

Quantum speedups for graph sparsification, graph cut problems and Laplacian solving

Simon Apers¹ Troy Lee² Ronald de Wolf³

¹CWI, ULB

²University of Technology Sydney

³QuSoft, CWI and University of Amsterdam

QIP, February 2021

(arXiv:1911.07306, arXiv:2011.09823)

Graph model

Graph model

undirected, weighted graph $G = (V, E, w)$

n nodes and m edges

$\epsilon O(n^2)$

Graph model

undirected, weighted graph $G = (V, E, w)$
 n nodes and m edges

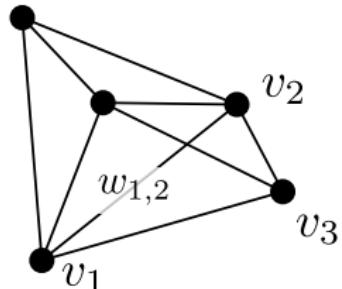
adjacency list access:

(v_1) : $(v_2, w_{1,2}), (v_3, w_{1,3}), \dots$

(v_2) : $(v_3, w_{2,3}), \dots$

\vdots

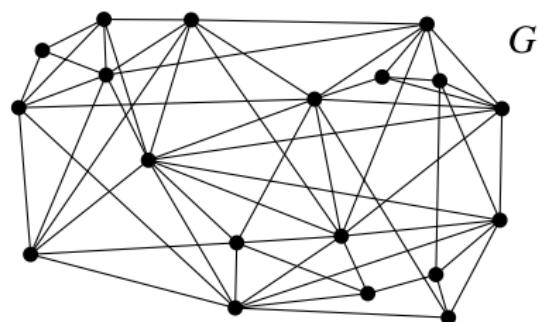
(v_n) : \dots



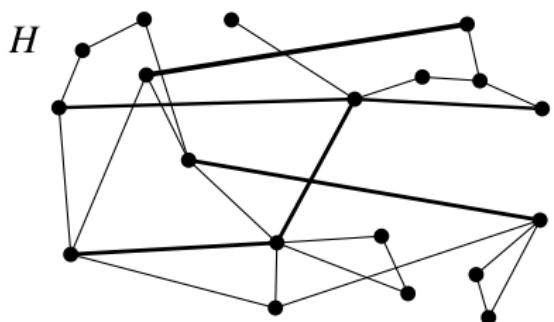
Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities



$$m_G \in O(n^2)$$



$$m_H \ll m_G$$

Graph Sparsification

“**spectral** sparsification”

Graph Sparsification

“spectral sparsification”

= approximately preserve all quadratic forms:

$$x^\top L_H x = (1 \pm \varepsilon) x^\top L_S x, \quad \forall x \in \mathbb{R}^n$$

this includes:

- cut values
- eigenvalues
- random walk properties
- ...

Graph Sparsification

how sparse can we go ?

Graph Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Every graph has ϵ -spectral sparsifier H with a number of edges

$$\tilde{O}(n/\epsilon^2) \ll O(n^2)$$

which can be found in time $\tilde{O}(m)$.

Graph Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Every graph has ϵ -spectral sparsifier H with a number of edges

$$\tilde{O}(n/\epsilon^2)$$

which can be found in time $\tilde{O}(m)$.

- building block of many $\tilde{O}(m)$ -time **approximation** algorithms

Graph Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Every graph has ϵ -spectral sparsifier H with a number of edges

$$\tilde{O}(n/\epsilon^2)$$

which can be found in time $\tilde{O}(m)$.

- building block of many $\tilde{O}(m)$ -time **approximation** algorithms
- crucial component of Spielman-Teng $\tilde{O}(m)$ -time algorithm for solving **Laplacian system** $Lx = b$

This work:

$$m \geq \sqrt{mn}/\varepsilon \geq n/\varepsilon^2, \quad \varepsilon \leq \sqrt{\frac{m}{n}}$$

This work:

- ➊ **quantum algorithm** to find ϵ -spectral sparsifier H in time

$$\tilde{O}(\sqrt{mn}/\epsilon)$$

This work:

