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A quantum money scheme, just like in traditional classical money schemes can be a bills
scheme such as Wiesner’s scheme [Wie83] or a coin scheme such as [MS10]. In a bills scheme,
each money state is uniquely tagged with a unique serial number whereas quantum coins are
exact copies of the same state. Therefore, bills are prone to privacy related attacks.

Another important characterization of quantum money scheme is that it can be either private
or public. In a private schemes, only the the bank can verify money states, using some secret
information. The motivation for a public money scheme is to abolish the need to go to the
bank for verification. Usually, this is done by issuing a classical public key which is used in
the verification algorithm. Despite several attempts in this direction, there is still no public
quantum money based on standard assumptions. However, there is another way for public
verification. Consider the following scenario: you travel to a foreign country and withdraw
some cash from an ATM. Later you execute a transaction in which you receive money from an
untrusted source. How will you verify the authenticity of this money? You could compare it
to the money that you withdrew from the bank’s ATM, and accept if they look the same. We
call this method comparison-based verification. Note that, you did not require any additional
information such as a public key or other security features regarding the money. However, you
do require that the money states are coins and not bills, i.e., they are indistinguishable copies
of one another.

In this work, we extend the method of comparison-based verification to the quantum setting,
and use it to lift a private quantum coin scheme to an almost public quantum coin scheme. The
verification of received coins is done by comparing it to a fresh coin from the wallet. Hence,
in this scheme at least one valid money state is required for verification of the money received.
Technically, the comparison between two quantum money states is done by doing a projective
measurement into the symmetric subspace.

User-manual The quantum coin scheme that we construct has slightly different properties
compared to a true public coin. Our money scheme uses the following user-manual. A user
needs a fresh coin received directly from the bank, to verify each transaction he receives, i.e., it
is not that only one coin is received. However, he can spend as much coins as he wants from his
wallet, including the ones that he received from others. Due to these restrictions, we call our
construction an almost public quantum coin scheme, which also explains the title of the paper.

Comparison to a true public quantum coin scheme The only inconvenience in our
scheme compared to a truly public money scheme, is that a user cannot receive more transactions
than the number of fresh coins from the bank he started with. Hence, after sometime, he
might have to go to the bank for refund. However, this is mostly a theoretical inconvenience.



Practically, the user will never have to go to the bank since money initially withdrawn would
be enough for all his transactions, for a long period of time. For example, if a user takes 100
dollars from the bank, and suppose each public coin is worth a cent, then he essentially has
10000 cents/public coins, and is eligible to receive 10000 transactions. Moreover, he can spend
the money that he received from others and therefore there is no limit on spending. This is
practically enough for all his transactions, all the year round, and therefore, would have to
go to the bank only once a year. We can also increase the limit of the number of receivable
transactions by devaluing the worth of our coins. For instance, in the previous example, we
can instead declare the worth of our public coin to be a micro-dollar, and hence if a merchant
starts with 100 dollars, he would now have 10® public coins, and would be eligible to receive
10® new transactions. We show that our construction, under the user manual discussed above
is rationally secure against sabotage and forgeability attacks, i.e., on average the gain of a
cheating adversary and the net loss of an honest user is at most negligible. Since in real life, the
users are rational entities, rational unforgeability and rational security against sabotage ensures
that nobody will try to forge money or sabotage others. Hence, in all practicality, a user using
our coins scheme will never feel any difference from a truly public coin scheme. Therefore, our
construction is practically equivalent to a public coin scheme despite some theoretical differences.

Main results Our main result is the construction of an almost public quantum coin scheme,
based on a private coin scheme, lifting most of the security guarantees of the private coin scheme
to the public scheme. By instantiating our construction with the private coin construction
in [JLS18] (later simplified by [BS19]), we get the following result.

Theorem 1 (Informal Main Result). Assuming quantum secure one-way functions exist, there
is an almost public quantum coin scheme which is rationally secure against nonadaptive forgery.

There has not been any public quantum money construction in the literature prior to this
work, which is provably secure based on standard assumptions. This is the first construction
of a money scheme that gets close to public quantum money based on standard assumptions.
Similarly, by instantiating our construction with the results in Ref. [MS10] and Ref. [AMR20],
we show an inefficient scheme and a stateful scheme respectively, with the same properties as
in Theorem [I| above, which is secure even against computationally unbounded adversaries. The
formal results are given in Theorem 16, in the main text.

