

Almost Public Quantum Coins

Amit Behera

Ben-Gurion University

QIP2021

Feb 5, 2021

Joint Work with **Or Sattath (BGU)**

arXiv:2002.12438

LIST OF CONTENTS

- Introduction
- Previous Works and our contributions.
- Construction
- Security Definition and main results
- Technical results

INTRODUCTION

UNFORGEABLE MONEY

- Can money schemes be unforgeable?
- Classically not possible.
- With quantum, you can!

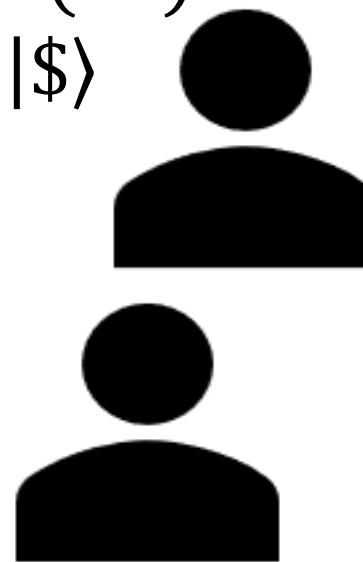
Can be
cloned!

01010111	01101001	01101011
01101001	01110000	01100101
01100100	01101001	01100001

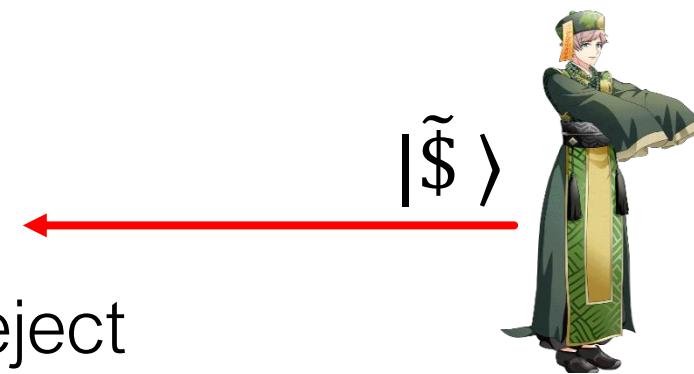
QUANTUM MONEY

(Keygen, Mint, Verify)

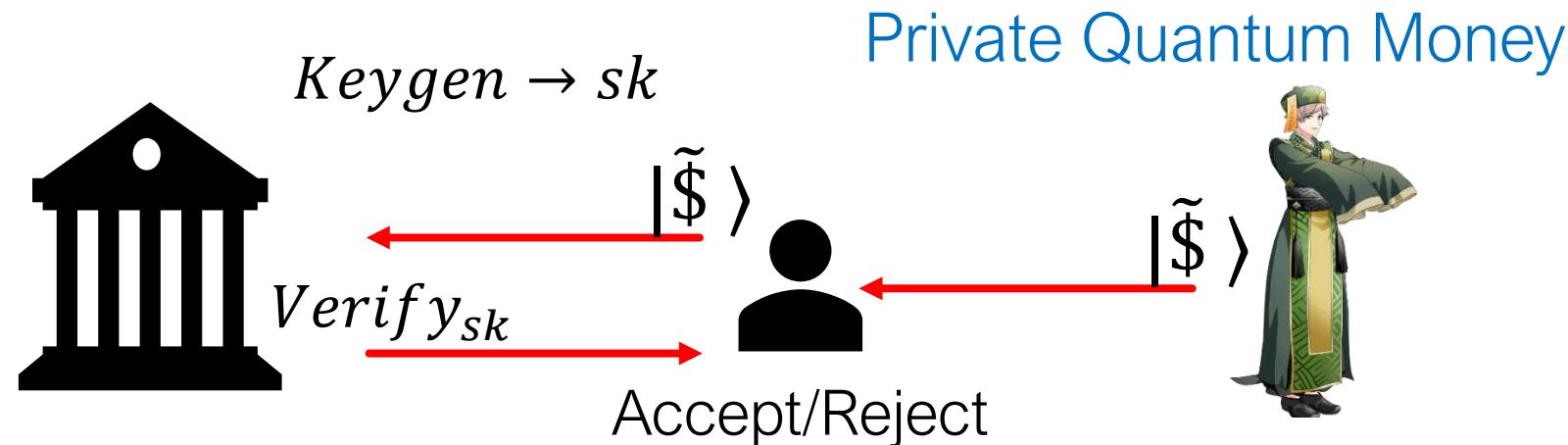
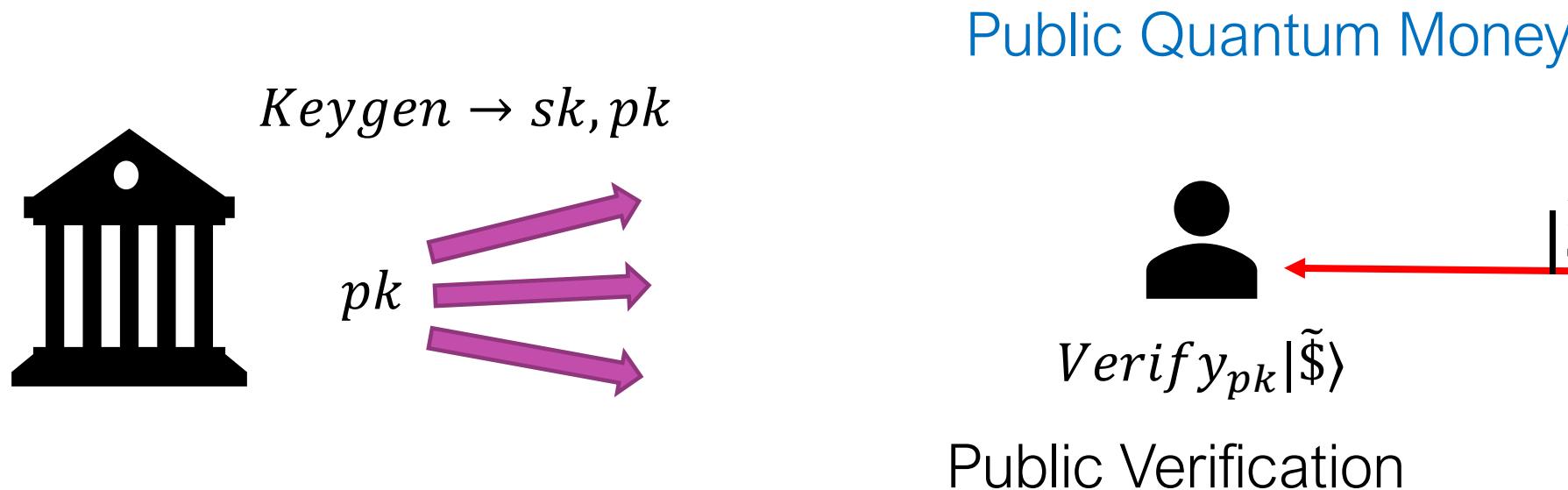
$sk \leftarrow Keygen(1^\lambda)$
 $Mint(sk) \rightarrow |\$ \rangle$



