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COMBINATORIAL OPTIMISATION

) Roughly: Given diagonal 2N % 2N Hamiltonian, find a ground state.
) Key examples: {travelling salesman, minimum spanning tree, knapsack} problem.

) In practice, expect to be satisfied with approach that probably returns near-optimal solution.
) The travelling salesman does not need an optimal route, only a good one.
) Prototypical classical method: simulated annealing, an heuristic approach.

) Many practical applications: logistics, supply-chain optimisation, water distribution, ...

) Natural place to look for useful quantum algorithms!




HAMILTONIAN FAMILIES

L
L-term spin model: H; = 2 WKHZi w, €R, g, C {l,...,N}, £ — q,is injective)

Quadratic Unconstrained Binary Optimisation (QUBO): H,p0 = Z W;; (I — Zi) <I — Z]> (NP-Hard subproblem)
i<j

Sherrington-Kirkpatrick (SK): Hy = Z w;iZiZi, w; =% 1 (subproblem of QUBO)

i<j

2

1 / N—k
Low Autocorrelation Binary Sequences (LABS): H; \gq = Z Z 2L .

k=0 i=1
(hard subproblem of N>-term spin model; best classical algorithm is ®(1.73") and only solved for N < 66)



QUANTUM HEURISTICS

) Direct amplitude amplification: Grover-like approach, assume known degeneracy and a threshold
energy value.

) Dumb (treats problem as unstructured), but good reference point.

) Quantum Approximate Optimisation Algorithm (QAOA): alternate between evolution under problem
Hamiltonian and “driver” Hamiltonian, which superposes solutions.

) More asymptotically efficient classical approach known [Barak et al., arXiv:1505.03424],
but maybe QAOA has better constant factors and can be executed on NISQ hardware.

) Adiabatic algorithms and quantum-simulated annealing:

) Entire textbooks could be written on this. Potentially fruitful research direction!

) We focus on compiling ideas already found in the literature. Ongoing work to develop better methods.


https://arxiv.org/abs/1505.03424

APPROACH & RESULTS




COMPILATION STRATEGY

) Our results derive from exhaustive compilation of these quantum heuristics.

) Compilation consists of three steps:
1. Design “oracle” for the cost function (encode result into register or as phase).
2. Design quantum circuit that uses oracle to perform single step of heuristic.
3. Estimate runtime on surface code quantum computer by estimating # Toffolis.

) Our results therefore tell us how many heuristic steps can be performed per unit time.
They do not tell us how many steps are needed to achieve approximate success with some probability.
Therefore, we cannot directly compare the results for different heuristics. Our results are performance indicators.
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cost function

algorithm primitive

SAMPLE OF RESULTS

Toffoli (* or T) count

total ancilla qubits

L-term
Spin
Model
Hy,

amplitude amplification step
QAOA /Trotter step*
Hamiltonian walk step
Szegedy walk annealing step
LHPST walk annealing step
gap amplified walk step

2 Lbair + N + O(bdir)
1.15L(bpna + log L) + O(N + log L + bZy.)
3L+ 2bLcu + O(log L)
2(N + 1)Lbgir + 2N (b2, + bais + log N) + O(Nbgy, log baw,)
4Lbdif + 2(bsm . bfun)2 + 2bdif + N + 9 log N + O(bsm log bsm)
4Lbais + 2b2m 4 2bais + N + 14log N + O(brot)

2 bdir -+ 0(1)

3log N + bpha + O(log bpha)
3log L + 2brcu + O(1)
Nbgis 4+ 2Nbgy, + O(N log beyy)
3bsm + 2bais + bgun + log N + O(log bsm )
3bsm + 2bais + 21og N + O(log bem)

one hour runtime

one day runtime

algorithm applied to
LABS problem

problem
size, N

logical
qubits

Toffolis
per step

maximum
steps

physical
qubits

maximum
steps

physical
qubits

Quadratic
Unconstrained
Binary
Optimization

Hqugo

amplitude amplification
QAOA /Trotter step®
Hamiltonian walk step
Szegedy walk annealing step
LHPST walk annealing step
gap amplified walk step