- ➊ **quantum algorithm** to find ϵ -spectral sparsifier H in time

$$\tilde{O}(\sqrt{mn}/\epsilon)$$

= vanilla speedup for cut approximation and Laplacian solving

This work:

- ① **quantum algorithm** to find ϵ -spectral sparsifier H in time

$$\tilde{O}(\sqrt{mn}/\epsilon)$$

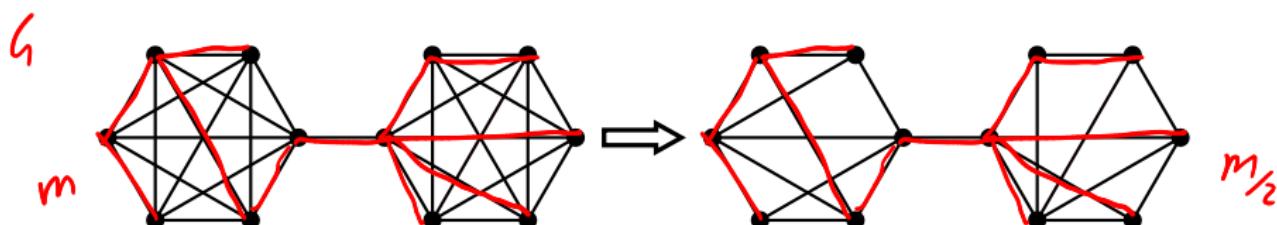
= vanilla speedup for cut approximation and Laplacian solving

- ② **quantum algorithm** for finding *exact* minimum cut

Classical Sparsification Algorithm

Iterative sparsification [Koutis-Xu '16]:

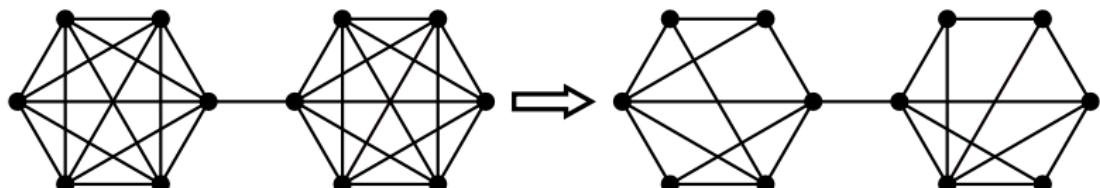
- 1 construct $\tilde{O}(1/\epsilon^2)$ “graph spanners” and keep these edges
- 2 keep any remaining edge with probability 1/2, and double its weight



Classical Sparsification Algorithm

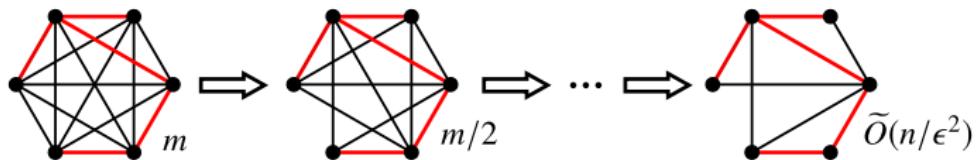
Iterative sparsification [Koutis-Xu '16]:

- 1 construct $\tilde{O}(1/\epsilon^2)$ “graph spanners” and keep these edges
- 2 keep any remaining edge with probability 1/2, and double its weight

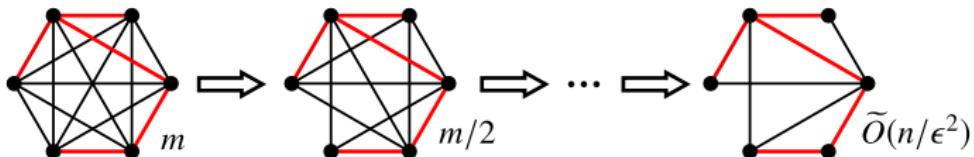


→ repeat $O(\log n)$ times: ϵ -spectral sparsifier with $\tilde{O}(n/\epsilon^2)$ edges