$Verify(|\tilde{\$} \rangle) \rightarrow$ Accept/Reject



PRIVATE VS PUBLIC QUANTUM MONEY



COINS VS BILLS

Indistinguishable copies

How does it matter? Privacy!

Unique serial numbers

Serial numbers can be tracked.

PREVIOUS WORKS AND OUR CONTRIBUTIONS

QUANTUM MONEY CONSTRUCTIONS

- **Private Quantum Money:** Wiesner's money, Gavinsky's quantum money scheme, etc.
- **Public Quantum Money:** Zhandry's quantum money, Farhi et al.

No public money construction based on weak and generic assumptions.

QUANTUM COINS CONSTRUCTIONS

Private Quantum coin Scheme	Computational Assumption	Memory dependent	Efficiency	Unforgeability
MS10	No	No	Inefficient	Adaptive Unforgeability
JLS18	quantum secure one-way function	No	Efficient	Adaptive Unforgeability
AMR20	No	Yes	Efficient	Adaptive Unforgeability

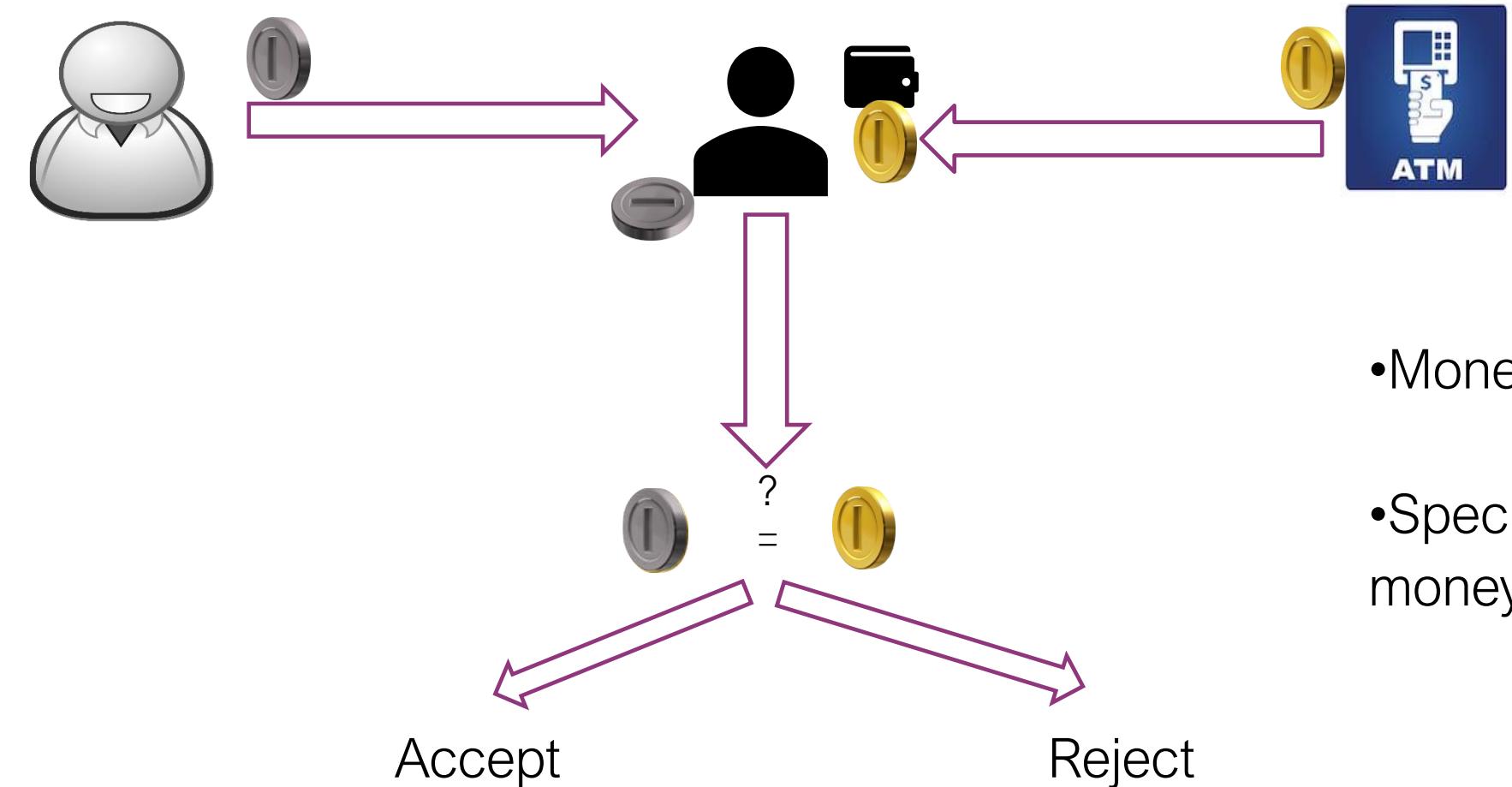
Public Quantum Coins: No candidate construction.

OUR CONTRIBUTIONS

- *Almost* Public Quantum Money from standard assumption.
- Almost Public Quantum Coin construction.
- Other meaningful notions of security.
- Comparison-based Verification.

OUR CONSTRUCTION

COMPARISON-BASED VERIFICATION



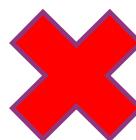
Observations

- Money states should be identical.
- Specific security features of the money not required.

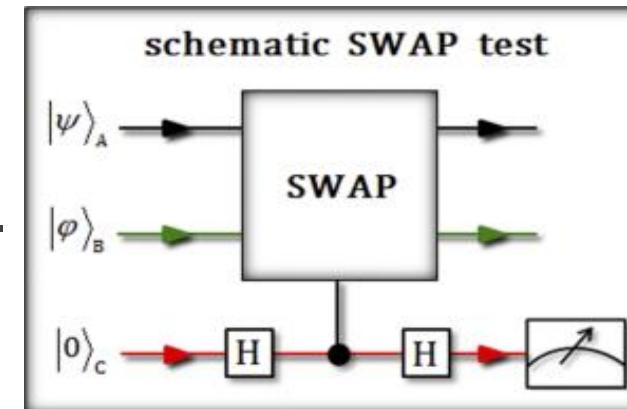
CHALLENGE IN QUANTUM SETTING

How to compare two quantum states?

➤ Attempt: SWAP TEST?



➤ Accepts product states with probability $\geq \frac{1}{2}$.
➤ 0 to 1 forging possible.



➤ Solution: Symmetric subspace projective measurement.
➤ Each coin is k mini coins/registers.
➤ Measurement projecting onto the Symmetric subspace of $2k$ registers.

