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Abstract

This paper tackles the issue of checking that all copies of a large data set replicated at several nodes of a net-
work are identical. The fact that the replicas may be located at distant nodes prevents the system from verifying
their equality locally, i.e., by having each node consult only nodes in its vicinity. On the other hand, it remains
possible to assign certificates to the nodes, so that verifying the consistency of the replicas can be achieved
locally. However, we show that, as the replicated data is large, classical certification mechanisms, including
distributed Merlin-Arthur protocols, cannot guarantee good completeness and soundness simultaneously, unless
they use very large certificates. The main result of this paper is a distributed quantum Merlin-Arthur protocol
enabling the nodes to collectively check the consistency of the replicas, based on small certificates, and in a
single round of message exchange between neighbors, with short messages. In particular, the certificate-size is
logarithmic in the size of the data set, which gives an exponential advantage over classical certification mech-
anisms. We propose yet another usage of a fundamental quantum primitive, called the SWAP test, in order to
show our main result.

Technical version available at arXiv:2002.10018.

Background In the context of distributed systems, the presence of faults potentially corrupting the individual
states of the nodes creates a need to regularly check whether the system is in a global state that is legal with respect
to its specification. A basic example is a system storing data, and using replicas in order to support crash failures.
In this case, the application managing the data is in charge of regularly checking that the several replicas of the
same data, stored at different nodes scattered in the network, are all identical. Another example is an application
maintaining a tree spanning the nodes of a network, e.g., for multicast communication. In this case, every node
stores a pointer to its parent in the tree, and the application must regularly check that the collection of pointers forms
a spanning tree. This paper addresses the issue of checking the correctness of a distributed system configuration at
low cost.

Several mechanisms have been designed for certifying the correctness of the global state of a system in a
distributed manner. One popular mechanism is called locally checkable proofs [22], and it extends the seminal
concept of proof-labeling schemes [32]. In these frameworks, the distributed application does not only construct
or maintain some distributed data structure (e.g., a spanning tree), but also constructs a distributed proof that the
data structure is correct. This proof has the form of a certificate assigned to each node (the certificates assigned
to different nodes do not need to be the same). For collectively checking the legality of the current global system
state, the nodes exchange their certificates with their neighbors in the network. Then, based on its own individual
state, its certificate, and the certificates of its neighbors, every node accepts or rejects, according to the following
specification. If the global state is legal, and if the certificates are assigned properly by the application, then all
nodes accept. Conversely, if the global state is illegal, then at least one node rejects, no matter which certificates
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are assigned to the nodes. Such a rejecting node can raise an alarm, or launch a recovery procedure. The main aim
of locally checkable proofs is to be compact, that is, to use certificates as small as possible, for two reasons: first, to
limit the space complexity at each node, and, second, to limit the message complexity of the verification procedure
involving communications between neighbors.

Unfortunately, not all boolean predicates on labeled graphs can be distributedly certified using certificates as
small as for spanning tree. This is typically the case of the aforementioned scenario of a distributed data storage
using replicas, for which one must certify equality. Let us for instance consider the case of two nodes Alice and
Bob at the two extremities of a path, that is, the two players are separated by intermediate nodes. Alice and Bob
respectively store two n-bit strings x and y, and the objective is to certify that x = y. That is, one wants to certify
equality (EQ) between distant players. A direct reduction from the non-deterministic communication complexity
of EQ shows that certifying EQ cannot be achieved with certificates smaller than Ω(n) bits.

Randomization may help circumventing the difficulty of certifying some boolean predicates on labeled graphs
using small certificates. Hence, a weaker form of protocols has been considered, namely distributed Merlin-Arthur
protocols (dMA), a.k.a. randomized proof-labeling schemes [20]. In this latter context, Merlin provides the nodes
with a proof, just like in locally checkable proofs, and Arthur performs a randomized local verification at each
node. Unfortunately, some predicates remain hard in this framework too. In particular, as we show in the paper,
there are no classical dMA protocols for (distant) EQ using compact certificates. Recently, several extensions of
dMA protocols were proposed, e.g., by allowing more interaction between the prover and the verifier [14, 19, 35].
In this work, we add the quantum aspect, while considering only a single interaction, and only in the prescribed
order: Merlin sends a proof to Arthur, and then there is no more interaction between them.

Our Results We carry on the recent trend of research consisting of investigating the power of quantum resources
in the context of distributed network computing (cf., e.g., [16, 33, 25, 34, 26, 21]), by designing a distributed
Quantum Merlin-Arthur (dQMA) protocol for distant EQ, using compact certificates and small messages. While
we use the dQMA terminology in order to be consistent with prior work, we emphasize that the structure of the
discussed protocols is rather simple: each node is given a quantum state as a certificate, the nodes exchange these
states, perform a local computation, and finally accept or reject.

Our main result is the following. A collection of n-bit strings x1, . . . , xt are stored at t terminal nodes u1, . . . , ut
in a network G = (V,E), where node ui stores xi. We denote EQt

n the problem of checking the equality x1 =
· · · = xt between the t strings. Let us define the radius of a given instance of EQt

n as r = mini maxj distG(ui, uj),
where distG denotes the distance in the (unweighted) graph G. Our main result is the design of a dQMA protocol
for EQt

n, using small certificate. This can be summarized by the following informal statement (the formal statement
is in the technical version):

Theorem 1. There is a distributed Quantum Merlin-Arthur (dQMA) protocol for certifying equality between t bi-
nary strings (EQt

n) of length n, and located at a radius-r set of t terminals, in a single round of communication
between neighboring nodes using certificates of size O(tr2 log n) qubits, and messages of size O(tr2 log(n + r))
qubits.

