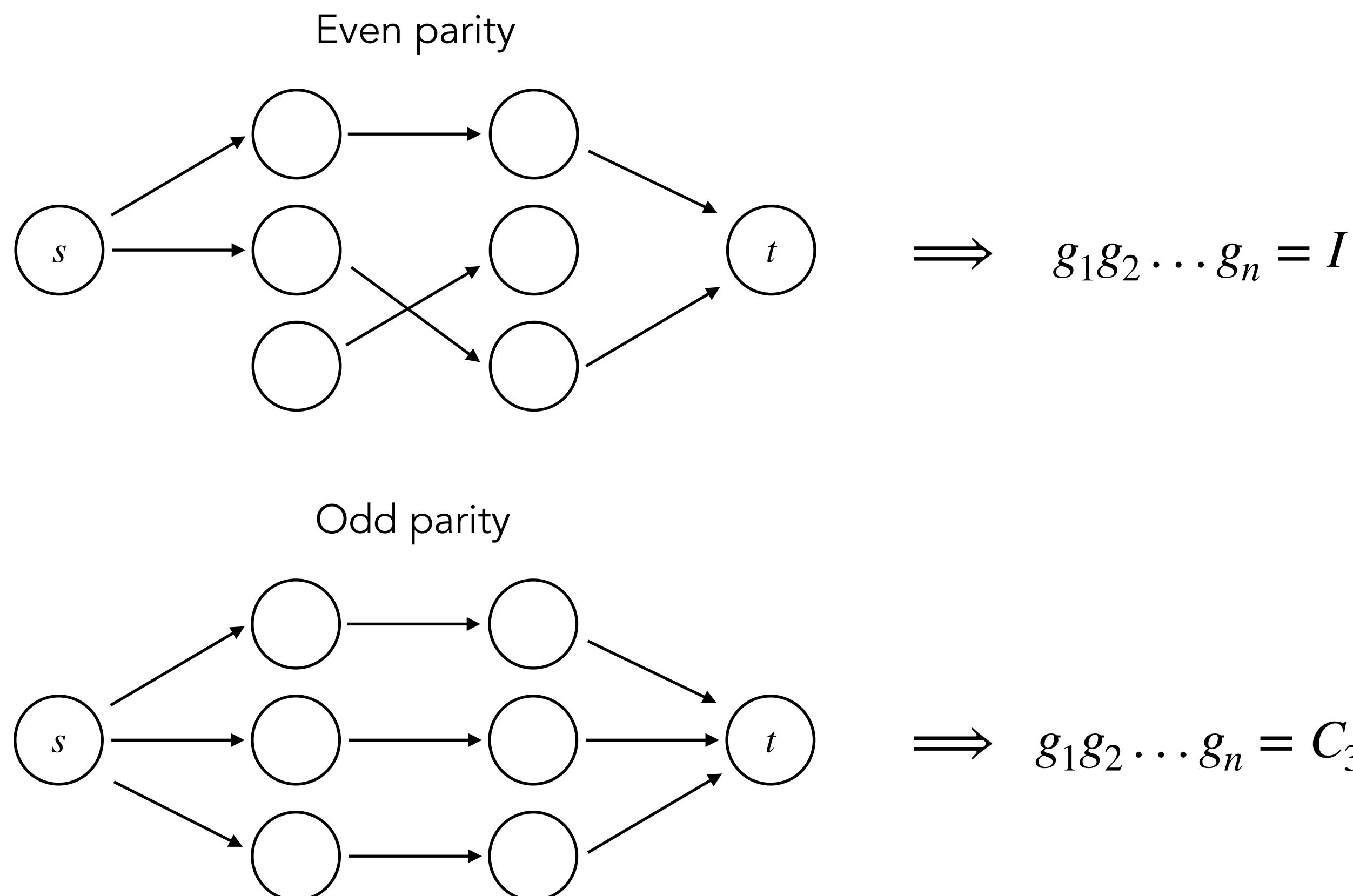


[GS20]: Measurement results from grid state determine whether $g_1 \dots g_n = I$ or C_3 .

Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.

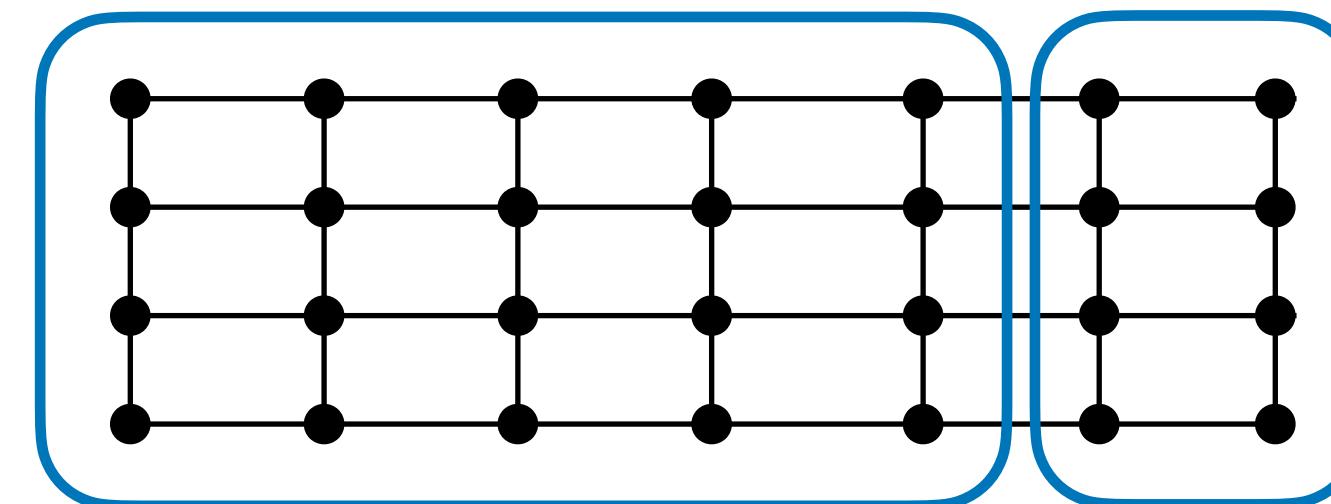
[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.



[GS20]: Measurement results from grid state determine whether $g_1 \dots g_n = I$ or C_3 .

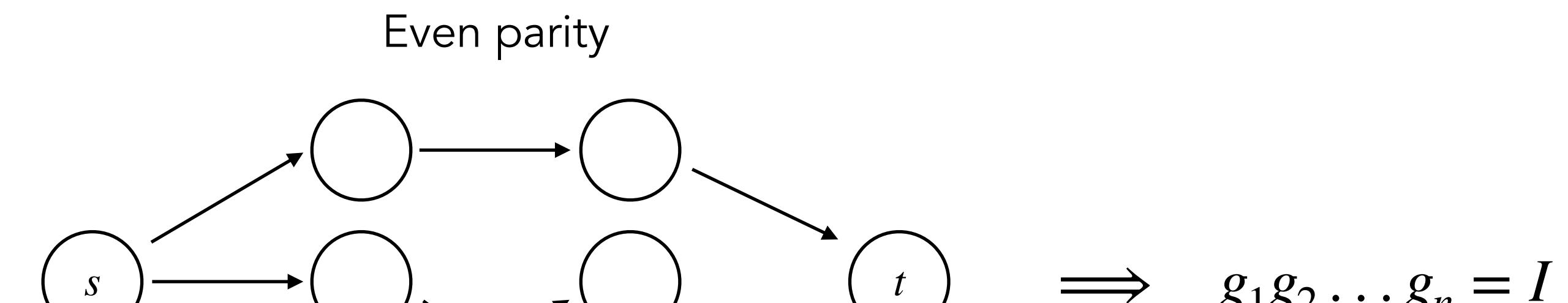
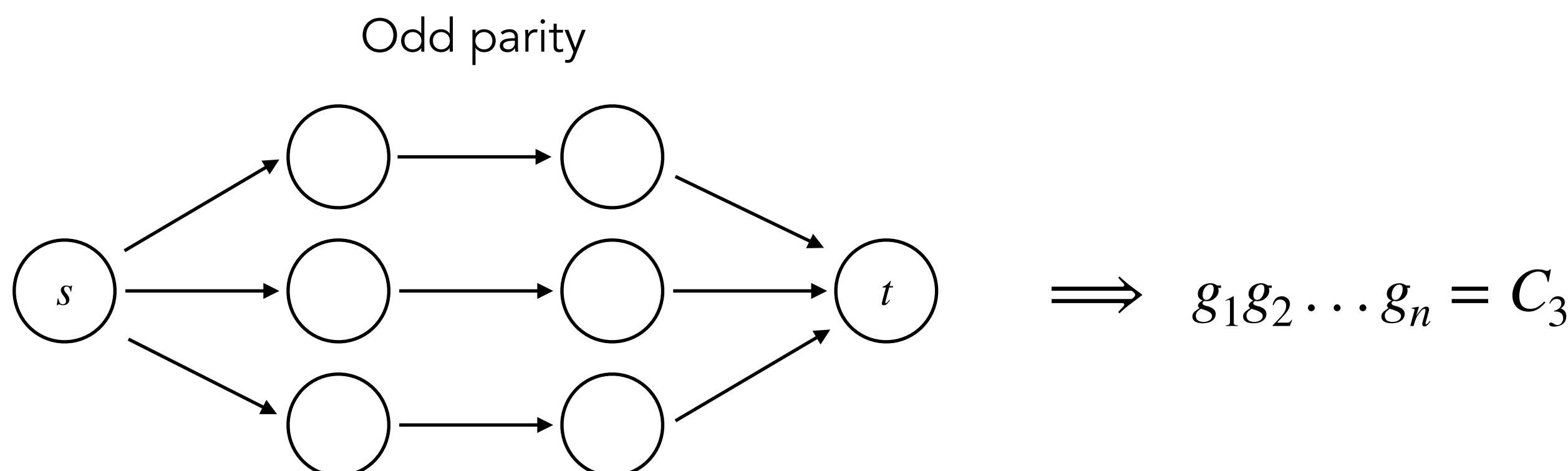
Round 1:

Round 2:



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.