Main obstacles and our solution The biggest challenge in our work is to understand
how to do comparison of quantum states in comparison-based verification for quantum coins.
Classically, given two classical bit strings we know their classical states and hence can compare
them. However, given two unknown qubits, their quantum states remain hidden to us due to the
no-cloning theorem. A natural first attempt to compare two quantum coins is to do SWAP-test
on them. However, SWAP-test [BCWdWO0I1] always accepts (even for two orthogonal states)
with probability % which is not enough for a quantum coin scheme. Secondly, since comparison-
based verification involves coin from the wallet, one needs to make sure there are no sabotage
attacks. In particular, there should be a meaningful way to get a refund of one’s wallet, especially
in case of failed verification, such that a honest user should not get refund lesser than what he
should have had.

We tackle these obstacles as follows. We improve the naive approach of using SWAP-test
by using multiple private coins as one public coin, such that individual private coins cannot be
used in a transaction. This is similar to the currencies m and ¢, where a ¢ is used in transactions
and is equivalent to 10 mills, but mills themselves are a unit that the users are unaware of (and



is only used “behind the scenes”, e.g., to handle rounding errors by banks), and hence not used
in transaction. Due to this analogy, we call a private coin |m) and a public coin as |¢) := |m)",
for some fixed x € log®(\) for some ¢ > 1. For verification of an alleged coin, we take a fresh
coin |¢) from the wallet, and perform a projective measurement into the symmetric subspace
of the 2k registers. The coin is accepted if the entire 2x-register state is projected into the
symmetric subspace. Suppose in this scheme an adversary with no public coins, submits an
alleged coin with quantum state |¢) for verification. For simplicity, suppose |m) is the qubit
state |1). Since the underlying private scheme is unforgeable, the r-register state |¢) must have
negligible overlap with all the computational basis state other than the all zero state. The
probability of the all zeroes state to pass verification is -, which is negligible for our choice

of k. Hence, the optimal success probability for 0 to 1 is Eegligible. Unfortunately, n to n + 1
forging is possible in our scheme for large enough n. The optimal success probability scales as
~ 1 — & for large n, which is very close to 1 even for n = poly (), and hence our construction
is forgeable according to the standard definition.

Drawbacks: Weaker notions of security The main drawbacks are the weak notions of
security that we use. For more details on all these notions of security, refer to Notions of security
in the introduction of the main text. We differ from the standard notions of unforgeability to
a slightly weaker notion called rational unforgeability in order to prove our construction is
unforgeable. We show in the main text (see Section 5.1) that our construction is not standard
unforgeable and hence, shifting to rational unforgeability is necessary. We also deviate from the
usual notion of flexible utility to the all-or-nothing utility for defining the gain of the adversary.
From a theoretical point of view, the usual-manual has a few restrictions which we discussed
previously. We show that the restrictions put in the user-manual, ensures and are necessary for
security.

Scientific Contributions Based on the private quantum coins construction in [JLSIS|, we
construct an almost public quantum coin scheme that is provably secure based on the existence
of quantum-secure one-way function. No other public money construction is provably secure
based on standard assumptions. Moreover, unlike most other schemes, our construction only
requires polylogarithmic time and space. Our construction is the first quantum money scheme
which achieves both public verification and is a quantum coin scheme. No construction of public
quantum coins are known in the literature. Moreover, based on previous works [AMR20}, IMS10],
we construct an unconditionally secure stateful quantum money scheme that resembles a pub-
lic quantum money scheme in all practicality. The existing constructions of public money
involve verification using a classical public key, and hence, cannot be unconditionally secure
(see |[AC13]). We circumvent this problem by using comparison-based verification. Our con-
struction resembles a public quantum money with a quantum public key. This might be an
interesting topic on its own as it might circumvent the impossibility result about public quan-
tum money mentioned above. We introduce the notion of rational unforgeability which is a
weaker yet a meaningful notion of unforgeability. Lastly, the techniques used in our construc-
tion are simple and general, and might also be useful in topics other than quantum money.
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