Quantum Sparsification Algorithm



Quantum Sparsification Algorithm



= **quantum spanner
algorithm**

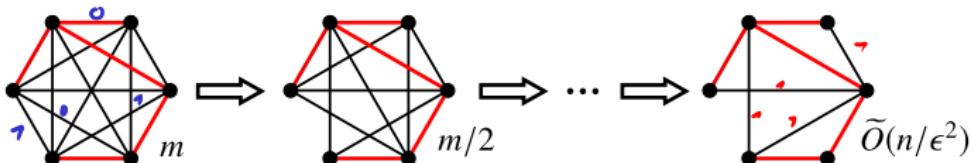
complexity $\tilde{O}(\sqrt{mn})$

builds on

Thorup-Zwick
('01)

Dürr-Heiligman-Høyer-Mhalla
('06)

Quantum Sparsification Algorithm



= quantum spanner + k -independent
algorithm oracle

complexity $\tilde{O}(\sqrt{mn})$ implicitly downsample
the edges

builds on

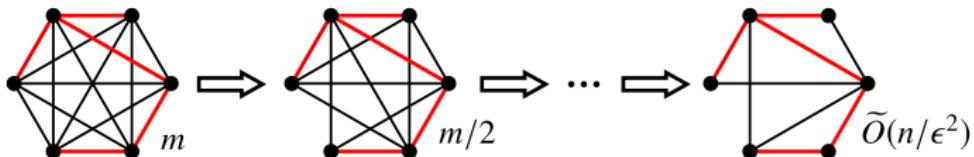
Thorup-Zwick
('01)

builds on

Christiani-Pagh-Thorup
('15)

Dürr-Heiligman-Høyer-Mhalla
('06)

Quantum Sparsification Algorithm



= quantum spanner + k -independent
algorithm oracle

complexity $\tilde{O}(\sqrt{mn})$ implicitly downsample
the edges

builds on

Thorup-Zwick
('01)

builds on

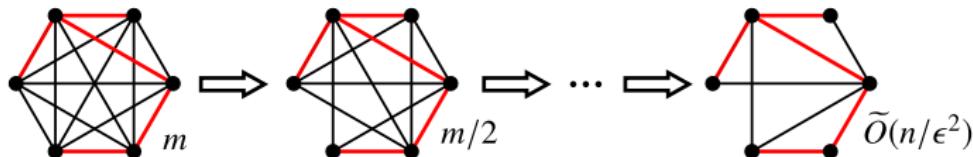
Christiani-Pagh-Thorup
('15)

Dürr-Heiligman-Høyer-Mhalla
('06)

↓

$\tilde{O}(\sqrt{mn}/\epsilon^2)$

Quantum Sparsification Algorithm



= **quantum spanner
algorithm**

+ **k -independent
oracle**

+ **bootstrap trick**

complexity $\tilde{O}(\sqrt{mn})$

implicitly downsample
the edges

improve
 ϵ -dependency

builds on

Thorup-Zwick
('01)

builds on

Christiani-Pagh-Thorup
('15)

builds on

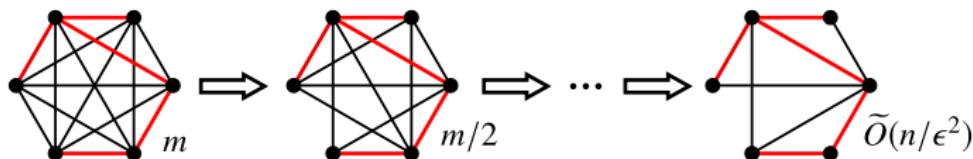
Spielman-Srivastava
('08)

Dürr-Heiligman-Høyer-Mhalla
('06)

↓

$\tilde{O}(\sqrt{mn}/\epsilon^2)$

Quantum Sparsification Algorithm



= **quantum spanner algorithm** + **k -independent oracle** + **bootstrap trick**

complexity $\tilde{O}(\sqrt{mn})$ implicitly downsample the edges improve ϵ -dependency

builds on

Thorup-Zwick
('01)

builds on

Christiani-Pagh-Thorup
('15)

builds on

Spielman-Srivastava
('08)

Dürr-Heiligman-Høyer-Mhalla
('06)

↓

$\tilde{O}(\sqrt{mn}/\epsilon^2)$

↓

$\tilde{O}(\sqrt{mn}/\epsilon)$

Quantum Sparsification Algorithm

Theorem

There is a quantum algorithm that constructs an ϵ -spectral sparsifier with $\tilde{O}(n/\epsilon^2)$ edges in time

$$\tilde{O}(\sqrt{mn}/\epsilon).$$

Quantum Sparsification Algorithm

Theorem

There is a quantum algorithm that constructs an ϵ -spectral sparsifier with $\tilde{O}(n/\epsilon^2)$ edges in time

$$\tilde{O}(\sqrt{mn}/\epsilon).$$

This is tight (up to polylog-factors).

Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes
 $\Omega(\sqrt{Mk})$ **quantum queries**,

Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes
 $\Omega(\sqrt{Mk})$ **quantum queries**,

"hence"

finding $\tilde{O}(n/\epsilon^2)$ edges of sparsifier among m edges takes
 $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ **quantum queries**

Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes
 $\Omega(\sqrt{Mk})$ **quantum queries**,

hence

finding $\tilde{O}(n/\epsilon^2)$ edges of sparsifier among m edges takes
 $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ **quantum queries**

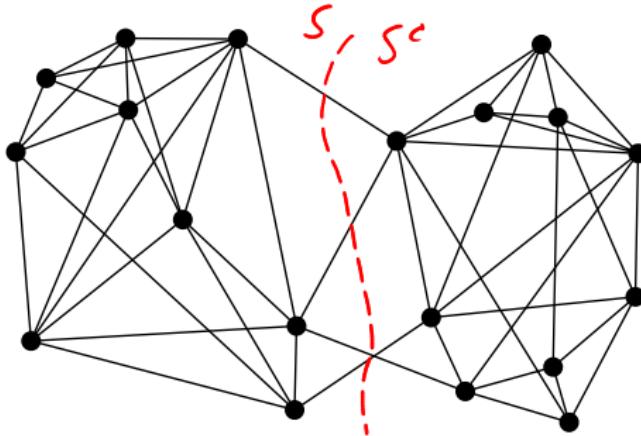
where “hence”

=

hiding an unsparsifiable graph [Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang '16]
+ quantum lower bound for relational problem [Belov-Lee '20]

Applications

e.g., MIN CUT:

