Quantum speedups for graph sparsification,
graph cut problems and Laplacian solving

Simon Apers! Troy Lee? Ronald de Wolf3

Cwil, ULB
2University of Technology Sydney
3QuSoft, CWI and University of Amsterdam

QIP, February 2021

(arXiv:1911.07306, arXiv:2011.09823)

Graph model

Graph model

undirected, weighted graph G = (V,E, w)
n nodes and m edges
€O(w)

Graph model
undirected, weighted graph G = (V,E, w)
n nodes and m edges

adjacency list access:

(v1): (va,wia), (v3,wia), ... \ Vo

(VZ): (V3,W273), ce ‘
: Vs

(va): ... U1

Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities

mGéO(V\!\ MpyLe Mg

Graph Sparsification

“spectral sparsification”

Graph Sparsification

“spectral sparsification”

= approximately preserve all quadratic forms:

TLyx = (1te) XL x , Yxell

@ cut values

@ eigenvalues

@ random walk properties
° ...

this includes:

Graph Sparsification

how sparse can we go ?

Graph Sparsification

how sparse can we go ?

Karger '94, Benczur-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:
Theorem
Every graph has e-spectral sparsifier H with a number of edges

O(n/é?) << O(n*)

which can be found in time O(m).

Graph Sparsification

how sparse can we go ?

Karger '94, Benczur-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Every graph has e-spectral sparsifier H with a number of edges
O(n/e)

which can be found in time O(m).

@ building block of many O(m)-time approximation algorithms

Graph Sparsification

how sparse can we go ?

Karger '94, Benczur-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Every graph has e-spectral sparsifier H with a number of edges
O(n/e)

which can be found in time O(m).

@ building block of many O(m)-time approximation algorithms

@ crucial component of Spielman-Teng O(m)-time algorithm for
solving Laplacian system Lx = b

m 2 \mn/e 2%, ¢ \JE

This work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(/mn/e)

This work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(v/mn/e)

= vanilla speedup for cut approximation and Laplacian solving

This work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(v/mn/e)

= vanilla speedup for cut approximation and Laplacian solving

@ quantum algorithm for finding exact minimum cut

Classical Sparsification Algorithm

Iterative sparsification [Koutis-Xu "16]:

@ construct O(1/¢2) “graph spanners” and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

Classical Sparsification Algorithm

Iterative sparsification [Koutis-Xu "16]:

@ construct O(1/¢2) “graph spanners” and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

— repeat O(log n) times: e-spectral sparsifier with O(n/e2) edges

Quantum Sparsification Algorithm

=4

ol

/2)

%(n /€%)

Quantum Sparsification Algorithm

% - @W?

= quantum spanner
algorithm

complexity O(y/mn)

builds on

Thorup-Zwick
(01)

Dirr-Heiligman-Hgyer-Mhalla
('06)

%(n /€%)

Quantum Sparsification Algorithm

= quantum spanner + k-independent
algorithm oracle

complexity O(/mn) implicitly downsample

the edges
builds on builds on
Thorup-Zwick Christiani-Pagh-Thorup

('o1) (15)

Dirr-Heiligman-Hgyer-Mhalla
('06)

Quantum Sparsification Algorithm

S N/
m J m/2 ' O(n/€?)

= quantum spanner + k-independent
algorithm oracle

complexity O(/mn) implicitly downsample

the edges
builds on builds on
Thorup-Zwick Christiani-Pagh-Thorup
(of1) ('15)
Dirr-Heiligman-Hgyer-Mhalla !

(06))
O(y/mn/&)

Quantum Sparsification Algorithm

S N/
m J m/2 ' O(n/€?)

= quantum spanner + k-independent + bootstrap trick
algorithm oracle
complexity O(y/mn) implicitly downsample improve
the edges e-dependency
builds on builds on builds on
Thorup-Zwick Christiani-Pagh-Thorup Spielman-Srivastava
(o1) ('15) (08)
Dirr-Heiligman-Hgyer-Mhalla !
('06)

O(/mn /)

Quantum Sparsification Algorithm

S N/
m J m/2 ' O(n/€?)