OUR CONSTRUCTION

Public Quantum Coin

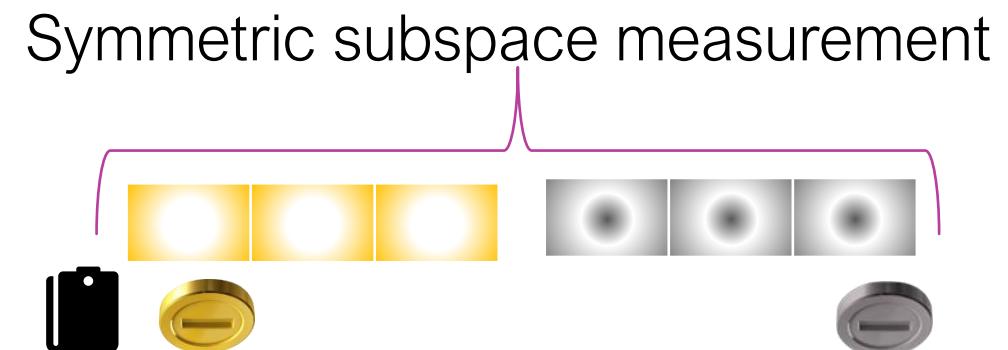
Private Quantum Coin *Keygen, Mint, Verify*
 $|\mathfrak{m}\rangle$

- **Keygen:** Same as *Keygen*
- **Mint:** Repeat *Mint* k times. $|\mathfrak{c}\rangle = |\mathfrak{m}\rangle^{\otimes k}$
- **Verify:** Comparison-based verification.

Symmetric subspace over m registers

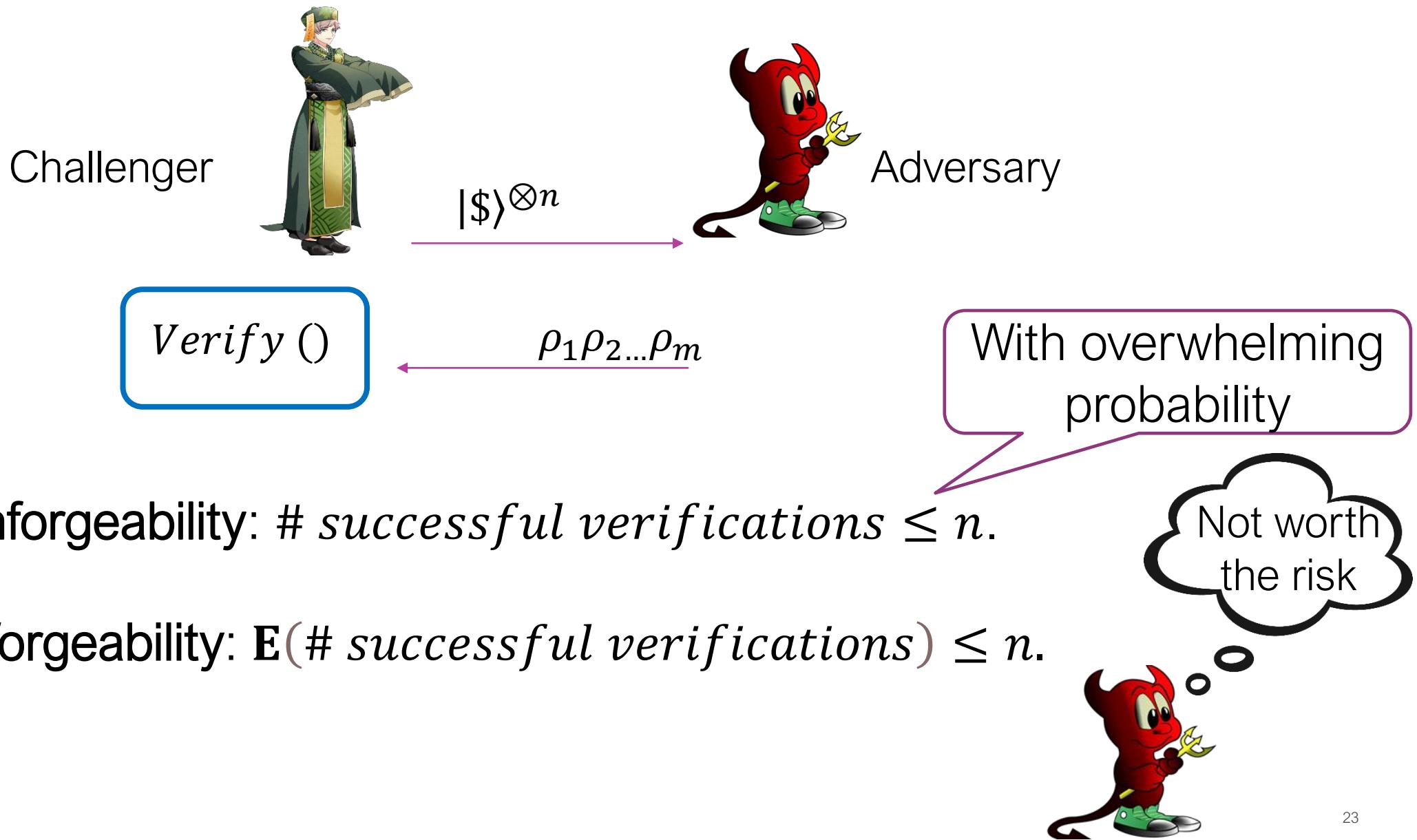
$Sym(\mathcal{H}^{\otimes m})$: m register pure states

invariant under any permutation of registers.