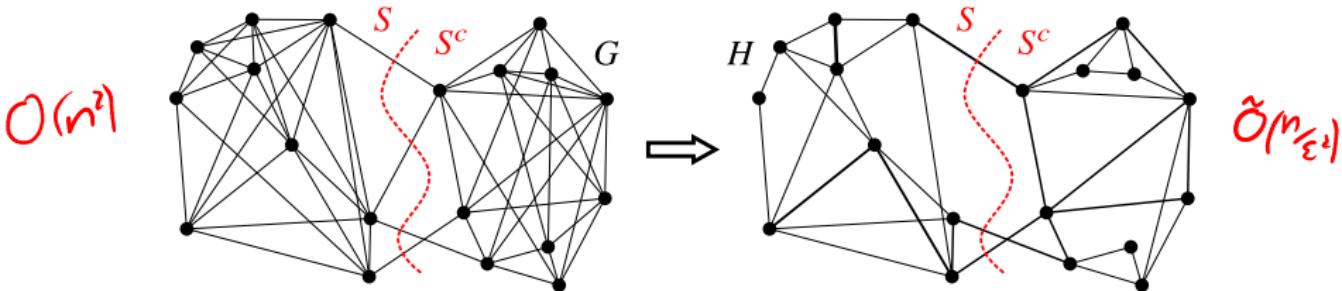


find cut (S, S^c) that minimizes cut value

$$\text{cut}_G(S) = \sum_{i \in S, j \notin S} w_{i,j} = 4$$

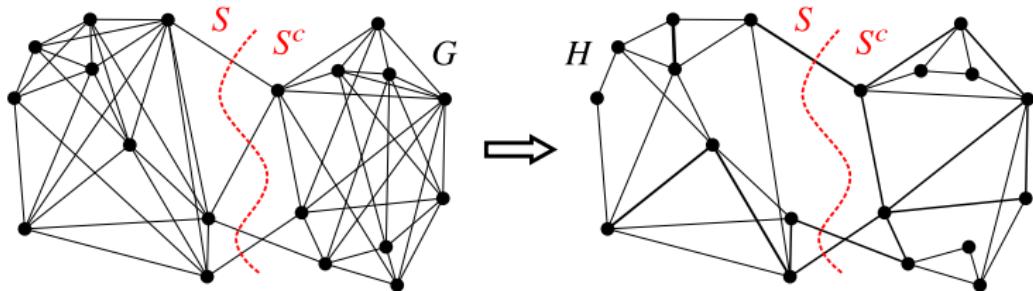
Applications

MIN CUT of ϵ -spectral sparsifier H
gives ϵ -approximation of MIN CUT of G



Applications

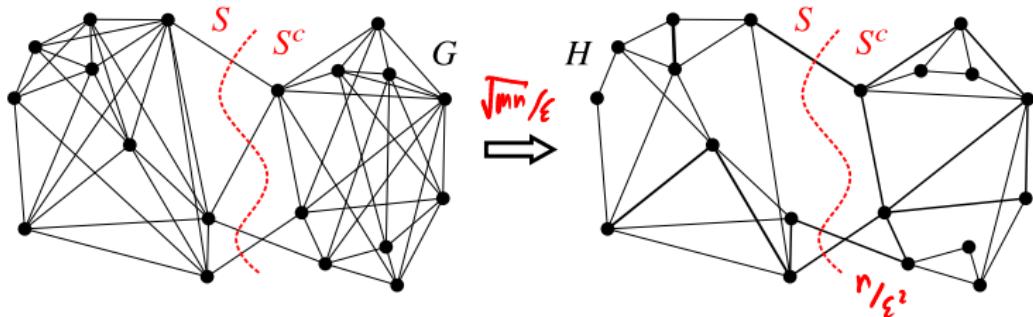
MIN CUT of ϵ -spectral sparsifier H
gives ϵ -approximation of MIN CUT of G



classically:
can find MIN CUT in time $\tilde{O}(m)$ (Karger '00)

Applications

MIN CUT of ϵ -spectral sparsifier H
gives ϵ -approximation of MIN CUT of G

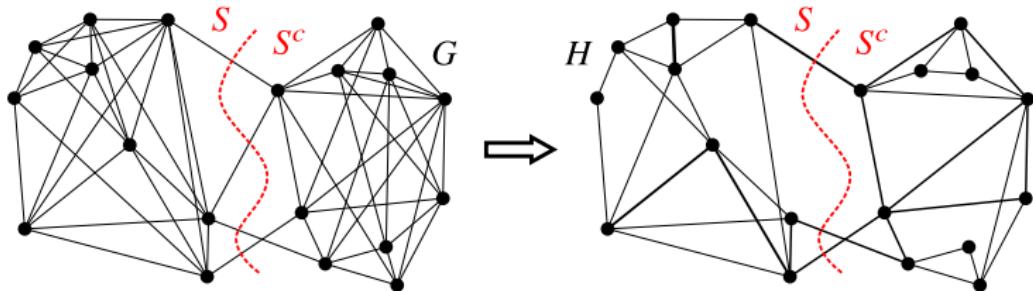


classically:
can find MIN CUT in time $\tilde{O}(m)$ (Karger '00)

quantum:
quantum algorithm to create sparsifier H in $\tilde{O}(\sqrt{mn}/\epsilon)$
+ **classical** MIN CUT on H in $\tilde{O}(n/\epsilon^2)$ (Karger '00)

Applications

MIN CUT of ϵ -spectral sparsifier H
gives ϵ -approximation of MIN CUT of G



classically:
can find MIN CUT in time $\tilde{O}(m)$ (Karger '00)

quantum:
quantum algorithm to create sparsifier H in $\tilde{O}(\sqrt{mn}/\epsilon)$
+ **classical** MIN CUT on H in $\tilde{O}(n/\epsilon^2)$ (Karger '00)

= $\tilde{O}(\sqrt{mn}/\epsilon)$ quantum algorithm

Applications

→ general blueprint:

- ① Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- ② Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

Applications

→ general blueprint:

- ① Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- ② Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

= $\tilde{O}(\sqrt{mn}/\epsilon)$ -time quantum algorithms for ϵ -approximating

Applications

→ general blueprint:

- 1 Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- 2 Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

= $\tilde{O}(\sqrt{mn}/\epsilon)$ -time quantum algorithms for ϵ -approximating

- **cut problems:**

- ▶ min cut, max cut ($\epsilon > .878$), sparsest cut ($\epsilon \in \Omega(\sqrt{\log n})$), ...