= quantum spanner + k-independent + bootstrap trick
algorithm oracle
complexity O(y/mn) implicitly downsample improve
the edges e-dependency
builds on builds on builds on
Thorup-Zwick Christiani-Pagh-Thorup Spielman-Srivastava
(o1) ('15) (08)
Dirr-Heiligman-Hgyer-Mhalla ! 1
('06)

O(y/mn/e%) O(y/mn/e)

Quantum Sparsification Algorithm

Theorem

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€?) edges in time

O(y/mn/e).

Quantum Sparsification Algorithm

Theorem

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€*) edges in time
O(v/mn/e).

This is tight (up to polylog-factors).

Matching Quantum Lower Bound

intuition:
finding k£ marked elements among M elements takes
Q(vMk) quantum queries,

Matching Quantum Lower Bound

intuition:
finding k£ marked elements among M elements takes
Q(vMk) quantum queries,

B " hence "
finding O(n/e?) edges of sparsifier among m edges takes

Q(y/mn/e) quantum queries

Matching Quantum Lower Bound

intuition:
finding k£ marked elements among M elements takes
Q(vMk) quantum queries,

_ hence
finding O(n/€*) edges of sparsifier among m edges takes

Q(y/mn/e) quantum queries

where “hence”

hldlng an UnSparSiﬁabIe graph [Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang '16]
+ quantum lower bound for relational problem seiov-Lee 0]

Applications

e.g., MIN CUT:

Applications

a\

MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN CUT of G

Vi

S
N
AL

‘y X
St
Y

11

Applications
MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN CUT of G

/)“\»/(

A) \ W
A il
ALY

%

classically:
can find MIN cUT in time O(m) (Karger ’00)

11

Applications
MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN CUT of G

classically:
can find MIN cUT in time O(m) (Karger ’00)

quantum: N
quantum algorithm to create sparsifier H in O(y/mn/e)
+ classical MIN CUT on H in O(n/€?®) (Karger '00)

11

Applications
MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN CUT of G

5
"‘A'Qv NS

\ M!’l}\‘ =
s

classically:
can find MIN cUT in time O(m) (Karger ’00)

quantum: N
quantum algorithm to create sparsifier H in O(y/mn/e)
+ classical MIN CUT on H in O(n/€?®) (Karger '00)

= O(y/mn/¢) quantum algorithm

11

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

12

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

12

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

@ cut problems:
» min cut, max cut (> .s7), sparsest cut (€ o(viogn), - . .

12

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

@ cut problems:
» min cut, max cut (> .s7), sparsest cut (€ o(viogn), - . .
@ Laplacian systems Lsx = b:

» given sparse access to Laplacian or SDD matrix L, explicitly
outputs e-approximation to x

12

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

@ cut problems:
» min cut, max cut (> .s7), sparsest cut (€ o(viogn), - . .
@ Laplacian systems Lsx = b:

» given sparse access to Laplacian or SDD matrix L, explicitly
outputs e-approximation to x
» solution to Lyx = b approximates solution to Lgx = b

12

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

@ cut problems:
» min cut, max cut (> .s7), sparsest cut (€ o(viogn), - . .
@ Laplacian systems Lsx = b:

» given sparse access to Laplacian or SDD matrix L, explicitly
outputs e-approximation to x

» solution to Lyx = b approximates solution to Lgx = b

» applications in combinatorial optimization, machine learning, ...

12

Applications

— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

@ cut problems:
» min cut, max cut (> .s7), sparsest cut (€ o(viogn), - . .
@ Laplacian systems Lsx = b:

» given sparse access to Laplacian or SDD matrix L, explicitly
outputs e-approximation to x

» solution to Lyx = b approximates solution to Lgx = b

» applications in combinatorial optimization, machine learning, ...