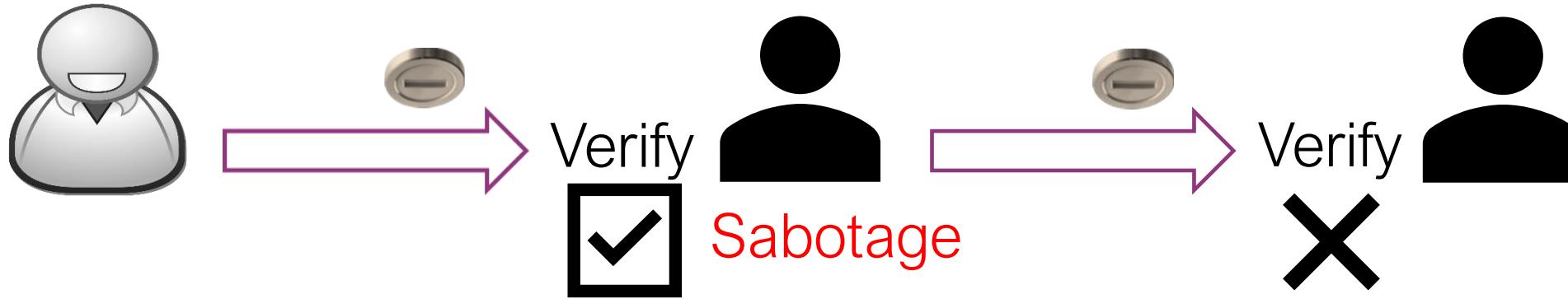


SECURITY DEFINITION AND MAIN RESULTS

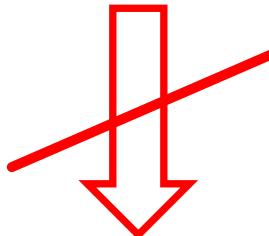
UNFORGEABILITY GAME (INFORMAL)



IS UNFORGEABILITY ENOUGH?

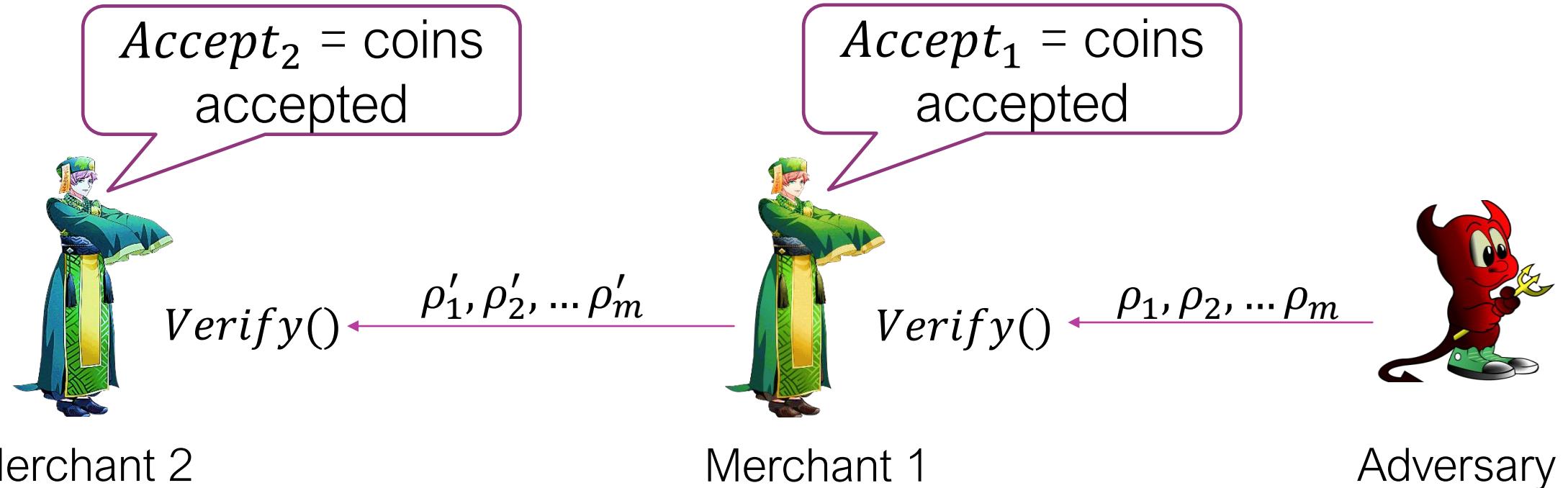


Unforgeability, Completeness



Security against Sabotage

SABOTAGE GAME (INFORMAL)



Standard Security against Sabotage: $Accept_1 \leq Accept_2$.