Applications

→ general blueprint:

- 1 Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- 2 Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

= $\tilde{O}(\sqrt{mn}/\epsilon)$ -time quantum algorithms for ϵ -approximating

- **cut problems:**
 - ▶ min cut, max cut ($\epsilon > .878$), sparsest cut ($\epsilon \in \Omega(\sqrt{\log n})$), ...
- **Laplacian systems** $L_G x = b$:
 - ▶ given sparse access to Laplacian or SDD matrix L , explicitly outputs ϵ -approximation to x

Applications

→ general blueprint:

- 1 Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- 2 Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

= $\tilde{O}(\sqrt{mn}/\epsilon)$ -time quantum algorithms for ϵ -approximating

- **cut problems:**
 - ▶ min cut, max cut ($\epsilon > .878$), sparsest cut ($\epsilon \in \Omega(\sqrt{\log n})$), ...
- **Laplacian systems $L_G x = b$:**
 - ▶ given sparse access to Laplacian or SDD matrix L , explicitly outputs ϵ -approximation to x
 - ▶ solution to $L_H x = b$ approximates solution to $L_G x = b$

Applications

→ general blueprint:

- 1 Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- 2 Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

= $\tilde{O}(\sqrt{mn}/\epsilon)$ -time quantum algorithms for ϵ -approximating

- **cut problems:**
 - ▶ min cut, max cut ($\epsilon > .878$), sparsest cut ($\epsilon \in \Omega(\sqrt{\log n})$), ...
- **Laplacian systems $L_G x = b$:**
 - ▶ given sparse access to Laplacian or SDD matrix L , explicitly outputs ϵ -approximation to x
 - ▶ solution to $L_H x = b$ approximates solution to $L_G x = b$
 - ▶ applications in combinatorial optimization, machine learning, ...

Applications

→ general blueprint:

- 1 Use **quantum** algorithm to create sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- 2 Run **classical** algorithm on H in time $\tilde{O}(n/\epsilon^2)$

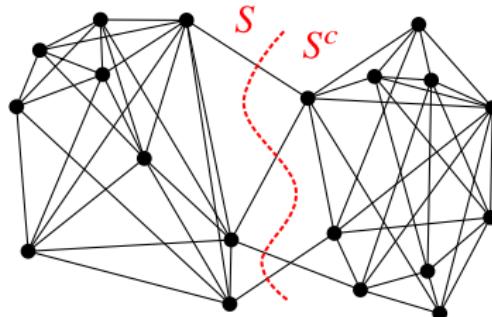
= $\tilde{O}(\sqrt{mn}/\epsilon)$ -time quantum algorithms for ϵ -approximating

- **cut problems:**
 - ▶ min cut, max cut ($\epsilon > .878$), sparsest cut ($\epsilon \in \Omega(\sqrt{\log n})$), ...
- **Laplacian systems $L_G x = b$:**
 - ▶ given sparse access to Laplacian or SDD matrix L , explicitly outputs ϵ -approximation to x
 - ▶ solution to $L_H x = b$ approximates solution to $L_G x = b$
 - ▶ applications in combinatorial optimization, machine learning, ...

Can we get exact quantum algorithms?

Quantum algorithm for MIN CUT

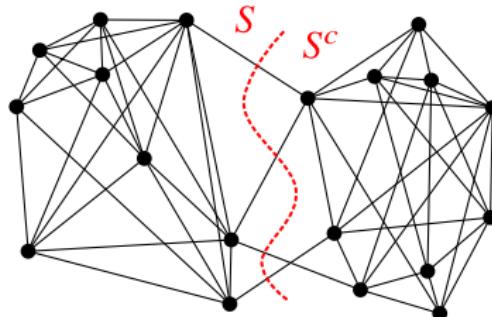
back to MIN CUT:



classical: *exact* MIN CUT in time $\tilde{O}(m)$ (Karger '00)