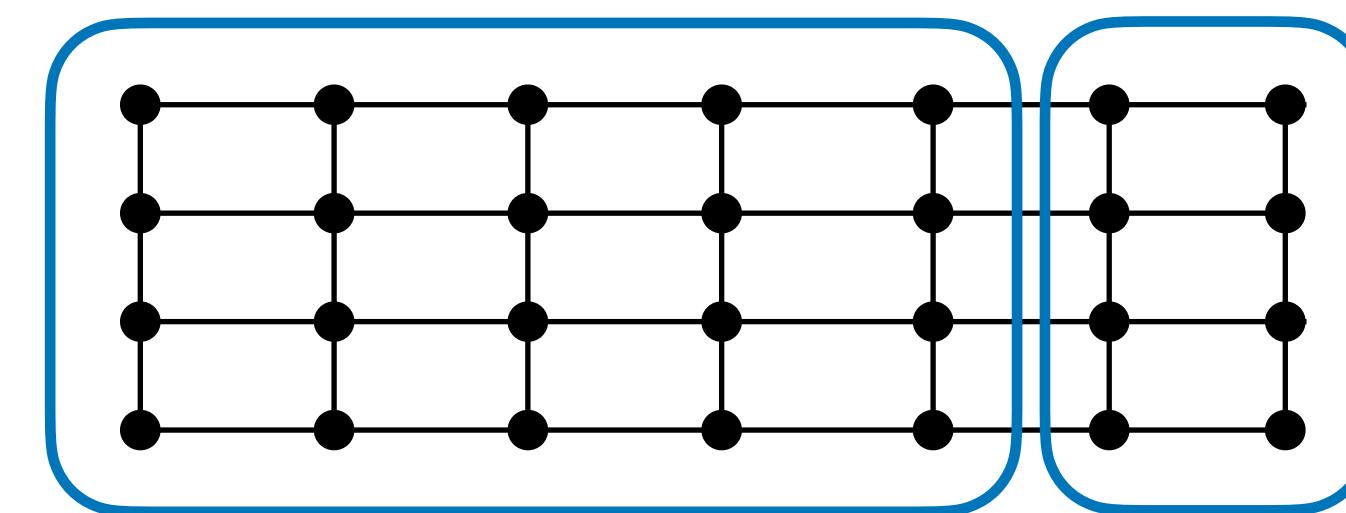
[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.

[GS20]: Measurement results from grid state determine whether $g_1 \dots g_n = I$ or C_3 .

Sample $(P_1, \dots, P_m) \leftarrow \gamma(g_1, \dots, g_n)$

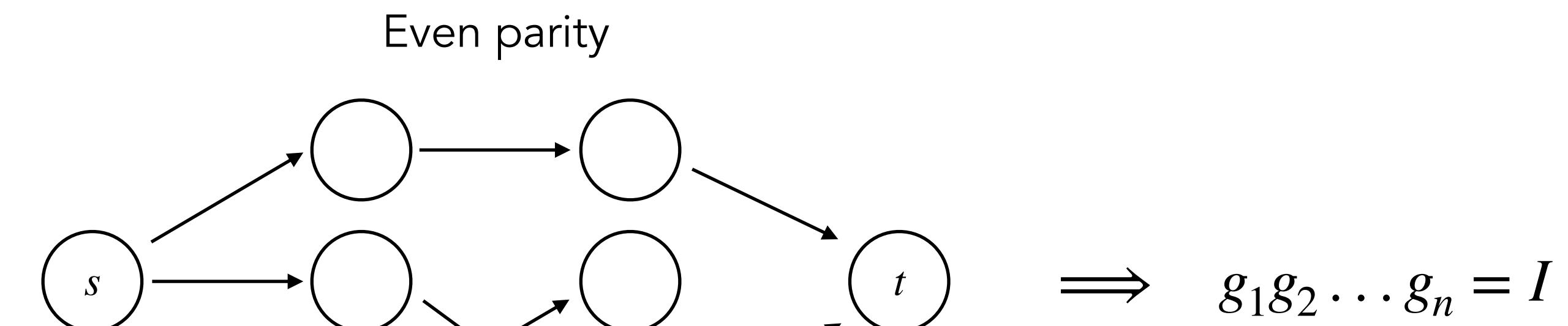
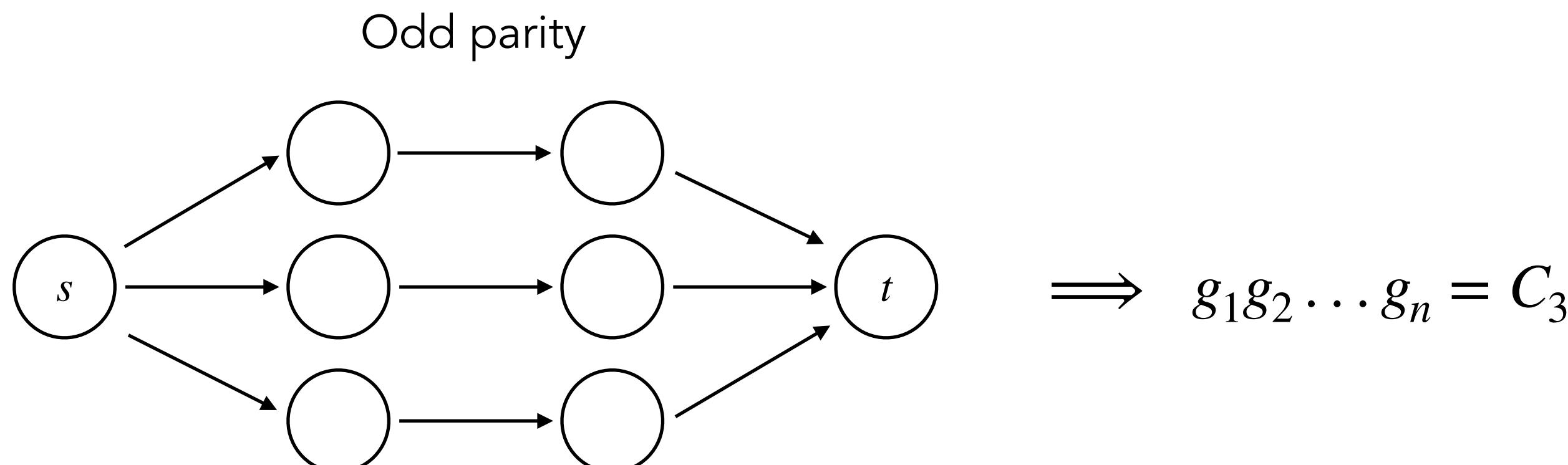
Round 1:

Round 2:



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.



[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.

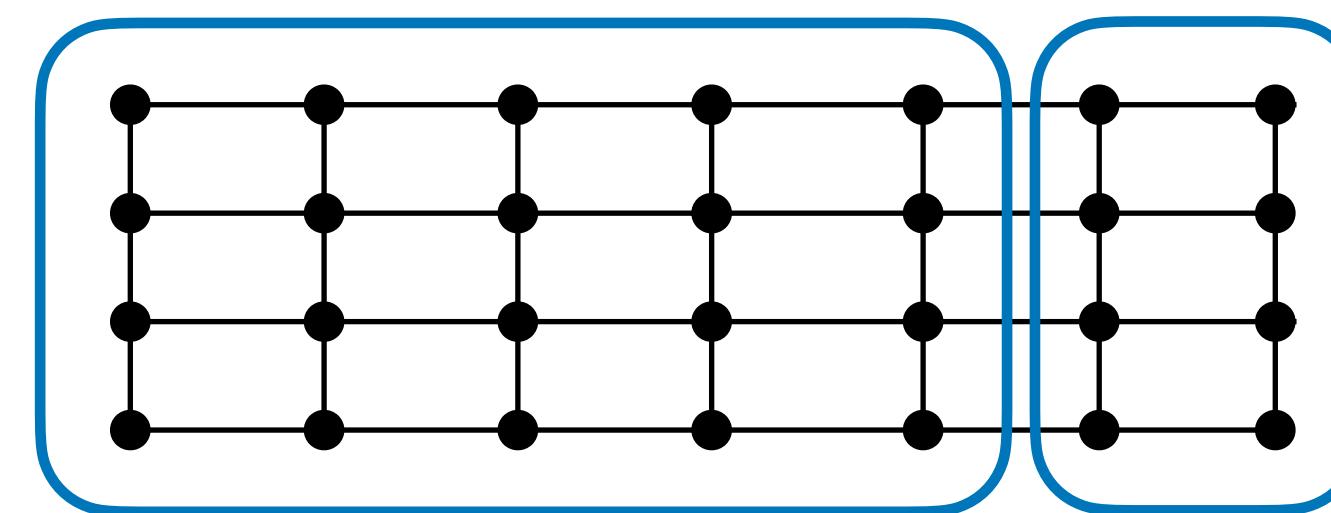
[GS20]: Measurement results from grid state determine whether $g_1 \dots g_n = I$ or C_3 .

