
Compilation of Fault-Tolerant �antum Heuristics
for Combinatorial Optimization

Yuval Sanders1, Dominic Berry1, Pedro Costa1, Louis Tessler1, Nathan Weibe2, Craig Gidney3,
Hartmut Neven3, and Ryan Babbush3

1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.
2Department of Computer Science, University of Toronto, Toronto, ON M5S, Canada.

3Google, Los Angeles, CA 90291, United States.

We compile explicit circuits and evaluate the computational cost for heuristic-based quantum algorithms for
combinatorial optimization. We consider several variants of quantum-accelerated simulated annealing as well as
adiabatic algorithms, quantum-enhanced population transfer, the quantum approximate optimization algorithm,
and other approaches. We provide novel methods for executing the bo�leneck subroutines for these heuristics, and
our methods can easily be applied to other algorithms where numerical performance ma�ers. We estimate how
quickly the subroutines could be executed on a modestly sized superconducting-qubit-based quantum computer
with surface code error correction. We conclude that quadratic speedups for heuristic-based quantum optimization
algorithms are insu�cient for early quantum computers to beat present day classical computers.

Much corporate interest in quantum technology is driven by the prospect of faster combinatorial optimization
on a quantum computer. Combinatorial optimization problems are in general NP-hard, so it is not reasonable to
expect quantum computers to provide e�cient solutions in the worst case. Instead, the hope is that a quantum com-
puter may deliver signi�cantly be�er performance in the typical case, where performance is measured in terms of
runtime or expected accuracy of an approximate solution. Ideas for such approches include the quantum approxi-
mate optimization algorithm (QAOA) [FGG14], the adiabatic algorithm [Far+00], and quantum-simulated annealing
(QSA) [Som+08]. Previous work has focussed on high-level designs for which there is a likely asymptotic speedup
over classical approaches, but this prior work does not provide explicit gate counts that allow for direct comparision
between quantum and classical computers.

We compare the cost of implementing bo�leneck subroutines for various quantum heuristics for combinatorial
optimization. We consider four kinds of combinatorial optimization problem: the 𝐿-term spin model, �adratic Un-
constrainted Binary Optimization (QUBO), the Sherrington-Kirkpatrick (SK) model, and the Low Autocorrelation
Binary Sequences (LABS) problem. In each case we compile several bo�leneck primitives: amplitude ampli�ca-
tion using the problem oracle, steps for QAOA, the Hamiltonian walk operator for the adiabatic algorithm, QSA via
qubitized Metropolis-Hastings update [Lem+20], and QSA via adiabatic evolution of a spectral-gap-ampli�ed Hamil-
tonian [BOS15]. We then estimate how many of these steps could be executed during a set period of time (either one
hour or one day) on a surface-code quantum computer for SK and LABS; our results are summarised in Table 1.

Problem Algorithm Primitive Steps/Day Physical �bits To�oli Cost

SK

Amplitude Ampli�cation 4.8 × 103 8.1 × 105 2𝑁 2 + 𝑁 +O(log𝑁)
QAOA / 1st order Tro�er 4.7 × 103 8.6 × 105 2𝑁 2 + 4𝑁 +O(1)

Hamiltonian Walk 3.3 × 105 8.0 × 105 6𝑁 +O(log2 𝑁)
QSA /�bitized 3.3 × 105 8.4 × 105 5𝑁 +O(log𝑁)

QSA / Gap Ampli�cation 3.9 × 105 8.4 × 105 5𝑁 +O(log𝑁)

LABS

Amplitude Ampli�cation 3.3 × 103 8.0 × 105 5𝑁 2/2 + 7𝑁 /2 +O(log𝑁)
QAOA / 1st order Tro�er 3.4 × 103 8.4 × 105 5𝑁 2/2 +O(𝑁)

Hamiltonian Walk 4.9 × 105 8.0 × 105 4𝑁 +O(log𝑁)
QSA /�bitized 1.7 × 103 8.8 × 105 5𝑁 2 +O(𝑁)

QSA / Gap Ampli�cation 1.7 × 103 8.8 × 105 5𝑁 2 +O(𝑁)

Table 1: A snapshot of our results for SK and LABS. �e numerical values are based on a problem size of 𝑁 = 256, a
surface code cycle time of one microsecond, and an error rate of 10−3 per physical gate. Here 𝑁 refers to the number
of bits needed to specify a candidate solution for the combinatorial optimization problem. We assume all arithmetic
is performed to constant precision; our technical manuscript [San+20] has results for variable precision arithmetic.

