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QUADRATIC SPEEDUPS APPEAR  

INSUFFICIENT 
FOR EARLY QUANTUM COMPUTERS 
TO BEAT CLASSICAL 
AT COMBINATORIAL OPTIMISATION
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Conclusions & Future Work

OVERVIEW

Aimed at people who 
haven’t seen our work.

Aimed at people who want a 
deep dive into our techniques.
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MOTIVATION & 
BACKGROUND
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Roughly: Given diagonal  Hamiltonian, find a ground state.


Key examples: {travelling salesman, minimum spanning tree, knapsack} problem.


In practice, expect to be satisfied with approach that probably returns near-optimal solution.


The travelling salesman does not need an optimal route, only a good one.


Prototypical classical method: simulated annealing, an heuristic approach.


Many practical applications: logistics, supply-chain optimisation, water distribution, …


Natural place to look for useful quantum algorithms!

2N × 2N

COMBINATORIAL OPTIMISATION
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-term spin model:      (  is injective)


Quadratic Unconstrained Binary Optimisation (QUBO):      (NP-Hard subproblem)


Sherrington-Kirkpatrick (SK):      (subproblem of QUBO)


Low Autocorrelation Binary Sequences (LABS):   

(hard subproblem of -term spin model; best classical algorithm is  and only solved for )

L HL =
L

∑
ℓ=1

wℓ∏
i∈qℓ

Zi wℓ ∈ ℝ, qℓ ⊆ {1,…, N}, ℓ ↦ qℓ

HQUBO = ∑
i≤ j

wij (I − Zi) (I − Zj)
HSK = ∑

i<j

wijZiZj, wij = ± 1

HLABS =
N−1

∑
k=0 (

N−k

∑
i=1

ZiZi+k)
2

N3 Θ(1.73N) N ≤ 66

HAMILTONIAN FAMILIES
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Direct amplitude amplification: Grover-like approach, assume known degeneracy and a threshold 
energy value.


Dumb (treats problem as unstructured), but good reference point.


Quantum Approximate Optimisation Algorithm (QAOA): alternate between evolution under problem 
Hamiltonian and “driver” Hamiltonian, which superposes solutions.


More asymptotically efficient classical approach known [Barak et al., arXiv:1505.03424], 
but maybe QAOA has better constant factors and can be executed on NISQ hardware.


Adiabatic algorithms and quantum-simulated annealing:


Entire textbooks could be written on this. Potentially fruitful research direction!


We focus on compiling ideas already found in the literature. Ongoing work to develop better methods.

QUANTUM HEURISTICS
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APPROACH & RESULTS
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Our results derive from exhaustive compilation of these quantum heuristics.


Compilation consists of three steps:


1. Design “oracle” for the cost function (encode result into register or as phase).


2. Design quantum circuit that uses oracle to perform single step of heuristic.


3. Estimate runtime on surface code quantum computer by estimating # Toffolis.


Our results therefore tell us how many heuristic steps can be performed per unit time. 
They do not tell us how many steps are needed to achieve approximate success with some probability. 
Therefore, we cannot directly compare the results for different heuristics. Our results are performance indicators.

COMPILATION STRATEGY
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SAMPLE OF RESULTS
ಠ_ಠ
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SIMPLIFIED RESULTS

• Number of bits of precision treated as unspecified constant in the rightmost column.

• Boxed numbers can be (sort of) compared to classical simulated annealing via Metropolis-Hastings. 

My laptop beats these numbers by at least two orders of magnitude with no code optimisation. 
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QROM-BASED 
FUNCTION EVALUATION
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Heuristic-based optimisation is bottlenecked by calculating functions of energy.


But our approach is heuristic, meaning we do not need accurate output.


We therefore want function approximation that trades accuracy for speed.


Our approach is based on linear interpolation between lookup points.


This is a very general technique that will be useful for other numerical algorithms.

MOTIVATION
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QROM: a quantum data structure


Return  given classical integer input  
(costs  Toffolis; no dependence on size of )


Can query with arbitrary superposition: 



Main trick: clever iteration through possible inputs.

dℓ ℓ = 0,1,…, L − 1
𝒪(L) dℓ

∑
ℓ

αℓ |ℓ⟩ |0⟩ → ∑
ℓ

αℓ |ℓ⟩ |dℓ⟩

QROM LOOKUP

doi:10.1103/PhysRevX.8.041015

ℓ ↦ ℓ + 1
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LOOKUP & INTERPOLATION
f(x) ≈ f(xℓ) + mℓ(x − xℓ)

Large error when 
2nd derivative is large.

Idea:

1. use most significant bits of  in QROM lookup as  to return  and ;

2. multiply  to least significant bits of  (i.e. those of ); and

3. add result to . 

x xℓ f(xℓ) mℓ
mℓ x x − xℓ

f(xℓ)

Toffoli complexity = # lookup points
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THE FUNCTIONS WE NEED

0 1 2 3

1
2

1

π
2

arcsin(exp(−x))

exp(−x)

Exponential decay; 
small second derivative

exp(−x)
1 + exp(−x)

Needed in qubitised Metropolis-Hastings 
approach to QSA by Lemieux et al. 
[doi:10.22331/q-2020-06-29-287]

Needed in direct Szegedy walk 
approach of Somma et al. 
[doi:10.1103/PhysRevLett.101.130504]

Needed in simulation of spectral-gap-
amplified Hamiltonian of Boixo et al. 
[doi:10.1140/epjst/e2015-02341-5]

Idea: optimise QROM lookup for these functions.
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EXPONENTIALLY-SPACED QROM LOOKUP
•

• •
• •

• •
• • •
• • • • • •
• • • • • • • •
• • • • • • • •
• • • •

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
d0 d1 d2 d3 d4,5 d6,7 d8�11 d12�15
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EXPONENTIALLY-SPACED QROM LOOKUP
•

• •
• •

• •
• • •
• • • • • •
• • • • • • • •
• • • • • • • •
• • • •

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
d0 d1 d2 d3 d4,5 d6,7 d8�11 d12�15

Activate for each ℓ = k
Activate for ℓ = 2k, 2k + 1

Activate for 
ℓ = 4k, 4k + 1, 4k + 2, 4k + 3
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CONCLUSIONS & 
FUTURE WORK
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Quadratic speedups for heuristic-
based optimisation probably not 
enough for early quantum computers 
to beat even my laptop.


Numbers mostly follow from overhead 
due to fault-tolerant architecture.


Possible responses: more efficient fault-
tolerance methods, less hardware noise.


… or give up on quantum computer use 
cases involving quadratic speedups.


Some hope remains for better-than-
quadratic speedups for optimisation, 
but needs deeper research.


We attempted to “chain together” 
quadratic speedups but this is not easy to 
do effectively.


Need more careful analysis of relative 
merits of different quantum heuristics.


And need more thorough comparison 
between classical- and quantum-
simulated annealing.
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Our full paper: arXiv:2007.07391, doi:10.1103/PRXQuantum.1.020312


More from Google about limitations of quadratic speedups: arXiv:2011.04149


Similar conclusions on constraint satisfaction: Campbell, Khurana, & Montanaro, 
arXiv:1810.05582, doi:10.22331/q-2019-07-18-167


Any good textbook on simulated annealing!


Lots of opportunity for follow-up work that is more sophisticated than ours.

FURTHER READING
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