Sample $(P_1, \dots, P_m) \leftarrow \gamma(g_1, \dots, g_n)$

Round 1:

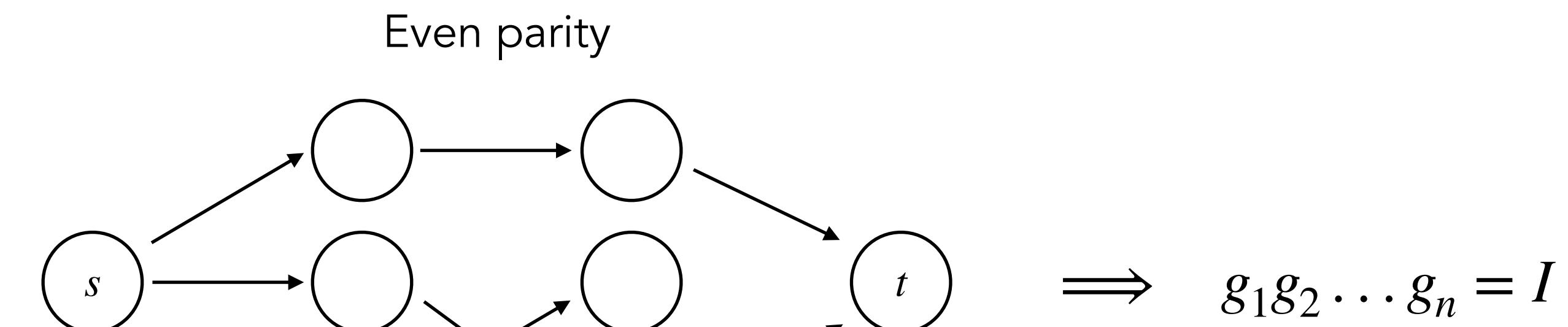
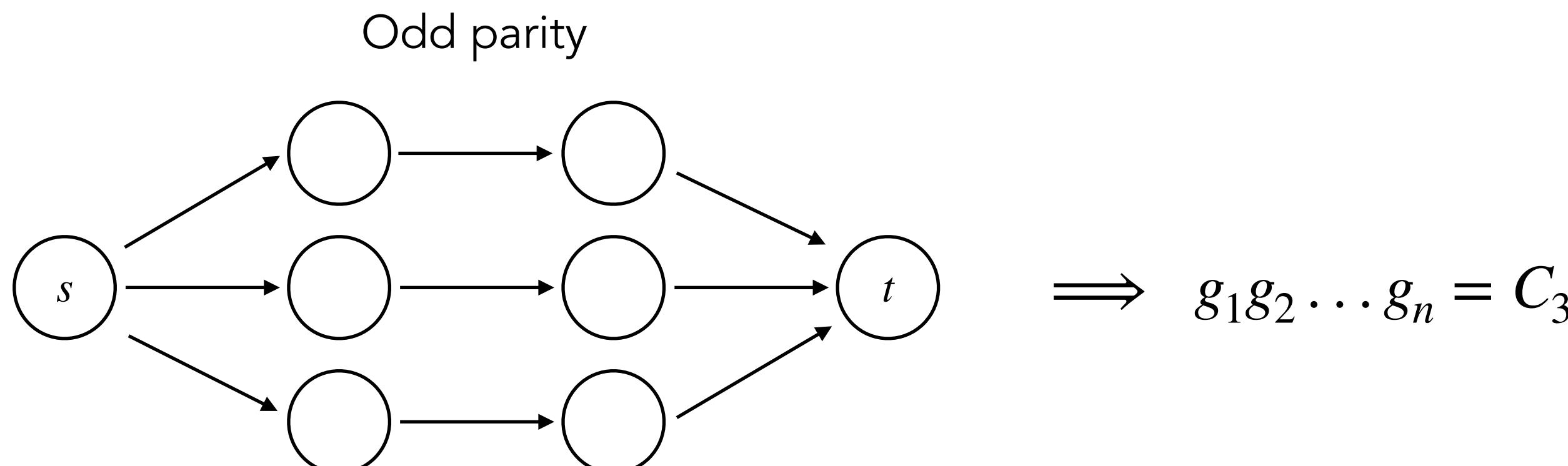
$$x_1 = P_1, \dots, P_m$$

Round 2:



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.



[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.

[GS20]: Measurement results from grid state determine whether $g_1 \dots g_n = I$ or C_3 .

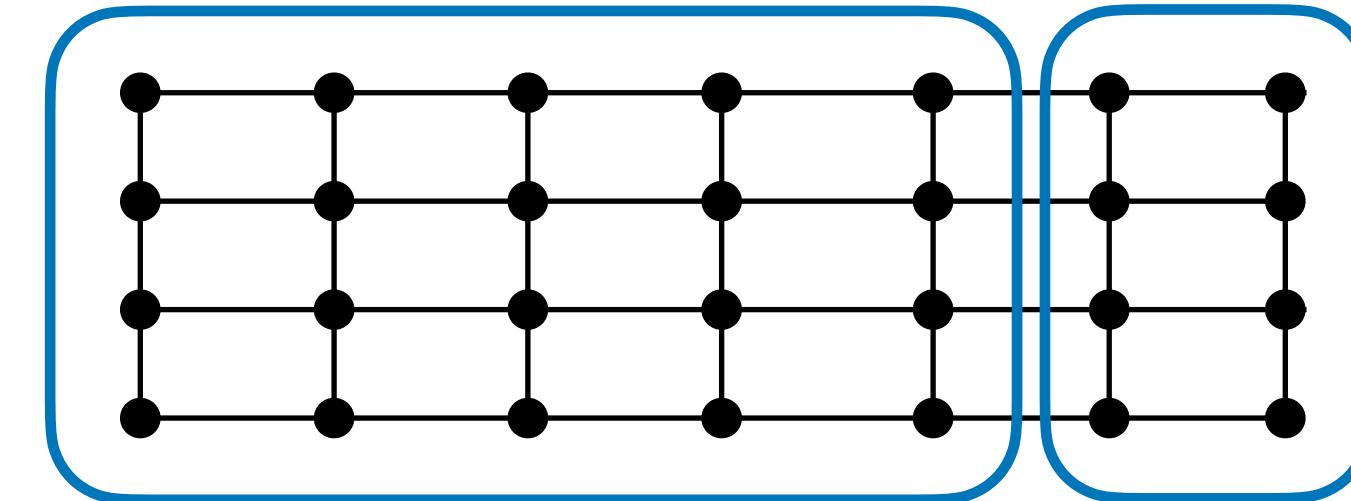
Sample $(P_1, \dots, P_m) \leftarrow \gamma(g_1, \dots, g_n)$

Round 1:

$$x_1 = P_1, \dots, P_m$$

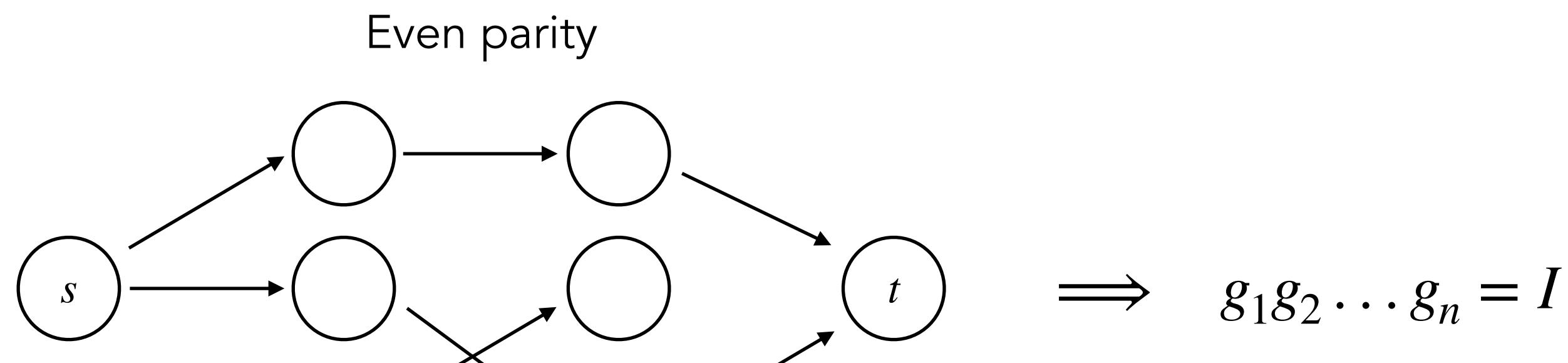
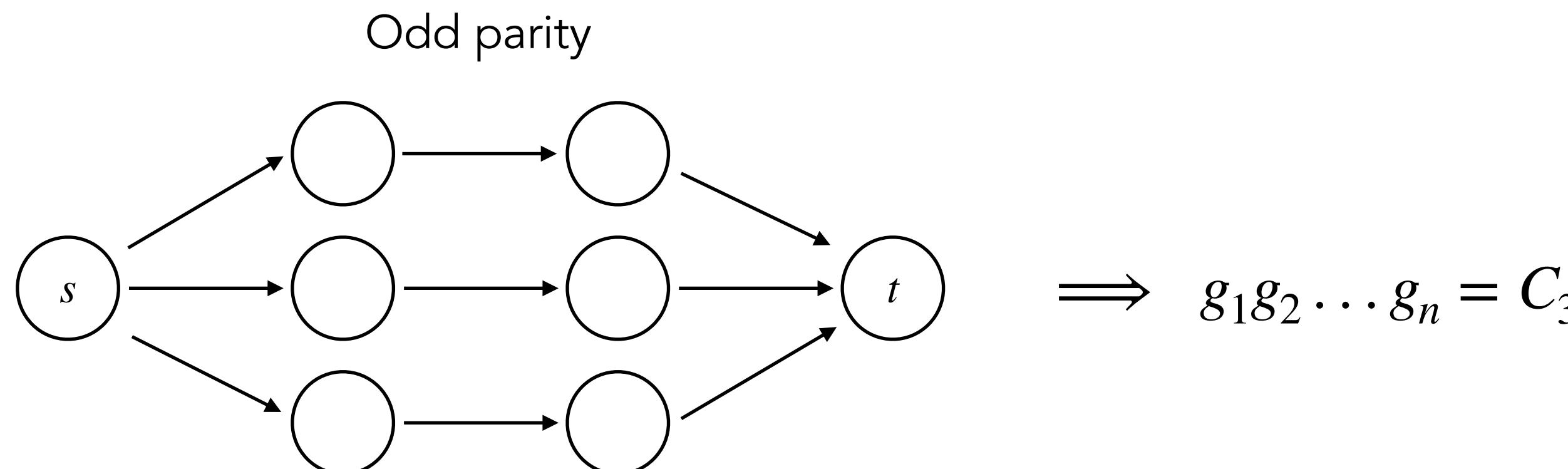
Round 2:

$$x_2$$



Worst-case $\oplus L$ -hard problems

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.



[GS20]: It is also $\oplus L$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.