With overwhelming probability

Rational Security against Sabotage: $E(Accept_1) \leq E(Accept_2)$.

LIFTING RESULT

Unforgeable

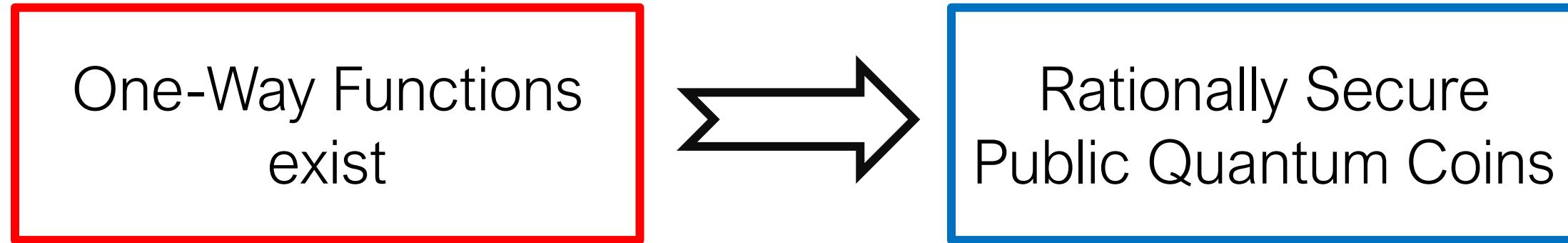
Private Quantum
Coin Scheme

MS10, JLS18, AMR20

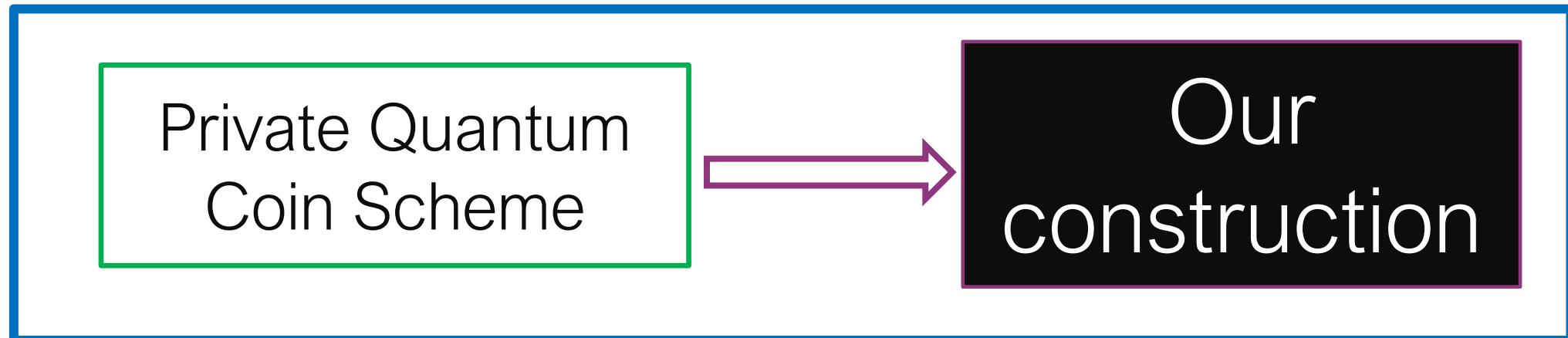
Our
construction

Rationally Secure
Public Quantum Coins

MAIN RESULT



OTHER RESULTS



Resulting Public Quantum Coin Construction		
Private Coins Scheme	Memory dependent	Efficiency
MS10	No	Inefficient
AMR20	Yes	Efficient

PROPERTIES OF OUR CONSTRUCTION

Negatives

1. Rational Secure.
2. Fresh coin required for every received transaction.

Positives

1. Real world adversaries are rational.
2. Need to visit the bank only once in a while.

Practically, no less than a public quantum coin scheme!