N2bgir + O(Nbair)
0.575 N*(bpha + 2log N) + O(N?)
N(brLcu + 2log N) + O(N)
2N ?bgis + 2N (b2, + bais + log N) 4+ O(Nbgy, log bar)
2Nbait + 2(bem + brun)® + 2baie + N + 9log N + O(bem log ber)
2Nbais + 2b2, + 2bais + N + 14log N + O(byot)

2bair + O(1)

3log N + bpha + O(log bpha)

Tlog N + 2bLcu + O(log bLcu)
Nbais + 2Nbgy, + O(N log beyy,)
3bsm + 2bais + bgun + log N + O(log b )
3bsm + 2bais + 2log N + O(log by, )

amplitude amplification

64
128
256
512

1024

98
167
300
561

1078

9.8 x10°
3.7x10*
1.5x10°
6.1x10°
2.3x10°

2.1x10°
5.6 x 10?
1.4x10?
3.4x 10"
9.0x 10"

3.0x10° (1.8x10°)
4.1x10° (2.1x10°)
7.1x10° (3.0x 10?)
1.2x10°% (4.3x10°)
2.2x10° (6.9%x10°)

5.1x10*
1.3x10*
3.3x10°
8.2x10%
2.2x10?

3.6x10° (2.0x10°)
5.1x10° (2.3x10°)
8.0x10° (3.0x10%)
1.4x10° (4.3x10°)
2.9x10° (8.8x10°)

QAOA / 1*" order Trotter
e.g., for population transfer
or adiabatic algorithm

64
128
256
512

1024

114
183
316
577
1094

1.0x10*
3.8x10*
1.5x10°
5.0 x10°
1.7 x10°

2.1x10°
5.5% 10?
1.4%x 102
4.2x 10"
1.2x 10!

3.3x10° (1.9x10°)
4.4x10° (2.1x10°)
7.4x10° (3.1x10%)
1.2x10° (4.4x10°)
2.2x10° (7.0x10°)

5.0x10*
1.3x10*
3.4x103
1.0x10°
2.9 % 10?

4.0x10° (2.1x10°)
5.5x10° (2.4x10°%)
8.4x10° (3.1x10%)
1.4x10° (4.4x10°)
2.9x10° (8.9x10°%)

Sherrington—
Kirkpatrick
Model
Hsk

amplitude amplification step
QAOA /Trotter step
Hamiltonian walk step
Szegedy walk annealing step
LHPST walk annealing step
gap amplified walk step

2N? 4+ N+ O(logN)
2N? + AN + b2, + O(bphalog bpna)
6 N + O(log® N)
AN? 4 2N (b2, + 2log N) + 8 Nbsm + 18bn + O(Nbsm log bem)
5N + 2(bsm + bsan)? + 111log N 4 O(bepm log bem)
5N + 2b2, + 161log N + O(byot)

6log N + O(1)

6 log N + bpha + O(IOg bpha)

5log N + O(1)

}\7 log l\r -+ 24\rbsn] + (D(I\'T lOg bsn])
4 log *"V + 3bsm + bfun + O(log bsm)
5log N + 3bsm, + O(log ber)

Hamiltonian walk
e.g., for population transfer
or adiabatic algorithm

64
128
256
512

1024

94
163
296
557

1074

2.6 x 102
5.1 x10?
1.0x10°
2.0x10°
4.1x10%

8.1x10*
4.1x10*
2.0x10*
1.0x10*
5.1x10°%

3.0x10° (1.8 x10?)
4.1x10° (2.1x10°)
7.0x 10° (3.0x10°)
1.2x10° (4.3x10°)
2.2x10° (6.9%x 10°)

2.0x10°
9.8x10°
4.9%x10°
2.4x10°
1.2x10°

3.5x10° (2.0x 10%)
5.0x10° (2.3x10°)
8.0x10° (3.0x10°)
1.4x10° (4.3x10°)
2.9x10° (8.7x10°)

Low
Autocorrelation
Binary
Sequences

Hyags

amplitude amplification step
QAOA /Trotter step
Hamiltonian walk step
Szegedy walk annealing step
LHPST walk annealing step
gap amplified walk step