[GS20]: **Measurement results from grid state determine whether $g_1 \dots g_n = I$ or C_3 .**

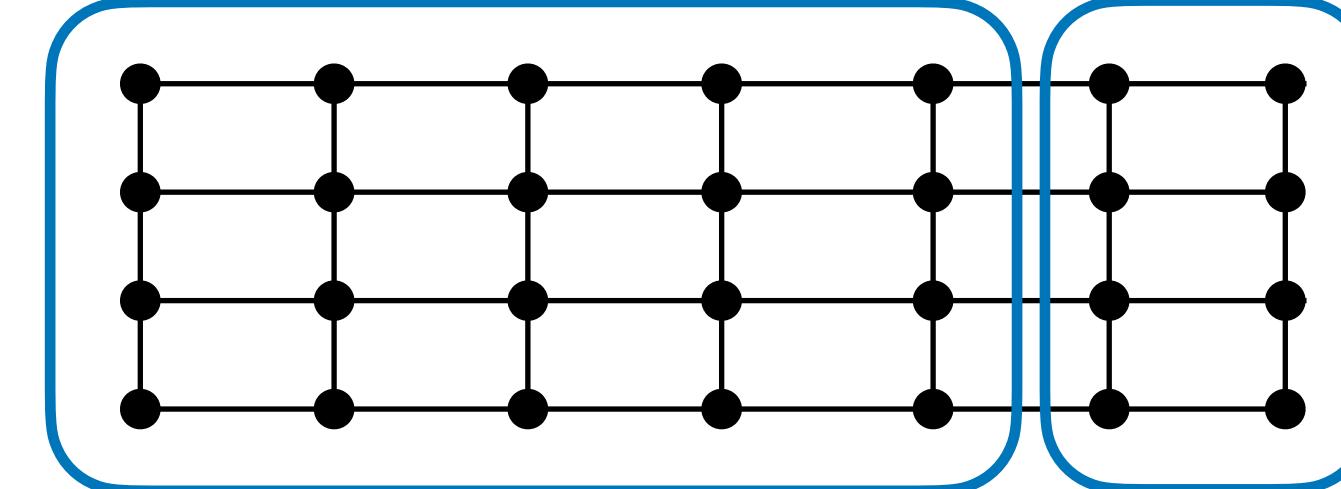
Sample $(P_1, \dots, P_m) \leftarrow \gamma(g_1, \dots, g_n)$

Round 1:

$$x_1 = P_1, \dots, P_m$$

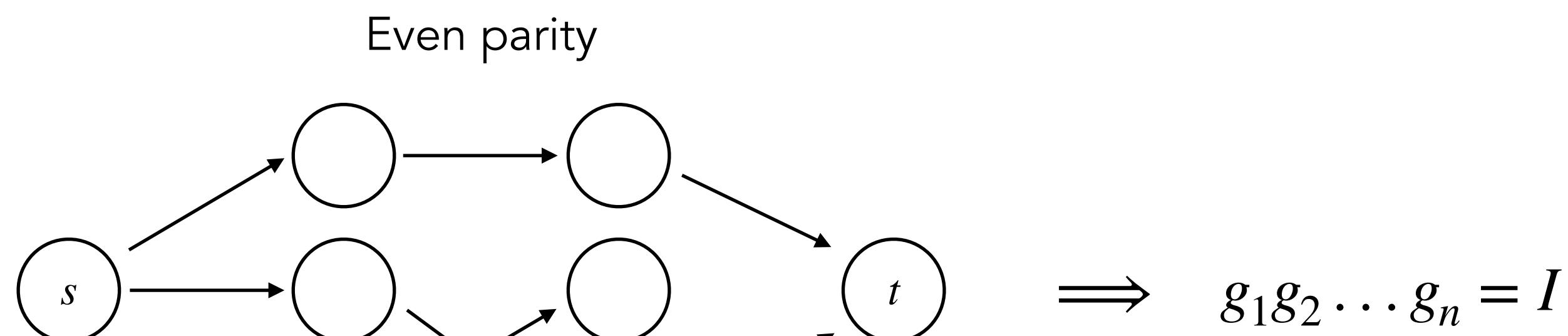
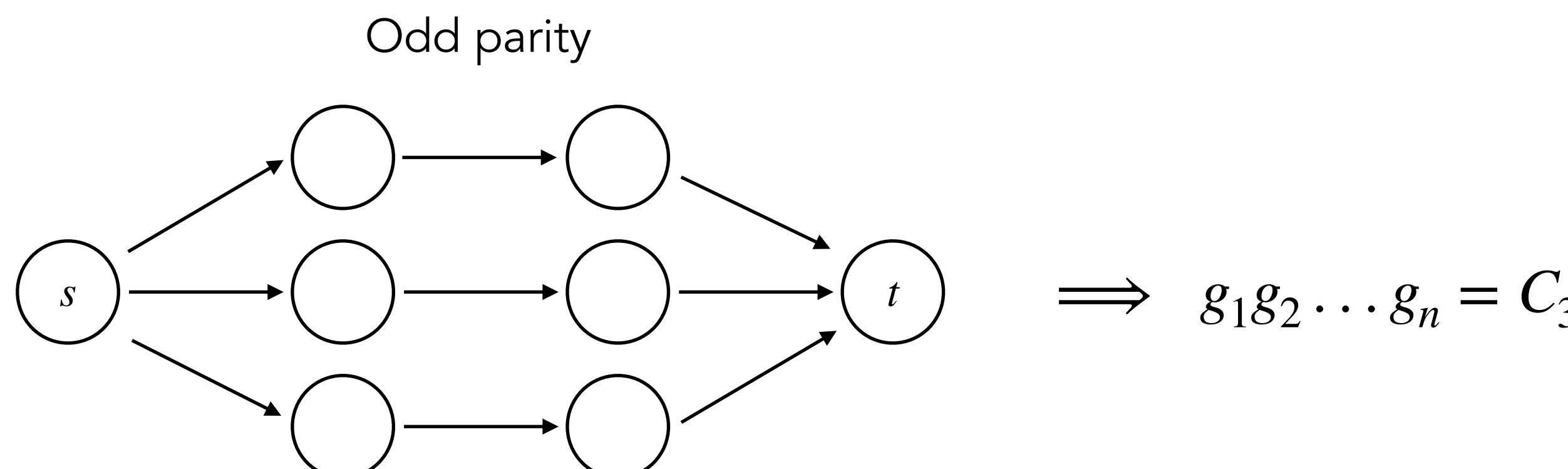
Round 2:

$$x_2$$



Worst-case $\oplus\text{L}$ -hard problems

It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in a (layered) DAG.



[GS20]: It is also $\oplus\text{L}$ -hard to determine whether CNOT gates g_1, \dots, g_n multiply to 3-cycle or identity.

[GS20]: **Measurement results from grid state**
determine whether $g_1 \dots g_n = I$ **or** C_3 .

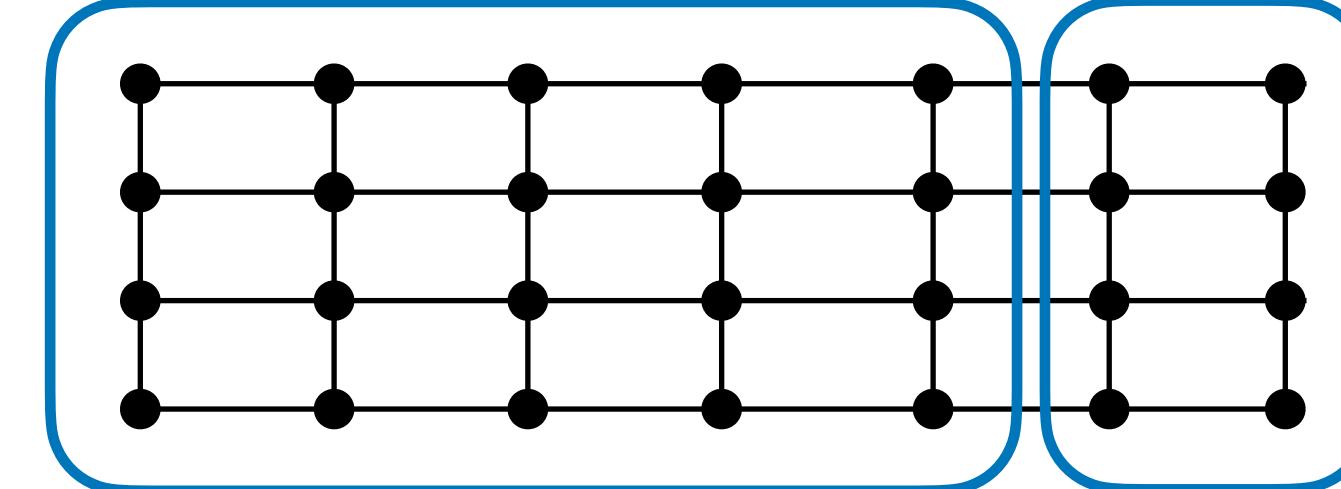
Sample $(P_1, \dots, P_m) \leftarrow \gamma(g_1, \dots, g_n)$

Round 1:

$$x_1 = P_1, \dots, P_m$$

Round 2:

$$x_2$$



Problem: This only gives us worst-case $\oplus\text{L}$ -hardness:
 $\gamma(g_1, \dots, g_n)$ does not produce "random" instances to first round input

