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1 Introduction

The complexity of many graph problems naturally scales with the number of edges in the graph. Graph
sparsification aims to reduce this number of edges, while preserving certain quantities of interest. If we
wish to approximate the weight of a minimum cut then the sparsified graph should approximately preserve
the cut values of the original graph. If we wish to solve a linear system in the Laplacian of the graph, then
the sparsified graph should approximately preserve certain spectral structure of the original graph. Through
a long line of work [Kar94, BK96, [ST11] the existence of so-called spectral sparsifiers was established. An
e-spectral sparsifier H of a graph G is a reweighted subgraph such that

(1 — E)LG <Ly = (1 + E)Lg,

with Ly and Lg the Laplacian matrices associated to H resp. G. This ensures that both the cut values and
the spectral structure of GG are approximately preserved in H. It was shown that for any G with n vertices
and m edges there exists an e-spectral sparsifier H with only a(n /%) edges, and moreover that H can be
constructed in time O(m).

This result and its predecessors lie at the basis of a huge range of efficient graph algorithms. It led to
the first near-linear time algorithms for cut problems such as computing the edge connectivity or weight
of a minimum cut [KarQO], or for finding an approximate sparsest cut or balanced separator [ARVQ9].
Spectral sparsifiers also were a critical building block of the first near-linear time algorithms for solving
Laplacian systems [ST14]. This has applications in broad areas such as learning, computer vision and
image processing, and graph clustering (see [Ienl0]] for a survey of the so-called “Laplacian paradigm”).

2  Quantum speedup for graph sparsification, cut approximation and Lapla-
cian solving (ased on [AdW19])

In this work we give a quantum algorithm for spectral sparsification. We consider both the adjacency array
model, in which we can query for the degree of a vertex or the i-th neighbor of a vertex (and the weight
of the corresponding edge), and the adjacency matrix model, in which we can query for the existence and
weight of an edge between an arbitrary pair of vertices.

Theorem 1. Let G be a weighted graph with n vertices and m edges. There is a quantum algorithm
that outputs with high probability the explicit description of an e-spectral sparsifier of G with O(n/e?)
edges. The algorithm has time complexity O(y/mn/¢) in the adjacency array model and O(n3/% /€) in the
adjacency matrix model.
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This improves on the classical time complexity which is £(m) in the adjacency array model and €2(n?)
in the adjacency matrix model. The algorithm builds on a range of quantum and classical results. As a
blueprint we use the iterative sparsification algorithm by Koutis and Xu [KX16]. This algorithm relies on so-
called graph spanners which are sparse subgraphs that approximately preserve all shortest-path distances in
the graph. The Koutis-Xu algorithm first constructs a near-constant number of graph spanners in the graph,
after which it randomly downsamples the remaining set of edges. Applying this scheme a logarithmic
number of times leads to a spectral sparsifier with O(n/e?) edges. Our quantum algorithm builds on a faster
quantum algorithm for constructing spanners. To this end we combine a classical spanner algorithm by
Thorup and Zwick [TZ05] with a quantum algorithm for constructing single-source shortest-path trees by
Diirr, Heiligman, Hgyer and Mhalla [DHHMOG6|]. This allows us to speed up the first phase of the Koutis-Xu
algorithm. The second phase amounts to downsampling the remaining set of edges. While this is trivially
done classically by iterating over the full edge set, our quantum algorithm works in sublinear time and
hence we must rely on an efficient k-independent hash function by Christiani, Pagh and Thorup [CPT15]] to
implicitly downsample the edge set. Combined with the quantum spanner algorithm this gives a quantum
sparsification algorithm with time complexity O(y/mn/e?) in the adjacency array model and O(n3/2/<?)
in the adjacency matrix model. Finally, we quadratically improve the e-dependency by using a bootstrap
trick based on work by Spielman and Srivastava [SS11]].

We prove a matching lower bound, showing that the runtime of our quantum algorithm is optimal up to
polylogarithmic factors.

Theorem 2. A quantum algorithm that for any graph with n vertices and m edges explicitly constructs
with high probability an e-cut sparsifier of the graph must make Q)(\/mn/¢) queries in the adjacency array
model and QU(n/? /<) queries in the adjacency list model.