5N(N +1)/2+ N + O(log N)
8N?/5 + min (Nb2,../2,9N%/10) 4+ O(Nbypa log bpha)
4N + O(log N)
S5N(N +1)?/2 4+ 2N (b2, + 3log N) 4+ O(Nbey, log bem)
SN? + 2(bemm + beun)? + 6N + 13log N + O(bem 10g ber)
5N? + 2b2,, + 6N + 181log N + O(byot)

5log N + O(1)

5log N + bpna + O(log bppa)

5log N + O(1)

2N log N + 2Nb,y, + C)(A’v 10g bsm)
6 log 1\‘7 +- 3b51n + bfun + O(log bsm)
7 log N + 3b5m + O(log bsm)

LHPST walk

quantum simulated annealing

64
128
256
512

1024

132
202
336
598
1116

2.0x10*
7.5x10*
3.0x10°
1.2x10°
4.6 x10°

1.0x 103
2.8x10?
6.9x 10"
1.7x 10"
5.0x 10"

3.6 x10° (2.0x10%)
5.3x10° (2.5x 10°)
7.8x10° (3.2x10°)
1.3x10° (4.5x10°)
2.2x10° (7.1x10%)

2.5x10%
6.7x 103
1.7x10°
4.1x10%
1.1x10?

4.4x10° (2.1x10°)
5.9x10° (2.5x 10%)
8.8x10° (3.2x10°)
1.5x10° (4.5x10°)
3.0x10° (9.0x 10%)

1

spectral gap amplified
walk based quantum
simulated annealing

64
128
256
512

1024

131

202

337

600
1119

2.0x10*
7.5x10%
3.0x10°
1.2x10°
4.6 x10°

1.1x10°
2.8x 102
6.9x 10"
1.7x 10"
5.0x 10"

3.6x10° (2.0x10°)
5.3x10° (2.5x10°)
7.8x10° (3.2x10°)
1.3x10° (4.5x10°)
2.2x10° (7.2x10%)

2.5x10*
6.7x10°
1.7x10°
4.1x10%
1.1x10?

4.3x10° (2.1x10%)
5.9x10° (2.5x10°%)
8.8x10° (3.2x10°)
1.5x10° (4.5x10°)
3.0x10° (9.0x 10%)




SIMPLIFIED RESULTS

(Table VIII and Table IX)
steps per day |physical qubits

(Table VII)

Algorithm Primitive
Toffoli count

Amplitude Amplification (§IITA
QAOA / 1% order Trotter (§IIIB
Hamiltonian Walk (§IIIC
QSA / Qubitized (§IIIE

4.8 x 103
4.7 x 103
3.3 x 10°

13.3 x 10°

3.9 x 10°

8.1 x 10°
8.6 x 10°
8.0 x 10°
8.4 x 10°
8.4 x 10°

2N? + N
2N? + 4N
6N

5N

5N

+O(log N)
+0(1)

—i—(’)(log2 N)

+O(log N)

+O(log N)

Amplitude Amplification (§III A
QAOA / 1% order Trotter (§IIIB
Hamiltonian Walk (§IIIC
QSA / Qubitized (SIIIE
QSA / Gap Amplification (§IIIF)

)
)
)
)
QSA / Gap Amplification (§IIIF)
)
)
)
)

3.3 x 103
3.4 x 103
4.9 x 10°

| 1.7 x 10°

1.7 x 10°

8.0 x 10°
8.4 x 10°
8.0 x 10°
8.8 x 10°
8.8 x 10°

5N?/2+T7N/2
5N?/2

AN

5N?

5N?

+O(log N)
+O(N)
+O(log N)
+O(N)
+O(N)

® Number of bits of precision treated as unspecified constant in the rightmost column.
® Boxed numbers can be (sort of) compared to classical simulated annealing via Metropolis-Hastings.
My laptop beats these numbers by at least two orders of magnitude with no code optimisation.
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QROM-BASED
FUNCTION EVALUATION



MOTIVATION

) Heuristic-based optimisation is bottlenecked by calculating functions of energy.
) But our approach is heuristic, meaning we do not need accurate output.
) We therefore want function approximation that trades accuracy for speed.