1

When compiling the bo�leneck primitives, we make a large number of improvements to previous approaches.
Underlying these improvements, we frequently �nd the need to manage the amount of arithmetic the quantum com-
puter needs to do. As we focus on heuristic methods of optimisation, we expect that it will be preferable to sacri�ce
precision in coherent function evaluation on a quantum computer if it means we �nd a signi�cant computational
cost savings in the execution of a heuristic step. To take the most thoroughly investigated example [San+20, Fig. 5],
we expect that we do not need high precision when calculating the probability of transitioning between candidate
solutions during simulated annealing. We can improve performance by sacri�cing precision.

Ourmost impactful contribution is therefore our technique for approximate function evaluation [San+20, Sec. II.E].
�e idea is an old one. Instead of requiring the quantum computer to calculate, say, a high degree polynomial in order
to approximate the exponential function, we provide the quantum computer with a precomputed lookup table stored
as a QROM array [Bab+18]. �e quantum computer would then approximate a function 𝑓 by testing whether its
argument, 𝑥 , is between 𝑘𝛿 and (𝑘 + 1)𝛿 for some predetermined grid spacing 𝛿 and an integer 𝑘 . Depending on the
value of 𝑘 , the lookup table provides the data needed to calculate a linear approximation of 𝑓 :

𝑓 (𝑥) ≈ 𝑓 (𝑘𝛿) +𝑚𝑘 (𝑥 − 𝑘𝛿) . (1)

Given 𝑘 , the lookup table would provide the values for 𝑓 (𝑘𝛿) and𝑚𝑘 . Note that QROM is able to return an unbound-
edly large amount of data for no additional To�oli cost because the readout is done with CNOTs. �e computational
cost of calculating 𝑥 − 𝑘𝛿 can be made zero by se�ing 𝛿 to be a power of two and encoding 𝑥 in binary.

�emain computational cost in terms of To�olis comes from themultiplication, which can be performed to limited
precision and is considerably simpler than the original function. �e other cost comes from the QROM, which has a
To�oli cost corresponding to the number of points used in the interpolation. We are able to make that cost remarkably
small by using variable spacing in the interpolation, with larger regions where the function is more slowly varying.

We also highlight our techniques for executing QSA, which demonstrate the application of a low-arithmetic
method for performing state preparation based on inequality testing [San+19]. For example, we compile [San+20,
pp. 37-38] the Szegedy walk suggested by Somma et al. [Som+08] using the inequality testing technique. In step 7,
which is the key step, we show how to prepare the proper amplitudes (the square roots of the transition probabilities
𝑝) using an inequality test between the computed transition probabilities and a register prepared in an even super-
position of possible values 𝑧. We save a great deal of arithmetic by testing the inequality 𝑧2 < 𝑝 rather than 𝑧 <

√
𝑝

and thereby avoid the need to calculate √𝑝 .
Unfortunately, the Somma et al. walk operator requires us to calculate the probability for each possible transition,

which dominates the cost of execution. A be�er idea is to use a quantum version of Metropolis-Hastings developed
by Lemieux et al. [Lem+20], which requires only one coherent calculation of a transition probability per walk step.
�e method as proposed in Lemieux et al. [Lem+20] would be exponentially ine�cient for the optimization problems
we consider, because they have high connectivity. We are able to overcome that problem by using our lookup-based
function approximation technique [San+20, Eq. (193)], thereby achieving a highly computationally e�cient method
for combinatorial optimization.