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

Layered DAGs

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

Layered DAGs

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

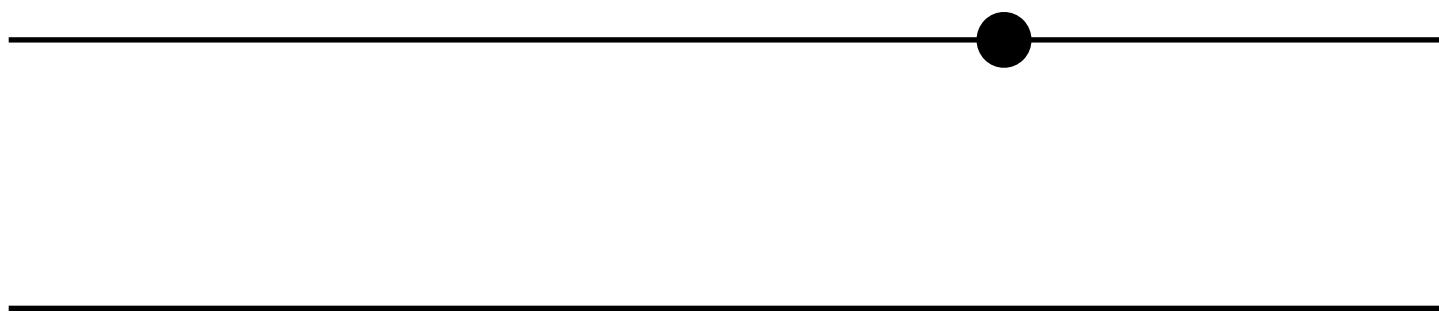
Layered DAGs

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



Layered DAGs

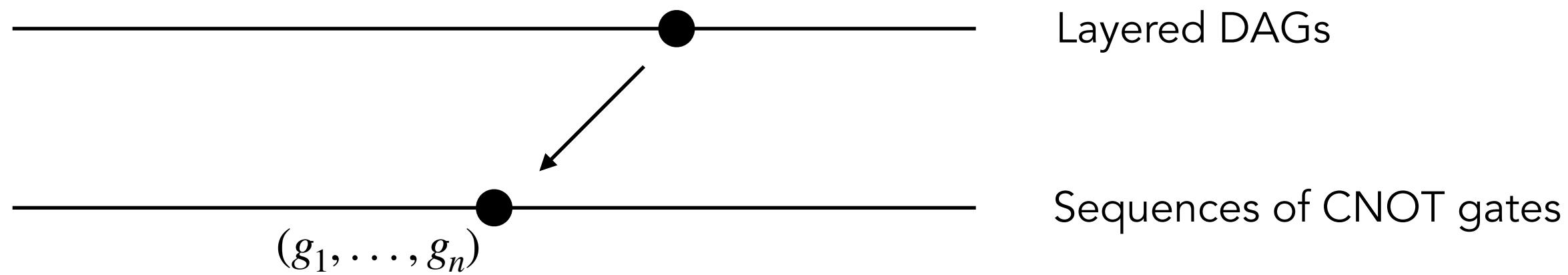
Sequences of CNOT gates

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

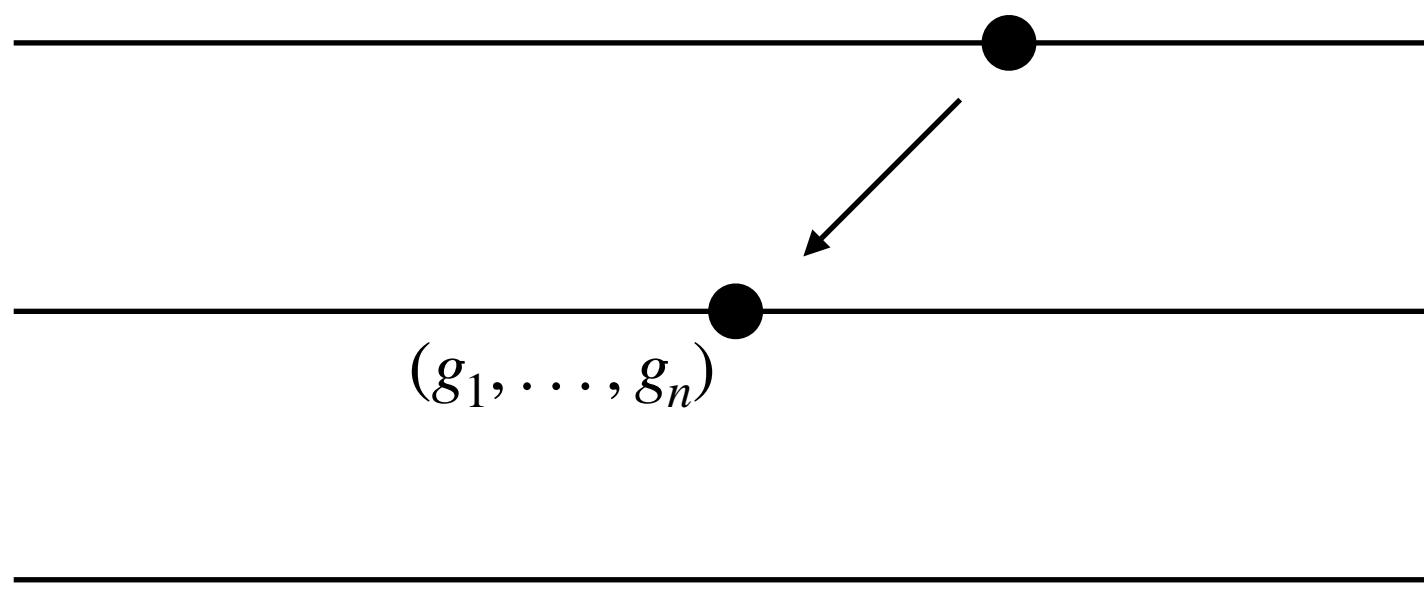


It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



Layered DAGs

Sequences of CNOT gates

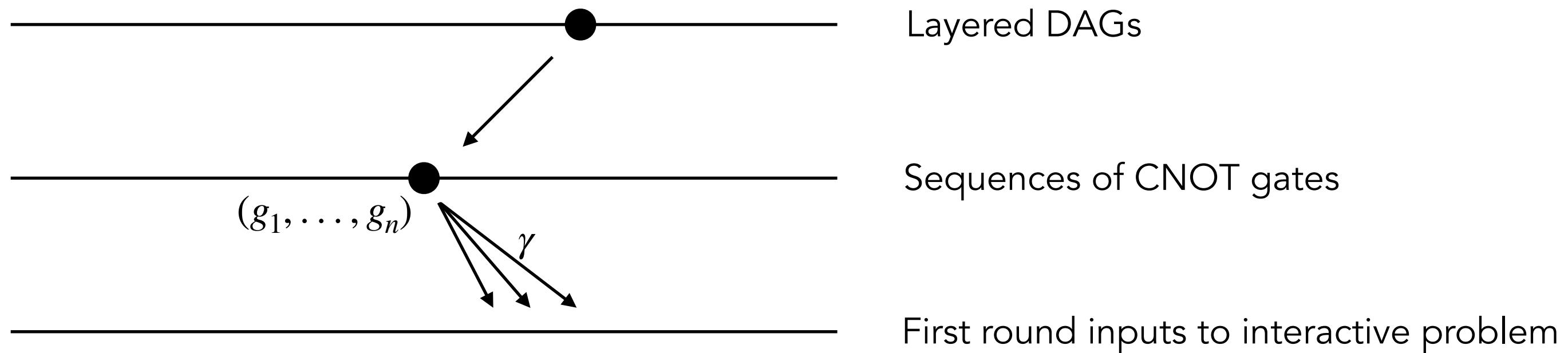
First round inputs to interactive problem