Quantum algorithm for MIN CUT

back to MIN CUT:



classical: *exact* MIN CUT in time $\tilde{O}(m)$ (Karger '00)

quantum: ϵ -*approximate* MIN CUT in time $\tilde{O}(\sqrt{mn}/\epsilon)$:(

Quantum algorithm for MIN CUT

input size = m

input size = n^2

Results in adjacency *list* model and adjacency *matrix* model:

Theorem

Quantum algorithm for MIN CUT

Results in adjacency *list* model and adjacency *matrix* model:

Theorem

- There exists a family of **weighted graphs** with $\Omega(n^2)$ edges for which the quantum query complexity of exact MIN CUT is $\Omega(n^2)$ in both models. → no quantum speedup!

Quantum algorithm for MIN CUT

Results in adjacency *list* model and adjacency *matrix* model:

Theorem

- There exists a family of **weighted graphs** with $\Omega(n^2)$ edges for which the quantum query complexity of exact MIN CUT is $\Omega(n^2)$ in both models.
- For **unweighted graphs**, exact MIN CUT has quantum query complexity
 - ▶ $\tilde{O}(\sqrt{mn})$ in adjacency list model
 - ▶ $\tilde{O}(n^{3/2})$ in adjacency matrix model

Quantum algorithm for MIN CUT

Results in adjacency *list* model and adjacency *matrix* model:

Theorem

- There exists a family of **weighted graphs** with $\Omega(n^2)$ edges for which the quantum query complexity of exact MIN CUT is $\Omega(n^2)$ in both models.
- For **unweighted graphs**, exact MIN CUT has quantum query complexity
 - ▶ $\tilde{O}(\sqrt{mn})$ in adjacency list model \leftarrow improves $\tilde{O}(\sqrt{mn}/\epsilon)$
 - ▶ $\tilde{O}(n^{3/2})$ in adjacency matrix modeland time complexity $\tilde{O}(n^{3/2})$ in both models.

Quantum algorithm for MIN CUT

Results in adjacency *list* model and adjacency *matrix* model:

Theorem

- There exists a family of **weighted graphs** with $\Omega(n^2)$ edges for which the quantum query complexity of exact MIN CUT is $\Omega(n^2)$ in both models.
- For **unweighted graphs**, exact MIN CUT has quantum query complexity

► $\tilde{O}(\sqrt{mn})$ in adjacency list model

► $\tilde{O}(n^{3/2})$ in adjacency matrix model

and time complexity $\tilde{O}(n^{3/2})$ in both models.

tight

gap

Lower bounds for unweighted graphs (from connectivity [DHHM'06]):

$\Omega(n)$ (list) or $\Omega(n^{3/2})$ (matrix)

Quantum algorithm for MIN CUT

Upper bounds on quantum query complexity:

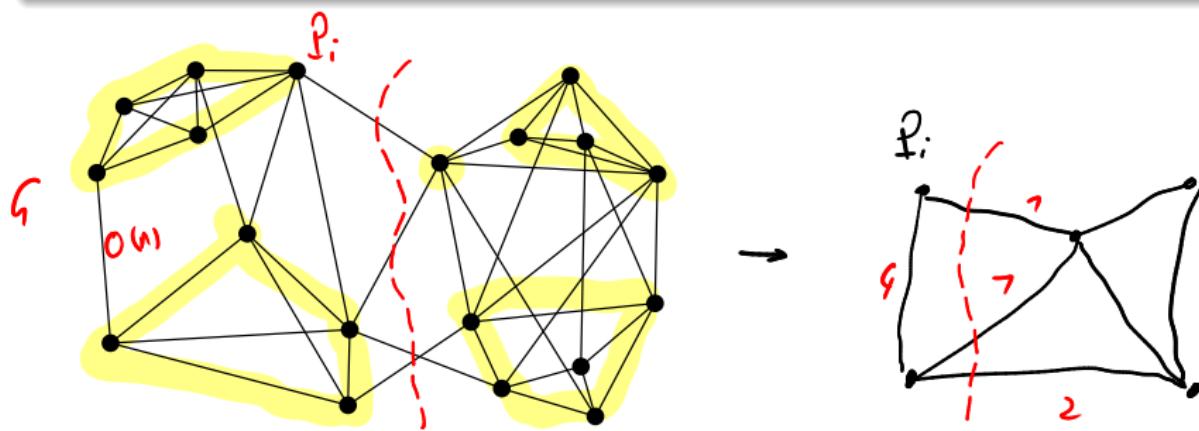
Quantum algorithm for MIN CUT

Upper bounds on quantum query complexity:

Theorem (Kawarabayashi-Thorup 2014, Rubinstein-Schramm-Weinberg 2017)

For unweighted G , there exists partition $V = P_1 \cup \dots \cup P_k$ such that

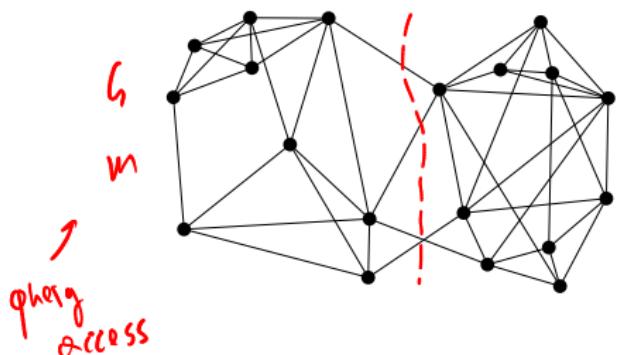
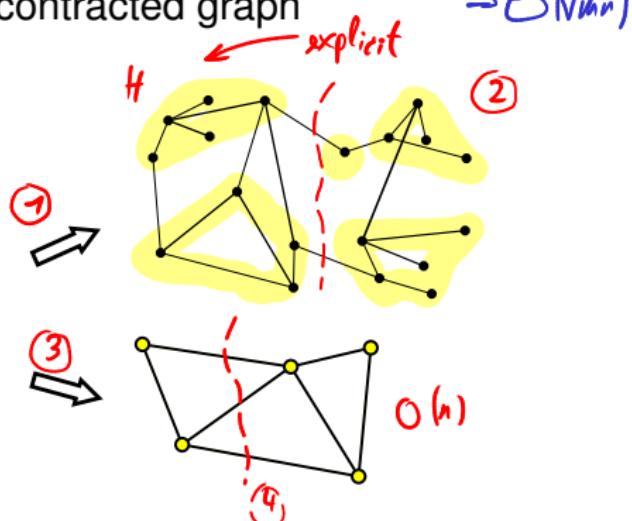
- 1 there are $O(n)$ edges between partitions,
- 2 partition “respects” all near-minimum cuts.



Quantum algorithm for MIN CUT

quantum query algorithm in list model:

- ① construct $\epsilon = 1/10$ -sparsifier H $\rightarrow \mathcal{O}(\sqrt{mn})$
→ min cut of G is near-minimum cut of H
- ② learn partition $V = P_1 \cup \dots \cup P_k$ of H \rightarrow no queries
→ respects min cut of G
- ③ Grover search over m edges to find $O(n)$ edges of G between P_i 's
- ④ classically calculate min cut of contracted graph $\rightarrow \mathcal{O}(\sqrt{mn})$
→ no queries



Open questions:

Open questions:

- matching **lower bounds for approximation algorithms?**
 - ▶ e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving?

Open questions:

- matching **lower bounds for approximation algorithms?**
 - ▶ e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving?
- **unweighted graphs:**
 - $\tilde{O}(n/\epsilon^2)$ for sparsification?
 - $\tilde{O}(n)$ for unweighted min cut in adjacency list model?

$$\Omega(n) \rightarrow \tilde{O}(\sqrt{mn})$$

Open questions:

- matching **lower bounds for approximation algorithms?**
 - ▶ e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving?
- **unweighted graphs:**
 - ▶ $\tilde{O}(n/\epsilon^2)$ for sparsification?
 - ▶ $\tilde{O}(n)$ for unweighted min cut in adjacency list model?

thank you! stay safe!

$$\tilde{O}(n^{3/2}/\epsilon) < \tilde{O}(n^2)$$