Having compiled these various approaches to heuristic-based combinatorial optimization on a quantum computer,
we evaluate [San+20, p. 24] the computational cost of each primitive in terms of the number of non-Cli�ord gates
(usually To�oli gates) as well as the additional space cost. Finally, we estimate the number of times a surface code
quantum computer could execute these algorithm primitives in a given unit of time (one hour or one day) given the
physical error rate of the quantum computer (10−3 or 10−4 per physical gate), as well as the number of physical qubits
needed. Under various assumptions about the workings of the surface code (described in [San+20, Sec. IV]), we expect
that one To�oli takes about 170 µs and 150,000 physical qubits [GF19]. We then calculate the runtime of our various
algorithm primitives. Again, we present indicative results in Table 1.

Because of the signi�cant overhead incurred by the surface code, we �nd discouraging estimates for heuristic-
based combinatorial optimization on a million-qubit quantum computer. To take one classical benchmark [Isa+15], it
is possible to execute 5× 1011 steps of simulated annealing for an 𝑁 = 512 SK instance on a classical computer in one
hour whereas we estimate that the quantum computer could only execute 8 × 103 [San+20, p. 51] in the same time.
�e primary cause of this discrepancy is the large overheads incurred by performing error correction for physical
error rates of 10−4 or worse. Without signi�cantly lower error rates or much more e�cient error correction, we are
forced to conclude that the reported quadratic speedups for existing quantum algorithms are unlikely to allow even
a million-qubit quantum computer to outperform today’s classical computers at combinatorial optimization.

2

References
[Bab+18] Ryan Babbush et al. “Encoding Electronic Spectra in�antum Circuits with Linear T Complexity”. In: Phys. Rev. X

8 (Oct. 2018), p. 041015. doi: 10.1103/PhysRevX.8.041015.
[BOS15] S. Boixo, G. Ortiz, and R. Somma. “Fast quantum methods for optimization”. In: �e European Physical Journal

Special Topics 224 (2015), pp. 35–49. doi: 10.1140/epjst/e2015-02341-5.
[Far+00] Edward Farhi et al. �antum Computation by Adiabatic Evolution. Jan. 2000. arXiv: quant-ph/0001106.
[FGG14] Edward Farhi, Je�rey Goldstone, and Sam Gutmann. A �antum Approximate Optimization Algorithm. Nov. 2014.

arXiv: 1411.4028 [quant-ph].
[GF19] Craig Gidney andAustin G. Fowler. “E�cientmagic state factories with a catalyzed |𝐶𝐶𝑍> to 2|𝑇> transformation”.

In:�antum 3 (Apr. 2019), p. 135. doi: 10.22331/q-2019-04-30-135.
[Isa+15] S.V. Isakov et al. “Optimised simulated annealing for Ising spin glasses”. In: Computer Physics Communications 192

(2015), pp. 265–271. doi: 10.1016/j.cpc.2015.02.015.
[Lem+20] Jessica Lemieux et al. “E�cient �antum Walk Circuits for Metropolis-Hastings Algorithm”. In: �antum 4 (June

2020), p. 287. doi: 10.22331/q-2020-06-29-287.
[San+19] Yuval R. Sanders et al. “Black-Box�antum State Preparation without Arithmetic”. In: Physical Review Le�ers 122

(2 Jan. 2019), p. 020502. doi: 10.1103/PhysRevLett.122.020502.
[San+20] Yuval R. Sanders et al. “Compilation of Fault-Tolerant �antum Heuristics for Combinatorial Optimization”. In:

PRX�antum 1 (Nov. 2020), p. 020312. doi: 10.1103/PRXQuantum.1.020312.
[Som+08] R. D. Somma et al. “�antum Simulations of Classical Annealing Processes”. In: Physical Review Le�ers 101 (Sept.

2008), p. 130504. doi: 10.1103/PhysRevLett.101.130504.

3

https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1140/epjst/e2015-02341-5
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/1411.4028
https://doi.org/10.22331/q-2019-04-30-135
https://doi.org/10.1016/j.cpc.2015.02.015
https://doi.org/10.22331/q-2020-06-29-287
https://doi.org/10.1103/PhysRevLett.122.020502
https://doi.org/10.1103/PRXQuantum.1.020312
https://doi.org/10.1103/PhysRevLett.101.130504