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

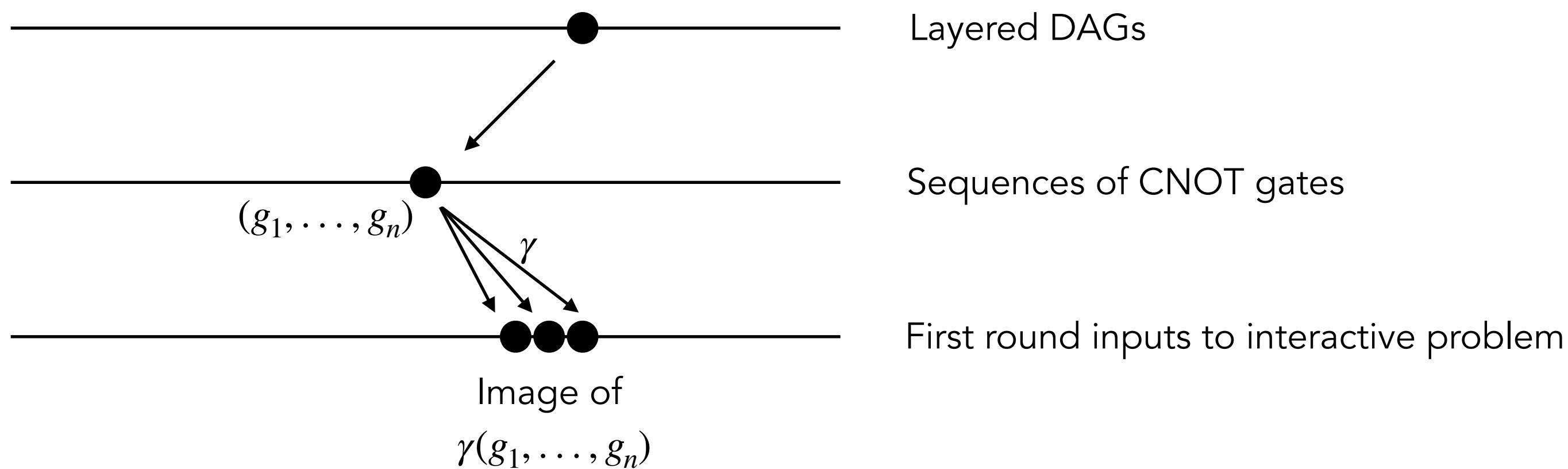


It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

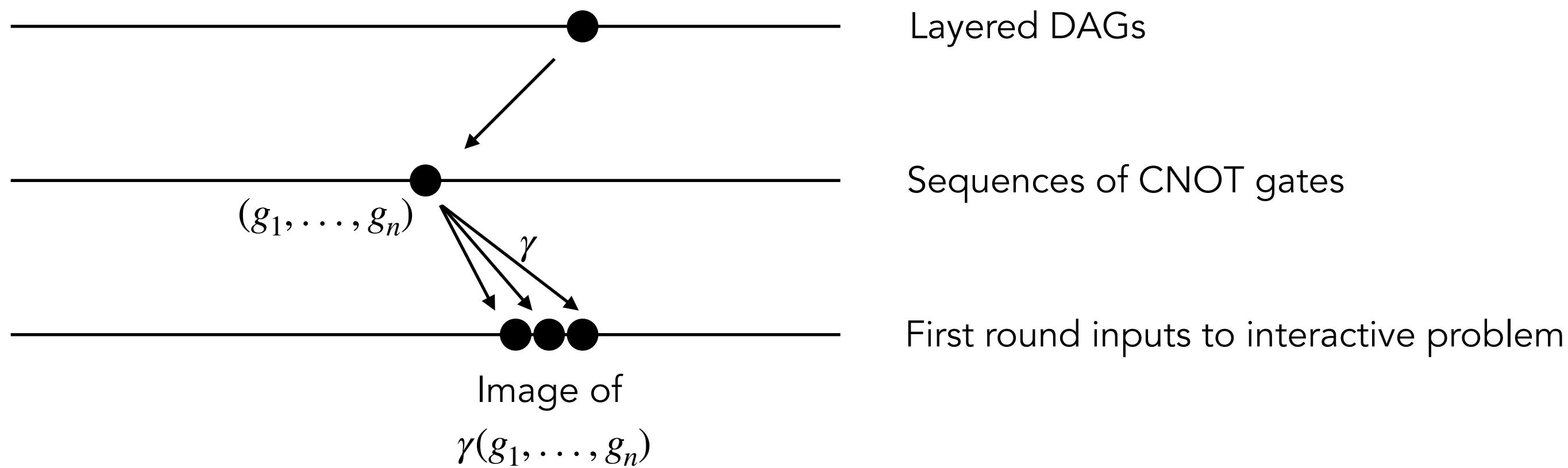


It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



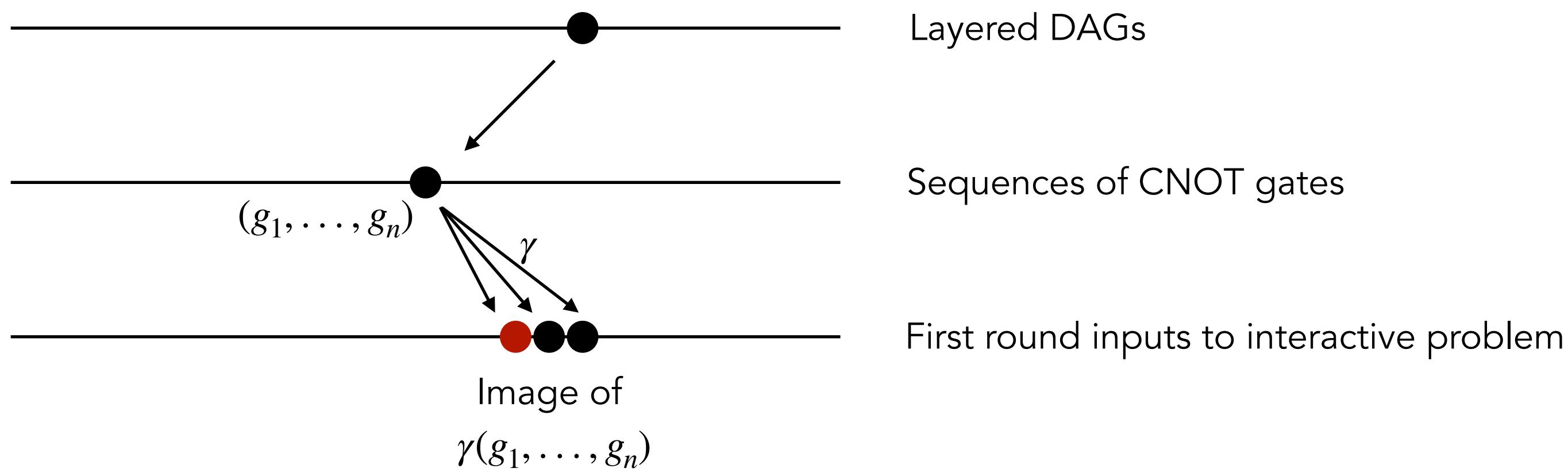
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



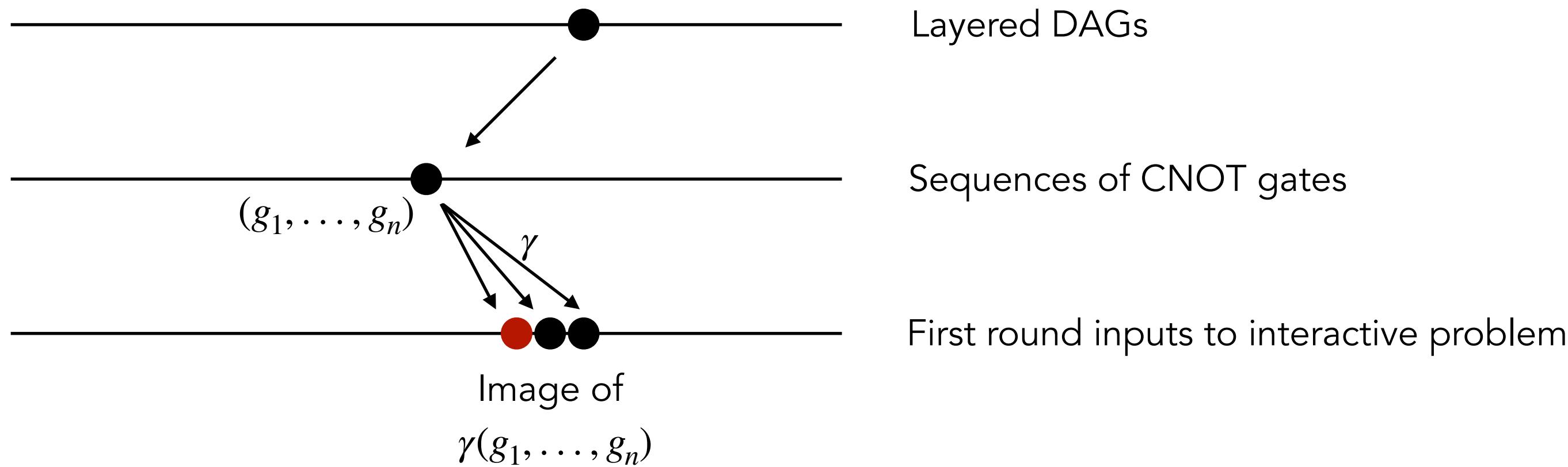
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



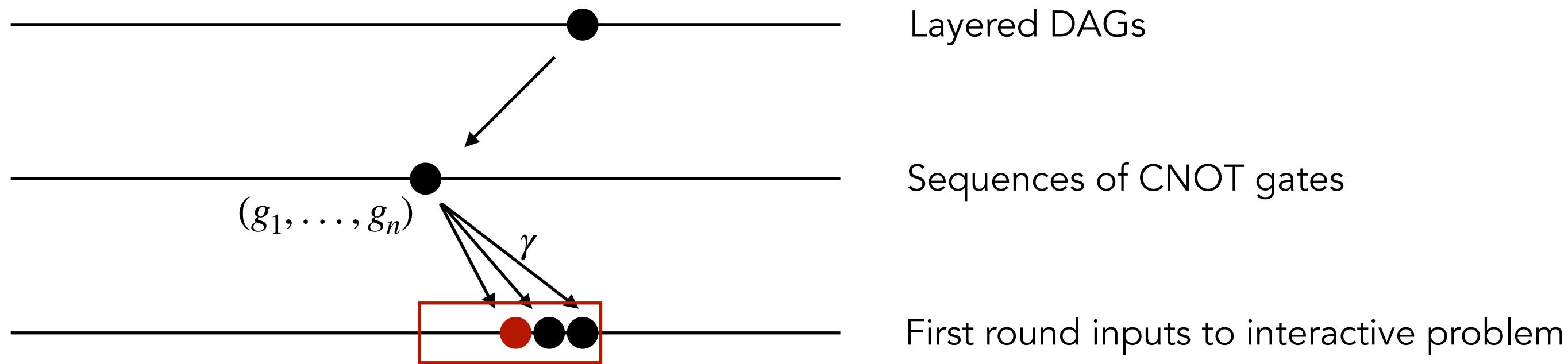
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



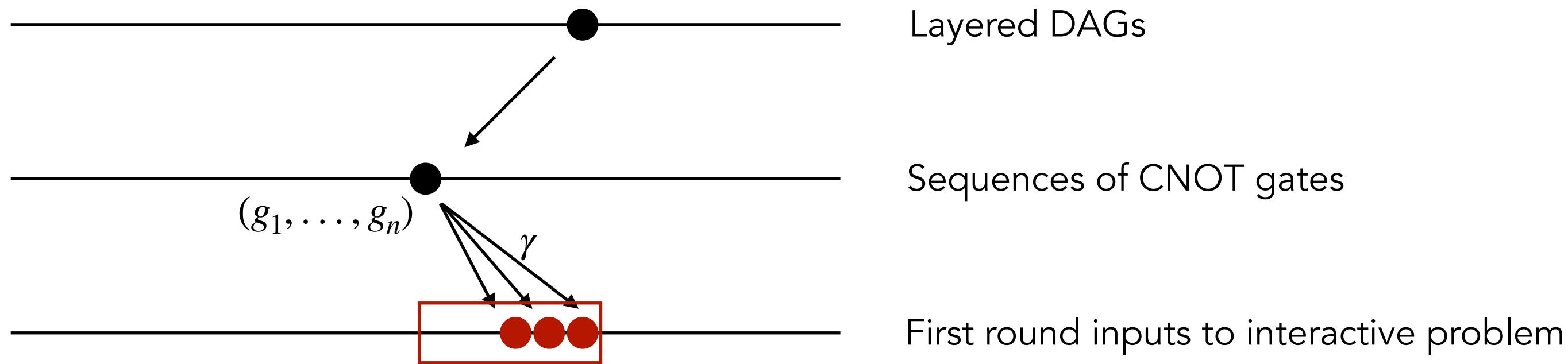
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



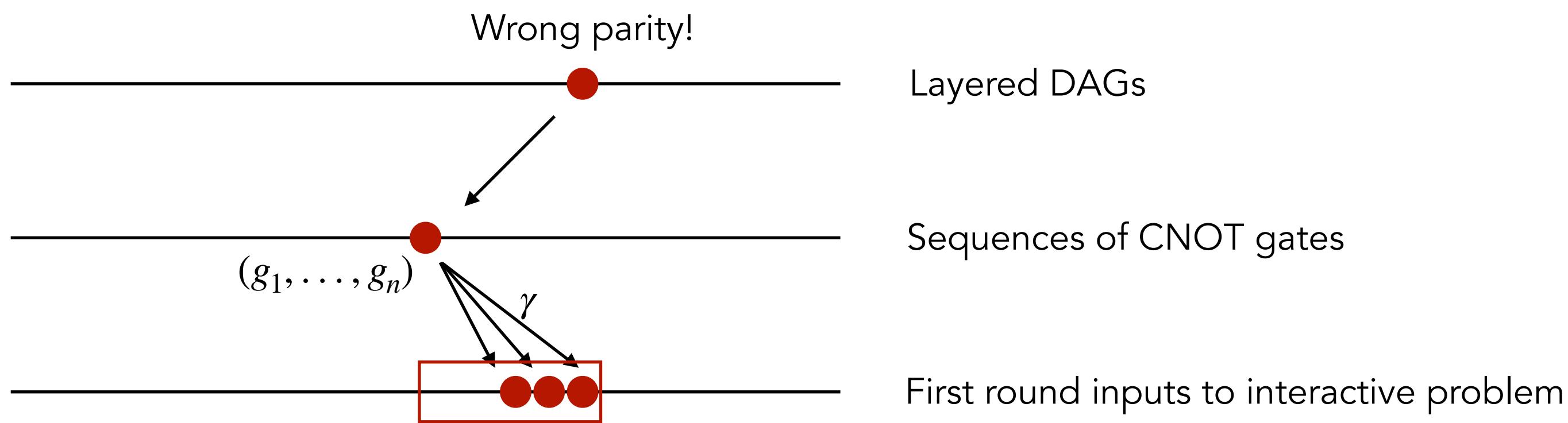
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



