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Graph model

undirected, weighted graph G = (V,E,w)
n nodes and m edges

adjacency list access:
(v1): (v2,w1,2), (v3,w1,3), . . .
(v2): (v3,w2,3), . . .

...
(vn): . . .
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Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities
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Graph Sparsification

“spectral sparsification”

= approximately preserve all quadratic forms:

this includes:

cut values
eigenvalues
random walk properties
. . .
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Theorem
Every graph has �-spectral sparsifier H with a number of edges
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which can be found in time �O(m).
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Graph Sparsification

how sparse can we go ?

Karger ’94, Benczúr-Karger ’96, Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem
Every graph has �-spectral sparsifier H with a number of edges

�O(n/�2)

which can be found in time �O(m).

building block of many �O(m)-time approximation algorithms
crucial component of Spielman-Teng �O(m)-time algorithm for
solving Laplacian system Lx = b
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This work:
1 quantum algorithm to find �-spectral sparsifier H in time

�O(
√

mn/�)

= vanilla speedup for cut approximation and Laplacian solving

2 quantum algorithm for finding exact minimum cut
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Classical Sparsification Algorithm

Iterative sparsification [Koutis-Xu ’16]:

1 construct �O(1/�2) “graph spanners” and keep these edges
2 keep any remaining edge with probability 1/2, and double its

weight
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Classical Sparsification Algorithm

Iterative sparsification [Koutis-Xu ’16]:

1 construct �O(1/�2) “graph spanners” and keep these edges
2 keep any remaining edge with probability 1/2, and double its

weight

→ repeat O(log n) times: �-spectral sparsifier with �O(n/�2) edges
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(’06)
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Quantum Sparsification Algorithm

Theorem
There is a quantum algorithm that constructs an �-spectral sparsifier
with �O(n/�2) edges in time

�O(
√

mn/�).
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Quantum Sparsification Algorithm

Theorem
There is a quantum algorithm that constructs an �-spectral sparsifier
with �O(n/�2) edges in time

�O(
√

mn/�).

This is tight (up to polylog-factors).
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Matching Quantum Lower Bound
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√

Mk) quantum queries,
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Matching Quantum Lower Bound

intuition:
finding k marked elements among M elements takes

Ω(
√

Mk) quantum queries,

hence
finding �O(n/�2) edges of sparsifier among m edges takes

�Ω(√mn/�) quantum queries

where “hence”
=

hiding an unsparsifiable graph [Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang ’16]

+ quantum lower bound for relational problem [Belov-Lee ’20]
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Applications

e.g., MIN CUT:

find cut (S, Sc) that minimizes cut value

cutG(S) =
�

i∈S,j/∈S

wi,j
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→ general blueprint:
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� given sparse access to Laplacian or SDD matrix L, explicitly

outputs �-approximation to x
� solution to LHx = b approximates solution to LGx = b
� applications in combinatorial optimization, machine learning, . . .

Can we get exact quantum algorithms?
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Quantum algorithm for MIN CUT

back to MIN CUT:

classical: exact MIN CUT in time �O(m) (Karger ’00)
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Quantum algorithm for MIN CUT

back to MIN CUT:

classical: exact MIN CUT in time �O(m) (Karger ’00)
quantum: �-approximate MIN CUT in time �O(

√
mn/�) :(
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Quantum algorithm for MIN CUT

Results in adjacency list model and adjacency matrix model:

Theorem
There exists a family of weighted graphs with Ω(n2) edges for
which the quantum query complexity of exact MIN CUT is Ω(n2) in
both models.
For unweighted graphs, exact MIN CUT has quantum query
complexity

� �O(
√

mn) in adjacency list model
� �O(n3/2) in adjacency matrix model

and time complexity �O(n3/2) in both models.

Lower bounds for unweighted graphs (from connectivity [DHHM’06]):

Ω(n) (list) or Ω(n3/2) (matrix)
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Quantum algorithm for MIN CUT

Upper bounds on quantum query complexity:
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Quantum algorithm for MIN CUT

Upper bounds on quantum query complexity:

Theorem (Kawarabayashi-Thorup 2014, Rubinstein-Schramm-Weinberg 2017)

For unweighted G, there exists partition V = P1 ∪ · · · ∪ Pk such that
1 there are O(n) edges between partitions,
2 partition “respects” all near-minimum cuts.
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Quantum algorithm for MIN CUT

quantum query algorithm in list model:

1 construct � = 1/10-sparsifier H
→ min cut of G is near-minimum cut of H

2 learn partition V = P1 ∪ · · · ∪ Pk of H
→ respects min cut of G

3 Grover search over m edges to find O(n) edges of G between Pi’s
4 classically calculate min cut of contracted graph
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thank you! stay safe!
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