TECHNICAL RESULTS

1.0 TO 1 UNFORGEABILITY

2. OPTIMAL $n \rightarrow n + 1$ FORGERY

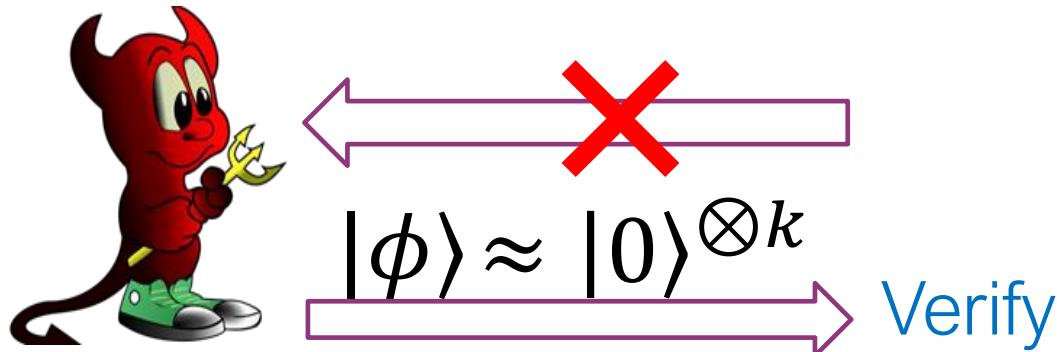
0 TO 1 UNFORGEABILITY

Private coin

$$|\mathfrak{p}\rangle = |1\rangle \in \mathbb{C}^2$$

Public coin

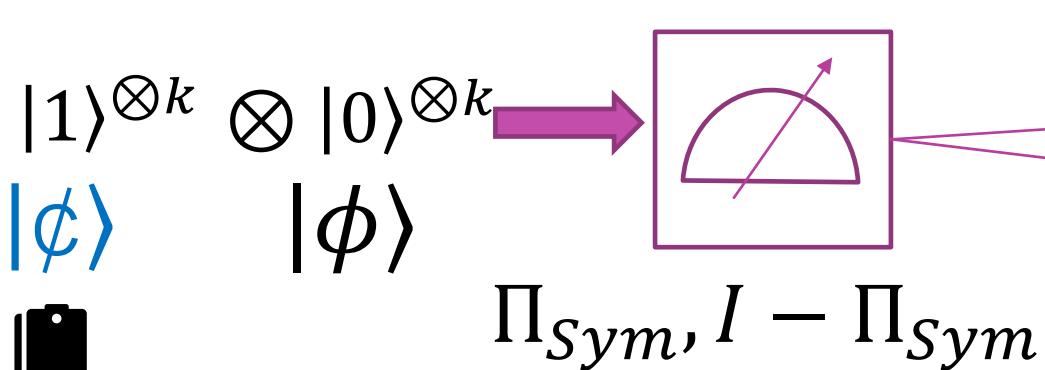
$$|\mathcal{C}\rangle = |1\rangle^{\otimes k}$$



Unforgeability of private scheme

Hamming weight on measuring $|\phi\rangle = 0$

Verify:



$$\frac{1}{\sqrt{\binom{2k}{k}}} \sum_{\substack{b \in \{0,1\}^{2k} \\ wt(b)=k}} \otimes_{i=1}^{2k} |b_i\rangle$$

Forgery probability

$$\frac{1}{\binom{2k}{k}}$$

Sym^\perp

Accept

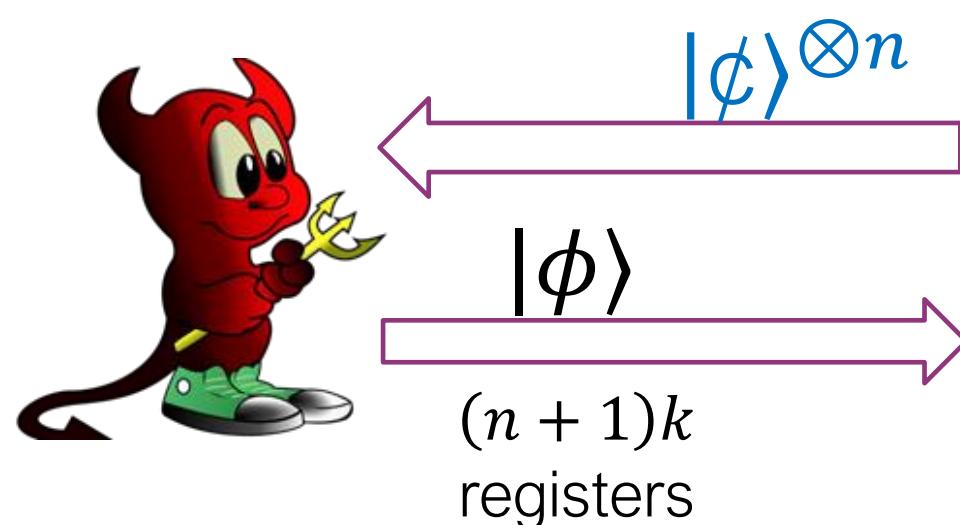
Reject

Negligible!

