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Graph model
undirected, weighted graph G = (V,E, w)
n nodes and m edges

adjacency list access:

(v1): (va,wia), (v3,wia), ... \ Vo
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Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities
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Graph Sparsification

“spectral sparsification”

= approximately preserve all quadratic forms:

TLyx = (1te) XL x , Yxell

@ cut values

@ eigenvalues

@ random walk properties
° ...

this includes:
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how sparse can we go ?

Karger '94, Benczur-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:
Theorem
Every graph has e-spectral sparsifier H with a number of edges

O(n/é?) << O(n*)

which can be found in time O(m).
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Graph Sparsification

how sparse can we go ?

Karger '94, Benczur-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Every graph has e-spectral sparsifier H with a number of edges
O(n/e)

which can be found in time O(m).

@ building block of many O(m)-time approximation algorithms

@ crucial component of Spielman-Teng O(m)-time algorithm for
solving Laplacian system Lx = b
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This work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(v/mn/e)

= vanilla speedup for cut approximation and Laplacian solving

@ quantum algorithm for finding exact minimum cut
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Iterative sparsification [Koutis-Xu "16]:

@ construct O(1/¢2) “graph spanners” and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight




Classical Sparsification Algorithm

Iterative sparsification [Koutis-Xu "16]:

@ construct O(1/¢2) “graph spanners” and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

— repeat O(log n) times: e-spectral sparsifier with O(n/e2) edges
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Quantum Sparsification Algorithm

% - @W?

= quantum spanner
algorithm

complexity O(y/mn)

builds on

Thorup-Zwick
(01)

Dirr-Heiligman-Hgyer-Mhalla
('06)
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S N/
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= quantum spanner + k-independent + bootstrap trick
algorithm oracle
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Quantum Sparsification Algorithm

S N/
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= quantum spanner + k-independent + bootstrap trick
algorithm oracle
complexity O(y/mn) implicitly downsample improve
the edges e-dependency
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Quantum Sparsification Algorithm

Theorem

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€?) edges in time

O(y/mn/e).




Quantum Sparsification Algorithm

Theorem

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€*) edges in time
O(v/mn/e).

This is tight (up to polylog-factors).
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Matching Quantum Lower Bound

intuition:
finding k£ marked elements among M elements takes
Q(vMk) quantum queries,

_ hence
finding O(n/€*) edges of sparsifier among m edges takes

Q(y/mn/e) quantum queries

where “hence”

hldlng an UnSparSiﬁabIe graph [Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang '16]
+ quantum lower bound for relational problem seiov-Lee 0]
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e.g., MIN CUT:
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MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN CUT of G
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classically:
can find MIN cUT in time O(m) (Karger ’00)

quantum: N
quantum algorithm to create sparsifier H in O(y/mn/e)
+ classical MIN CUT on H in O(n/€?®) (Karger '00)

= O(y/mn/¢) quantum algorithm
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— general blueprint:

@ Use quantum algorithm to create sparsifier H in time O(y/mn/e)
@ Run classical algorithm on H in time O(n/e?)

= O(\/mn/¢)-time quantum algorithms for e-approximating

@ cut problems:
» min cut, max cut ( > .s7), sparsest cut ( € o(viogn), - . .
@ Laplacian systems Lsx = b:

» given sparse access to Laplacian or SDD matrix L, explicitly
outputs e-approximation to x

» solution to Lyx = b approximates solution to Lgx = b

» applications in combinatorial optimization, machine learning, ...

Can we get exact quantum algorithms?
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Quantum algorithm for MIN cuT
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Quantum algorithm for MIN cuT

back to MIN CUT:

classical: exact MIN CUT in time O(m) (Karger '00)
quantum: e-approximate MIN CUT in time O(y/mn/¢) i
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Quantum algorithm for MIN cuT
inpul §ice = v inpul size = N
Results in adjagency list model and adjacency matrix model:

Theorem
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Quantum algorithm for MIN cuT

Results in adjacency list model and adjacency matrix model:

Theorem
@ There exists a family of weighted graphs with Q(n*) edges for

both models.
@ For unweighted graphs, exact MIN CUT has quantum query
complexity

O(\/mn) in adjacency list model

O(n*/?) in adjacency matrix model
and time complexity O(n*/?) in both mm L1k

which the quantum query complexity of exact MIN CUT is Q(n?) in

Cgh
0&( ower bounds for unweighted graphs (from connectivity [DHHM'06]):

Q(n) (list)y or Q(n*/?) (matrix)
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Quantum algorithm for MIN cuT

Upper bounds on quantum query complexity:
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Quantum algorithm for MIN cuT

Upper bounds on quantum query complexity:

Theorem (Kawarabayashi-Thorup 2014, Rubinstein-Schramm-Weinberg 2017)
For unweighted G, there exists partition V = P, U - - - U P, such that
@ there are O(n) edges between patrtitions,
Q@ partition “respects” all near-minimum cuts.

15



Quantum algorithm for MIN cuT
quantum query algorithm in list model:

@ construct e = 1/10-sparsifier H — (V)
— min cut of G is near-minimum cut of H
Q@ learn partiion V=P U---UP,Of H — nre Greties
— respects min cut of G y
© Grover search over m edges to find O(n) edges of G between P;’s

© classically calculate min cut of contracted graph = OO Nwr)
~>Vo 1m. (74

y’f I
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Open questions:
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Open questions:

@ matching lower bounds for approximation algorithms?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ unweighted graphs:
—  O(n/é?) for sparsification?
-~ O(n) for unweighted min cut in adjacency list model?
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Open questions:

@ matching lower bounds for approximation algorithms?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ unweighted graphs:
O(n/e?) for sparsification?
O(n) for unweighted min cut in adjacency list model?

thank you! stay safe!

@(V‘Z/l/s) . 6 /n’)
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