It is worth mentioning that, although the dependence in r and t is polynomial, the dependence in the actual
size n of the instance remains logarithmic, which is our main concern. Indeed, for applications such as the afore-
mentioned distributed data storage motivating the distant EQt

n problem, it is expected that both the number t of
replicas, and the maximum distance between the nodes storing these replicas are of several orders of magnitude
smaller than the size n of the stored replicated data.

It is also important to note that our protocol satisfies the basic requirement of reusability, as one aims for
protocols enabling regular and frequent verifications that the data are not corrupted. Specifically, the quantum
operations performed on the certificates during the local verification phase operated between neighboring nodes
preserve the quantum nature of these certificates. That is, if EQt

n is satisfied, i.e., if all the replicas xi’s are equal,
then, up to an elementary local relocation of the quantum certificates, these certificates are available for a next
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test. If EQt
n is not satisfied, i.e., if there exists a pair of replicas xi 6= xj , then the certificates do not need to be

preserved as this scenario corresponds to the case where the correctness of the data structure is violated, requiring
the activation of recovery procedures for fixing the bug, and reassigning certificates to the nodes.

Our quantum protocol is based on the SWAP test [11], which is a basic tool in the theory of quantum com-
putation and quantum information. This test allows to check if a quantum state is symmetric, and has several
applications, such as estimating the inner product of two states (e.g., [11, 8, 39]), checking whether a given state
(or a reduced state of it) is pure or entangled with the environment system (e.g., [1, 30, 23, 29]), and more. In this
paper, we use the SWAP test in yet another way: for checking if two of the reduced states of a given state are close.
A similar use was done by [37] in a different context (transforming quantum circuits to shallow ones in a hardness
reduction proof).

Finally, observe that our logarithmic upper bound for dQMA protocols is in contrast to the linear lower bound
that can be shown for classical dMA protocols even for t = 2 on a path of 4 nodes and even for the case where
communication between the neighboring nodes is extended to multiple rounds (see precise statement and proof
in the technical version). Our results thus show that quantum certification mechanism can provide an exponential
advantage over classical certification mechanisms.

Related Work The concept of distributed proofs is a part of the framework of distributed network computing
since the early works on fault-tolerance (see, e.g., [2, 5, 24]). Proof-labeling schemes were introduced in [32], and
variants have been studied in [22, 18]. Randomized proof-labeling schemes have been studied in [20]. Extensions
of distributed proofs to a hierarchy of decision mechanisms have been studied in [17] and [6]. Frameworks like
cloud computing recently enabled envisioning systems in which the nodes of the network could interact with a third
party, leading to the concept of distributed interactive proofs [31]. There, each node can interact with an oracle
who has a complete view of the system, is computationally unbounded, but is not trustable. For instance, in Arthur-
Merlin (dAM) protocols, the nodes start by querying the oracle Merlin, which provides them with answers in their
certificates. There is a simple classical compact dAM protocol for distant EQ, where the two players stand at the
extremities of a path. We refer to [14, 19, 35] for recent developments in the framework of distributed interactive
proofs. While distributed Arthur-Merlin protocols and their extensions provide an appealing theoretical framework
for studying the power of interactive proofs in the distributed setting, the practical implementation of such protocols
remains questionable, since they all require the existence of a know-all oracle, Merlin, and it is unclear if a Cloud
could play this role. On the other hand, in dMA and dQMA protocols, interaction with an external party is not
required, but only a one-time assignment of certificates is needed, which are then reusable for regular verification.
As in the classical proof-labeling schemes setting, these certificates can actually be created by the nodes themselves
during a pre-processing phase, making the reliance on a know-all oracle unnecessary.

After a few early works [7, 16, 21, 38] that shed light on the potential and limitations of quantum distributed
computing (see also [4, 10, 15] for general discussions), evidence of the advantage of quantum distributed comput-
ing over classical distributed computing have been obtained recently for three fundamental models of (synchronous
fault-free) distributed network computing: the CONGEST model [26, 33], the CONGEST-CLIQUE model [25]
and the LOCAL model [34]. The present paper adds to this list another important task for which quantum dis-
tributed computing significantly outperforms classical distributed computing, namely, distributed certification.

Note that while this paper is the first to study quantum Merlin-Arthur protocols in a distributed computing
framework, there are a number of prior works studying them in communication complexity [36, 27, 28, 9]. In
particular, quantum Merlin-Arthur protocols are shown to improve some computational measure (say, the total
length of the messages from the prover to Alice, and of the messages between Alice and Bob) exponentially
compared to Merlin-Arthur protocols where the messages from the prover are classical [36, 28].

The question of computing functions on inputs that are given to graph nodes was also studied in the context of
communication complexity. The equality function was studied for the case where all nodes have inputs [3]. Other
works considered a setting similar to ours, i.e., where only some nodes have inputs [12, 13], but did not study the
equality problem.
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