) Our approach is based on linear interpolation between lookup points.

) This is a very general technique that will be useful for other numerical algorithms.

14



QROM LOOKUP

C— ¢+ 1

) QROM: a quantum data structure

P O O SO SO O O O L
PP P—P v
o (= [ ~ o (= [ o
Ve W S N W W S W
AN 74NN AN PR P AN F N Z AN " s v
P O U A A O s n s o S o L Lo
A AN AN A AN PN AN P N v S| —
(2 L [ O
1
e O O SO SO O 4 Y \J.m
AN 74NN ZANAN TN ALY T AN T AN 7 A * <
O
(e0)
°
>
e O OIS SO SO A O W4 o \J.m Dnnu
Y Y Y YoV Y Y
n
>
e O O O W O . O Y -
AN ZANAN ZARAN FARAN P AN P 4NN ARAN F AN P A~ o
SN
m
P O O O O O O O -
T oo~ = -
o~ o o o Jo o (O O.
e O O O SO O 4 oY \J..m S
| A Z AN AT AN PN T AN T g~ ” Ay m
©

) Return d, given classical integer input 2 = 0,1,...,L — 1

(costs O(L) Toffolis; no dependence on size of d )

) Can query with arbitrary superposition:
Y a )10y = Y ayl)]d,)

15

) Main trick: clever iteration through possible inputs.


https://doi.org/10.1103/PhysRevX.8.041015

LOOKUP & INTERPOL

ATION

\
\
J(x) = f(x,) + my(x — x,) \
]
]
I
I \ /
] \ II
/|
I \
:
II
\
\ /
\
Large error when
2nd derivative is large.
9 Toffoli complexity = # lookup points

Idea:
1. use most significant bits of x in QROM lookup as x, to return f(x,) and m;

2. multiply m, to least significant bits of x (i.e. those of x — x,); and
3. add result to f(x,).
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THE FUNCTIONS WE NEED

Needed in qubitised Metropolis-Hastings arcsin(exp(—x)) —> il
approach to QSA by Lemieux et al. 2
[d0i:10.22331/9-2020-06-29-287]

Idea: optimise QROM lookup for these functions.

Needed in direct Szegedy walk
approach of Somma et al.
[d0i:10.1103/PhysRevLett.101.130504]

—> exp(—x) —— 1

exp(—x) 1
>

v/ 1+ exp(—x) J2

Needed in simulation of spectral-gap-
amplified Hamiltonian of Boixo et al.

: small second derivative

17


https://doi.org/10.22331/q-2020-06-29-287
https://doi.org/10.1103/PhysRevLett.101.130504
https://doi.org/10.1140/epjst/e2015-02341-5

EXPONENTIALLY-SPACED QROM LOOKUP
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EXPONENTIALLY-SPACED QROM LOOKUP
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CONCLUSIONS &
FUTURE WORK




) Quadratic speedups for heuristic-
based optimisation probably not
enough for early quantum computers
to beat even my laptop.

) Numbers mostly follow from overhead
due to fault-tolerant architecture.

) Possible responses: more efficient fault-
tolerance methods, less hardware noise.

) ... Or give up on quantum computer use
cases involving quadratic speedups.

21

) Some hope remains for better-than-
quadratic speedups for optimisation,
but needs deeper research.

) We attempted to “chain together”
quadratic speedups but this is not easy to

do effectively.

) Need more careful analysis of relative
merits of different quantum heuristics.

) And need more thorough comparison
between classical- and qguantum-
simulated annealing.



FURTHER READING

) Our full paper: arXiv:2007.07391, doi:10.1103/PRXQuantum.1.020312

) More from Google about limitations of quadratic speedups: arXiv:2011.04149

) Similar conclusions on constraint satisfaction: Campbell, Khurana, & Montanaro,
arXiv:1810.05582, doi:10.22331/9-2019-07-18-167

) Any good textbook on simulated annealing!

) Lots of opportunity for follow-up work that is more sophisticated than ours.

22
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https://doi.org/10.1103/PRXQuantum.1.020312
https://arxiv.org/abs/2011.04149
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