Roughly, we obtain the lower bound by embedding an “unsparsifiable” graph in a larger graph. This un-
sparsifiable graph is derived from a construction by Andoni, Chen, Krauthgamer, Qin, Woodruff and Zhang
[ACK ™ 16|, where it was used for the purpose of proving lower bounds on the space complexity, rather than
the time complexity. The lower bound on the quantum query complexity is then proven using a lower bound
on the quantum query complexity of the composition of a relational problem with a Boolean function, which
was proven by Belovs and Lee [BL20|], prompted by our question to them.

We can combine our sparsification algorithm with classical algorithms to achieve a quantum speedup
for many of the aforementioned applications. Examples include a quantum speedup for approximating
the weight of a maximum cut, a minimum cut, a minimum s¢-cut or a sparsest cut in the original graph.
Combining our sparsification algorithm with classical algorithms for Laplacian solving gives the following
theorem, where we use the induced norm ||y||L = \/y* Ly for a positive semi-definite matrix L.

Theorem 3. Let L be the Laplacian of a weighted graph with n vertices and m edges. There exists a
quantum algorithm that outputs with high probability an explicit description of an approximate solution
Z € R" to the linear system Lx = b such that |T — x|, < €||z||r. The algorithm has time complexity
O(\/mn /) in the adjacency array model and O(n®/2 ) in the adjacency matrix model.

This leads to quantum speedups for approximating effective resistances, random walk commute and
cover times, and eigenvalues of the Laplacian. We also demonstrate a quantum speedup for spectral k-
means clustering.



3 Quantum query complexity of edge connectivity (based on [AL20))

At first sight, sparsifiers can only yield approximate solutions to cut problems. However, Karger [Kar0O]
showed that sparsifiers can also lead to an efficient algorithm for exactly determining the weight of a min-
imum cut in a graph. This requires a significantly more involved usage of sparsifiers. Since our quantum
sparsification led to a quantum speedup for approximating the weight of a minimum cut, this raises the
question of whether we can also find a quantum speedup for exactly computing its weight.

First we show that for general weighted graphs no quantum speedup is possible for exactly computing
the weight of a minimum cut. Indeed, we show that in the worst case (n?) queries are needed to compute
the weight of a minimum cut by a quantum algorithm in both the adjacency matrix and adjacency array
models. The same lower bound applies if we wish to output the edge set corresponding to a minimum cut,
or the shores (induced bipartition) of a minimum cut.

Next we consider the same problem for simple (unweighted) graphs, in which case the weight of a min-
imum cut is called the edge connectivity, and it corresponds to the least number of edges whose removal
disconnects the graph. Computing the edge connectivity of a graph is a fundamental computational prob-
lem and has great practical importance, with applications to clustering algorithms and evaluating network
reliability, amongst others [PQ82]. It was shown only recently that the edge connectivity can be computed
in time O(m) even by deterministic algorithms [KT15].

In contrast to the case for weighted graphs, we show that a quantum speedup in the query complexity of
computing the edge connectivity is possible.

Theorem 4. Let G be a simple graph with n vertices and m edges. There is a quantum algorithm that
outputs with high probability the edge connectivity of G using O(\/mn) queries in the adjacency array
model and O(ns/ 2) queries in the adjacency matrix model.

Note that, in contrast to the algorithms of the previous section, these upper bounds are only for the guery
complexity, and we leave the existence of time-efficient quantum algorithms for edge connectivity as an open
question. Apart from the edge connectivity, with the same query complexity the algorithms can also output
the edge set corresponding to a minimum cut, or the shores of a minimum cut. These bounds improve on the
trivial classical query complexities €2(m) and ©(n?) in the adjacency array and matrix models, respectively.
The upper bound in the adjacency matrix model is tight up to polylogarithmic factors, whereas the best
lower bound in the adjacency array model that we know of is £(n). These bounds follow from Q(n3/2) and
Q(n) lower bounds for deciding graph connectivity in the adjacency matrix and array models, respectively,
proven by Diirr, Heiligman, Hgyer and Mhalla [DHHMO0G6].

For comparison, if we directly combine a classical edge connectivity algorithm with the quantum spar-
sification algorithm, then we can only get an e-approximation of the edge connectivity using 9] (v/mn/e)
queries in the adjacency array model and O(n3/ 2 /&) queries in the adjacency matrix model. Our bounds
improve on both of these upper bounds. We do so by more carefully combining the quantum sparsifica-
tion algorithm with a lemma on the structure of near-minimum cuts given by Rubinstein, Schramm, and
Weinberg [RSW18]].
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