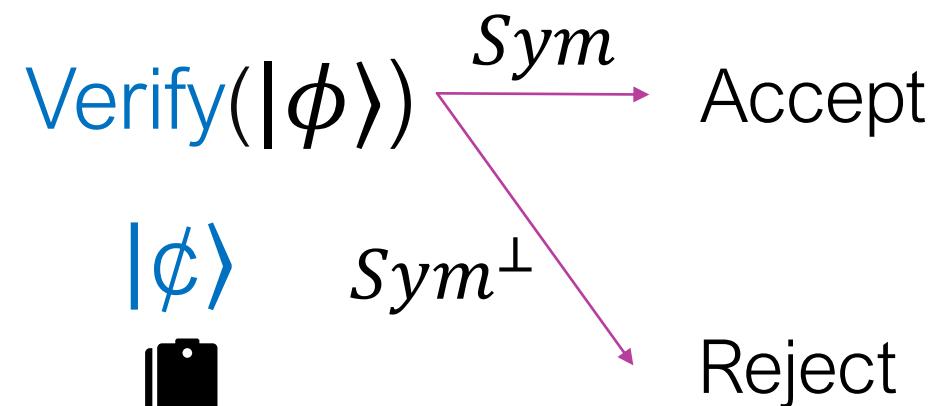
OPTIMAL FORGERY $n \rightarrow n + 1$

Public coin:

$$|\psi\rangle = |1\rangle^{\otimes k} \in \mathcal{H}^{\otimes k}$$



Hamming weight on
measuring $|\phi\rangle \leq nk$



Forgery probability
Maximize $|\Pi_{Sym}(|1\rangle^{\otimes k} \otimes |\phi\rangle)|^2$

USING PROPERTIES OF SYMMETRIC SUBSPACE

$$|\phi\rangle \in \text{Sym}(\mathcal{H}^{\otimes(n+1)k})^\perp \Rightarrow \Pi_{\text{Sym}}(|1\rangle^{\otimes k} \otimes |\phi\rangle) = 0$$

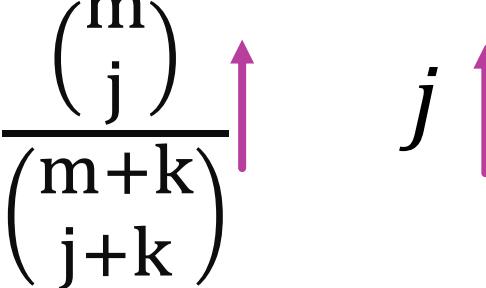
Maximize $|\phi\rangle$ Forging Probability $|\Pi_{\text{Sym}}(|1\rangle^{\otimes k} \otimes |\phi\rangle)|^2$

Hamming weight on measuring $|\phi\rangle \leq nk$

$$|\phi_{opt}\rangle \in \text{Sym}(\mathcal{H}^{\otimes(n+1)k})$$

BASIS FOR SYMMETRIC SUBSPACE

$$Sym(\mathcal{H}^{\otimes m}) \quad \{|Sym_j\rangle\}_{0 \leq j \leq m} \quad |Sym_j\rangle = \frac{1}{\sqrt{\binom{m}{j}}} \sum_{\substack{b \in \{0,1\}^m \\ \text{wt}(b)=j}} \otimes_{i=1}^m |b_i\rangle$$

1. Hamming weight on measuring $|Sym_j\rangle = j$.
2. $(\langle 1|^{\otimes k} \otimes \langle Sym_i|) \Pi_{Sym} (|1\rangle^{\otimes k} \otimes |Sym_j\rangle) = 0$.
3. $|\Pi_{Sym}(|1\rangle^{\otimes k} \otimes |Sym_j\rangle)|^2 = \frac{\binom{m}{j}}{\binom{m+k}{j+k}}$ 

OPTIMAL FORGER $n \rightarrow n + 1$

$$|\phi_{opt}\rangle \in \{|Sym_j\rangle\}_{j \leq nk}$$

$$|\phi_{opt}\rangle = |Sym_{nk}\rangle$$

Maximize $|\phi\rangle$ $|\Pi_{Sym}(|1\rangle^{\otimes k} \otimes |\phi\rangle)|^2$

- Hamming weight on measuring $|\phi\rangle \leq nk$.
- $|\phi\rangle \in Sym(\mathcal{H}^{\otimes (n+1)k})$.

Optimal forgery probability

$$|\Pi_{Sym}(|1\rangle^{\otimes k} \otimes |Sym_{nk}\rangle)|^2 = \frac{\binom{(n+1)k}{nk}}{\binom{(n+1)k}{(n+2)k}} \approx \left(1 - \frac{1}{n}\right)^k \rightarrow 1 \quad \text{as } n \rightarrow \infty$$

Not Standard
Unforgeable

SUMMARY OF TECHNICAL RESULTS

- 0 to 1 Unforgeability.
- Optimal n to $n + 1$ forgery.
 - Our construction is standard forgeable.
 - Our construction is rational unforgeable.

DISCUSSIONS AND OPEN QUESTIONS

- Can comparison-based verification be useful – quantum copy-protection, quantum tokens for digital signatures, secure software leasing, etc?
- Does there exist (standard) unforgeable public quantum money scheme from standard assumptions?

Thank You