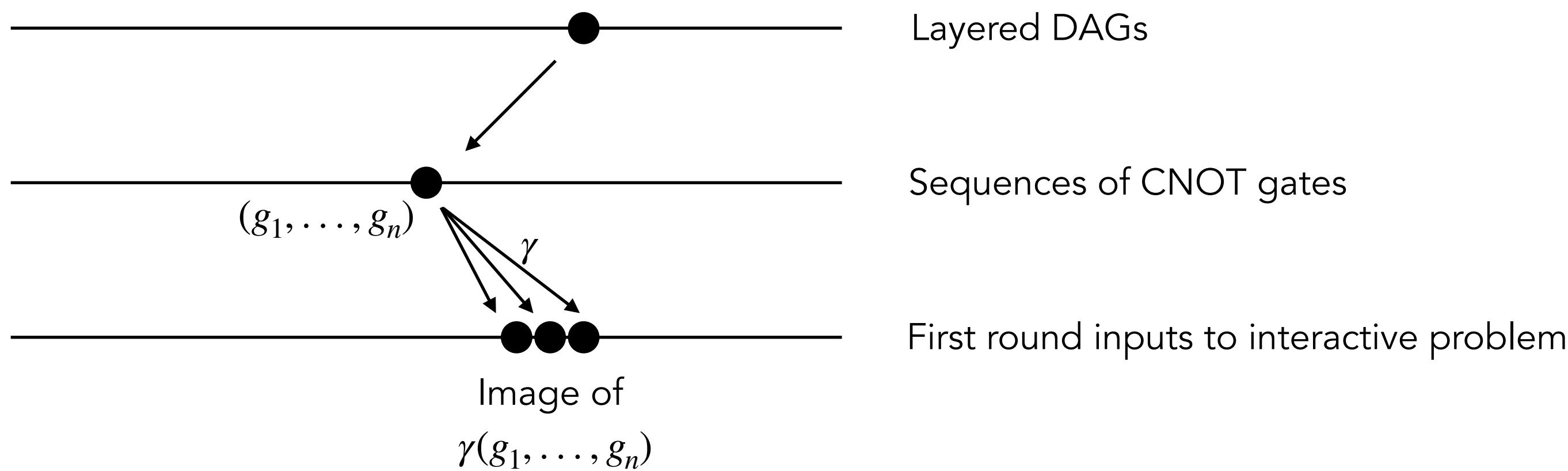
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



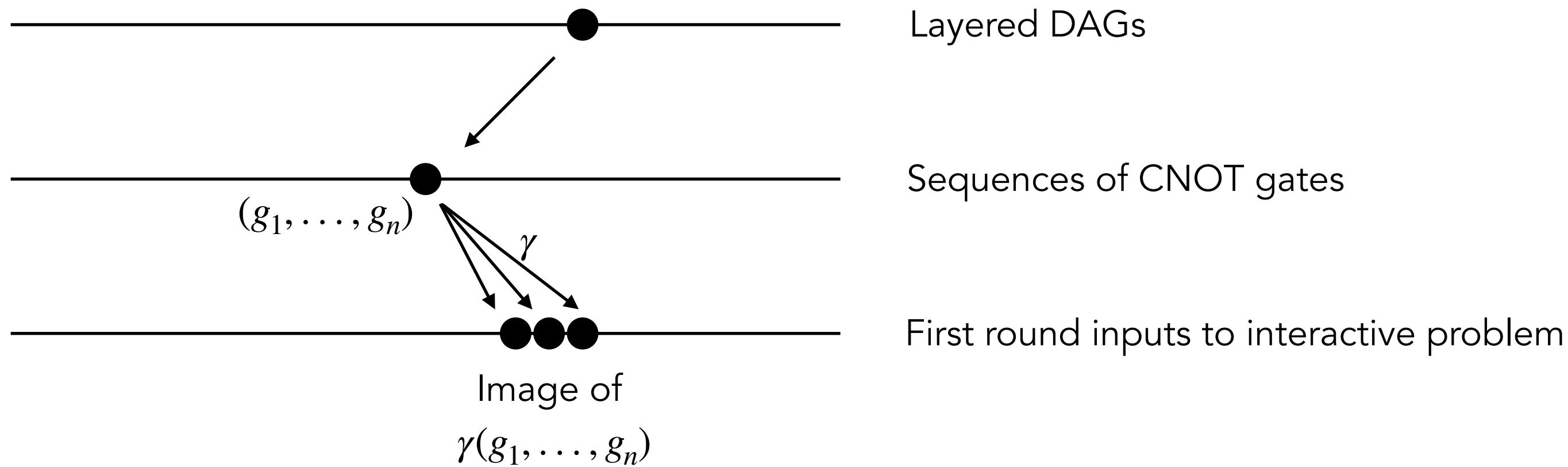
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in general DAGs.

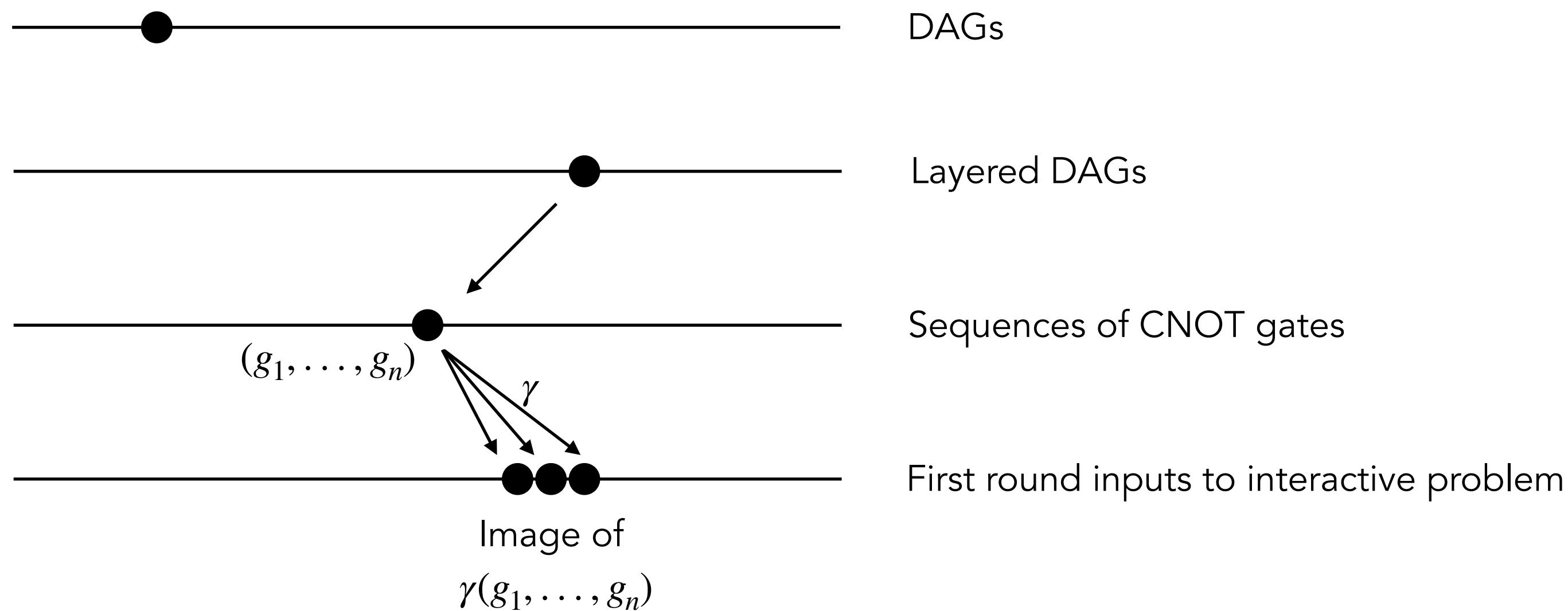
It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



It is \oplus L-hard to determine the parity of the number of $s \rightarrow t$ paths in general DAGs.

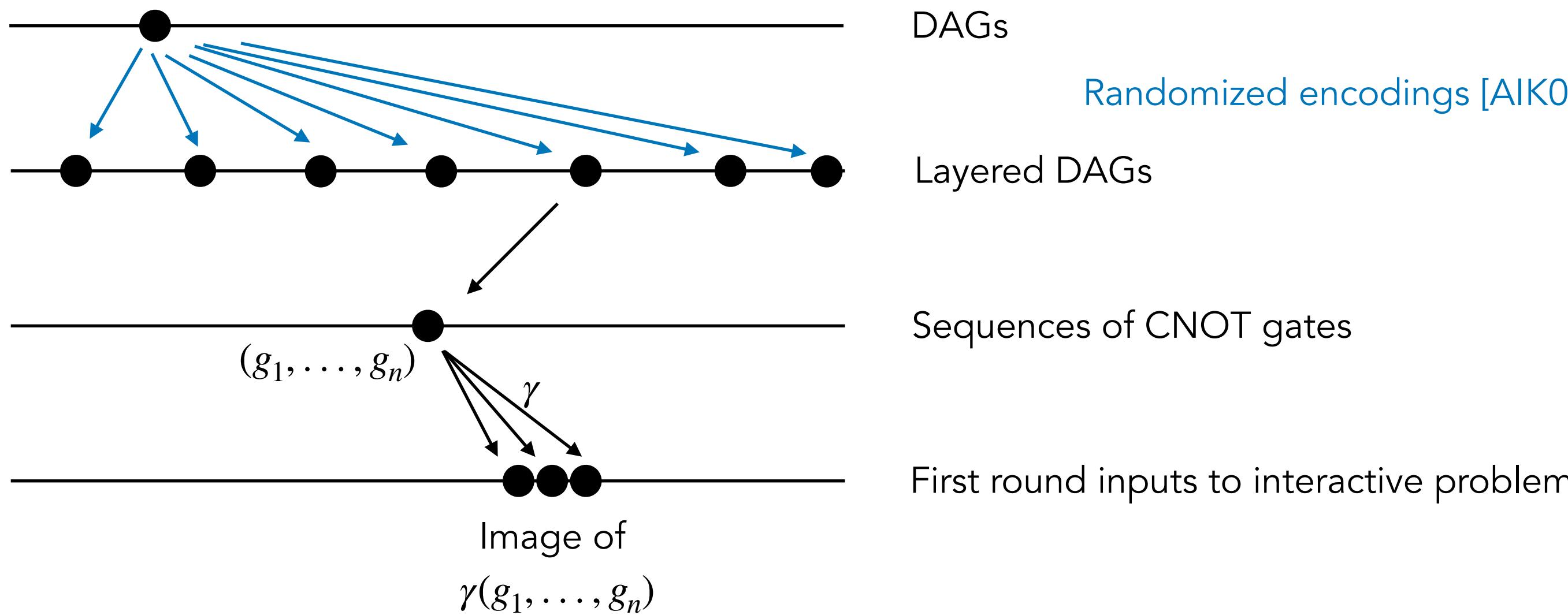
It is \oplus L-hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is \oplus L-hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in general DAGs.