Can we get exact quantum algorithms?

12

Quantum algorithm for MIN cuT

‘%

a

back to MIN CUT: %
7

A V“:
ALY

classical: exact MIN CUT in time O(m) (Karger '00)

13

Quantum algorithm for MIN cuT

back to MIN CUT:

classical: exact MIN CUT in time O(m) (Karger '00)
quantum: e-approximate MIN CUT in time O(y/mn/¢) i

13

Quantum algorithm for MIN cuT
inpul §ice = v inpul size = N
Results in adjagency list model and adjacency matrix model:

Theorem

14

Quantum algorithm for MIN cuT
Results in adjacency list model and adjacency matrix model:

Theorem

@ There exists a family of weighted graphs with Q(n*) edges for
which the quantum query complexity of exact MIN CUT is Q(n?)
both models. - no ?umfm specdip!

in

14

Quantum algorithm for MIN cuT

Results in adjacency list model and adjacency matrix model:

Theorem

@ There exists a family of weighted graphs with Q(n*) edges for
which the quantum query complexity of exact MIN CUT is Q(n?) in
both models.

@ For unweighted graphs, exact MIN CUT has quantum query
complexity

O(/mn) in adjacency list model

O(n*/?) in adjacency matrix model

14

Quantum algorithm for MIN cuT

Results in adjacency list model and adjacency matrix model:

Theorem
@ There exists a family of weighted graphs with Q(n*) edges for

both models.
@ For unweighted graphs, exact MIN CUT has quantum query
complexity .
O(y/mn) in adjacency list model «~ ApEES S(\rse)
O(n*/?) in adjacency matrix model
and time complexity O(n*/?) in both models.

which the quantum query complexity of exact MIN CUT is Q(n?) in

14

Quantum algorithm for MIN cuT

Results in adjacency list model and adjacency matrix model:

Theorem
@ There exists a family of weighted graphs with Q(n*) edges for

both models.
@ For unweighted graphs, exact MIN CUT has quantum query
complexity

O(\/mn) in adjacency list model

O(n*/?) in adjacency matrix model
and time complexity O(n*/?) in both mm L1k

which the quantum query complexity of exact MIN CUT is Q(n?) in

Cgh
0&(ower bounds for unweighted graphs (from connectivity [DHHM'06]):

Q(n) (list)y or Q(n*/?) (matrix)

14

Quantum algorithm for MIN cuT

Upper bounds on quantum query complexity:

15

Quantum algorithm for MIN cuT

Upper bounds on quantum query complexity:

Theorem (Kawarabayashi-Thorup 2014, Rubinstein-Schramm-Weinberg 2017)
For unweighted G, there exists partition V = P, U - - - U P, such that
@ there are O(n) edges between patrtitions,
Q@ partition “respects” all near-minimum cuts.

15

Quantum algorithm for MIN cuT
quantum query algorithm in list model:

@ construct e = 1/10-sparsifier H — (V)
— min cut of G is near-minimum cut of H
Q@ learn partiion V=P U---UP,Of H — nre Greties
— respects min cut of G y
© Grover search over m edges to find O(n) edges of G between P;’s

© classically calculate min cut of contracted graph = OO Nwr)
~>Vo 1m. (74

y’f I

;@@

= oM

C’%
16

Open questions:

17

Open questions:

@ matching lower bounds for approximation algorithms?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

17

Open questions:

@ matching lower bounds for approximation algorithms?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ unweighted graphs:
— O(n/é?) for sparsification?
-~ O(n) for unweighted min cut in adjacency list model?

S — O Wmi)

17

Open questions:

@ matching lower bounds for approximation algorithms?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ unweighted graphs:
O(n/e?) for sparsification?
O(n) for unweighted min cut in adjacency list model?

thank you! stay safe!

@(V‘Z/l/s) . 6 /n’)

17