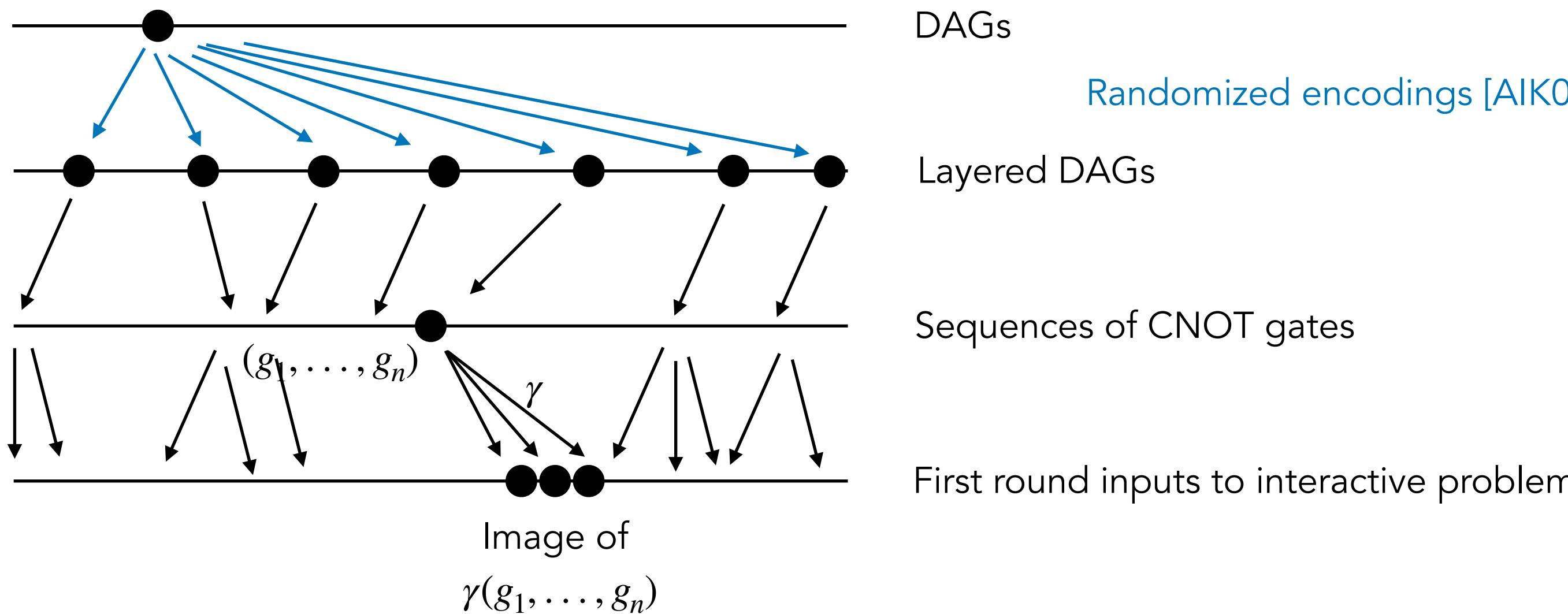
It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input



It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in general DAGs.

It is $\oplus\text{L}$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus\text{L}$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

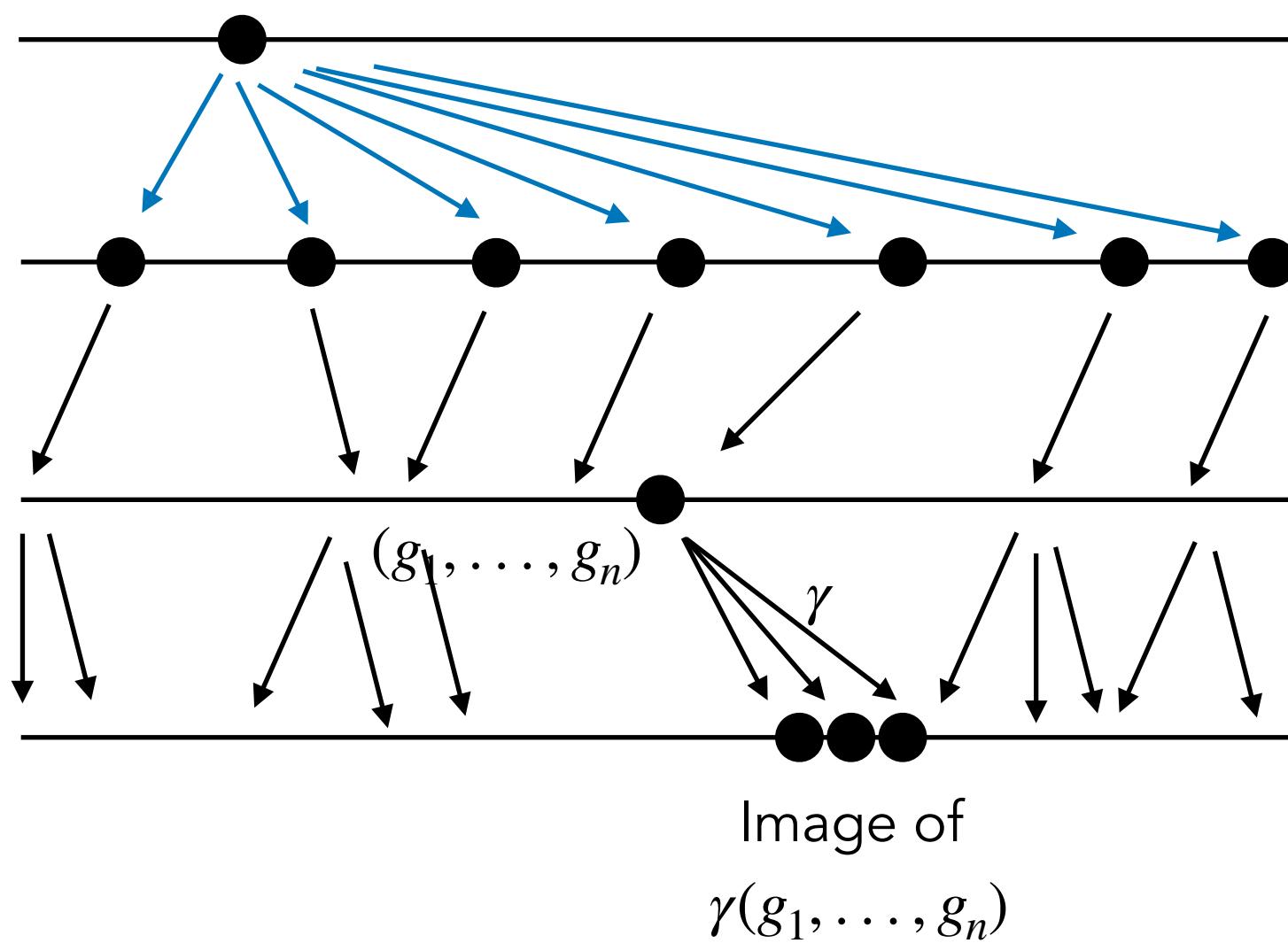
We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

The worst-to-average-case reduction

Problem: $\gamma(g_1, \dots, g_n)$ does not produce “random” instances to first round input

Average-case $\oplus L$ -hard:

Let \mathcal{R} be a classical probabilistic machine that solves the interactive task w/p 420/421 over uniform input. Then $\oplus L \subseteq (AC^0)^{\mathcal{R}}$.



DAGs

Randomized encodings [AIK06]

Layered DAGs

Sequences of CNOT gates

First round inputs to interactive problem

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in general DAGs.

It is $\oplus L$ -hard to determine the parity of the number of $s \rightarrow t$ paths in layered DAGs.

It is $\oplus L$ -hard to determine whether g_1, \dots, g_n multiplies to 3-cycle or identity.

We prove a robustness to small error within the image of $\gamma(g_1, \dots, g_n)$. But this is not enough to prove average-case hardness.

Conclusion

- Simulating grid state measurements is **average-case $\oplus L$ -hard** (in some sense)
- Reuse noise-tolerance ideas from [BGKT] to show that a noisy quantum circuit can solve a related grid state measurement task while remaining hard for classical machines

Conclusion

- Simulating grid state measurements is **average-case $\oplus L$ -hard** (in some sense)
- Reuse noise-tolerance ideas from [BGKT] to show that a noisy quantum circuit can solve a related grid state measurement task while remaining hard for classical machines

Unconditional separation between noisy QNC^0 circuits and $\text{AC}^0[p]$ circuits

Conditional separation between noisy QNC^0 circuits and log-space machines

Open problems. Questions?

- We show a $\oplus L$ -hardness threshold of $420/421$. Can we go lower than this?
 - Worst-to-average-case reductions with stronger randomization?
 - Direct product theorems?
- We have unconditional, noisy separations for relation and interactive problems against constant-depth classical circuits. What about other types of problems, e.g., sampling?
- Can we base our conditional result on simply $\oplus L \neq L$?