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I. OVERVIEW

Machine learning (ML) has received great attention in the quantum community, both for the hope of using classical ML
to solve challenging quantum many-body problems in physics/chemistry [11, 12, 24], and for the aspiration of designing new
quantum ML that harnesses significant advantages over classical ML [8, 14, 21]. Despite considerable interest, the prospect
remains somewhat unclear: How can ML be more useful than traditional algorithms for solving difficult quantum problems?
And what are the advantages of quantum ML in general? Here, we focus on an important special case which subsumes many
major quantum problems: training an ML model to predict x 7→ f(x) = tr(O E(|x〉〈x|)). Here, x is a classical input, E is
an unknown completely positive trace-preserving (CPTP) map, and O is an observable. Concrete examples are predicting
outcomes of physical experiments or ground state properties of various quantum systems. Two fundamental questions are
central for understanding the power of classical ML for quantum problems:

i. Information-theoretic question: Would the sample complexity (data size needed) for training classical ML model to
accurately predict tr(O E(|x〉〈x|)) be significantly more than the optimal quantum ML model?

ii. Computational question: Suppose that we are able to obtain classical data by performing actual experiments. Can a
classical ML model use this data to efficiently predict f(x) = tr(O E(|x〉〈x|)) even if E(|x〉〈x|)) is hard to simulate?

We address question i. by proving that there always exists a classical ML model whose sample complexity matches the best
quantum ML model (up to a small polynomial factor) for achieving small prediction error in average. In other words: if
quantum ML can handle a certain quantum problem, then classical ML can approximately do so as well. Regarding question
ii., we first put the problem into a complexity-theoretic context. Efficient classical ML augmented with (potentially hard to
compute) training data is strictly more powerful than traditional polynomial-time algorithms (captured by the complexity
class BPP). Subsequently, we establish sufficient conditions for efficiently learning quantum problems with classical ML
models. As a concrete example, we prove that after training from existing data, classical ML can efficiently predict ground
state representations of (any smooth family of) gapped Hamiltonians in any constant spatial dimension. The ground state
representations accurately approximate the expectation values of any local observable.

II. INFORMATION-THEORETIC ASPECT

Assume that E is an unknown CPTP map that belongs to a (known) function class F (F may be uncountably large).
Apart from E ∈ F , the process E can be arbitrary – a common assumption in statistical learning theory [4, 7, 10, 23, 25].
For the sake of concreteness, let us assume that E is a CPTP map from a Hilbert space of n qubits to a Hilbert space of m
qubits. We will also assume that the inputs are bit-strings1 of size n: x ∈ {0, 1}n. These can be encoded in computational
basis states and we shall distinguish two types of ML settings:

• Classical (C) ML models are given access to training data {(xi, oi)}NC

i=1, where each input xi ∈ {0, 1}n is sampled accord-
ing to a distribution D. The label oi is a single-shot measurement outcome with expectation f(xi) = tr(OE(|xi〉〈xi|)).
Classical data of size NC is used to create a prediction model fC(x) that approximates f(x).
• Quantum (Q) ML models are strictly more powerful. We envision them as external, universal quantum computers
with an unlimited amount of quantum memory. The quantum ML models may query the CPTP map E by applying
E to any part of this quantum memory in addition to performing arbitrary quantum processing that depends on (and
has arbitrary access to) the input distribution D, the observable O, and the function class F . After querying E for NQ
times, the quantum ML model will output a function fQ(x) that approximates f(x).

The quantum ML setting is strictly more powerful than the classical ML setting. To see this, note that classical ML is
restricted to classical information – in the form of observable measurement outcomes. By contrast, quantum ML can work
directly in the quantum realm. Given this discrepancy, a large quantum advantage seems plausible. The following theorem,
however, dispels this prospect in the context of approximately accurate predictions.

Theorem 1. Fix an n-bit input distribution D, an m-qubit observable O (‖O‖ ≤ 1) and a family F of CPTP maps with
compatible dimensions (n input qubits and m output qubits). Suppose that the best quantum ML model uses NQ queries of
the unknown process E ∈ F to learn a function fQ(x) that achieves small average prediction error

Ex∼D |fQ(x)− tr(OE(|x〉〈x|))|2 ≤ ε. (1)

Then, classical training data of size NC ≤ O(mNQ/ε) suffices to train a classical ML model that is guaranteed to achieve

Ex∼D |fC(x)− tr(OE(|x〉〈x|))|2 ≤ O(ε). (2)

∗ This submission merges Provable machine learning algorithms for quantum many-body problems [16], which contains most of the theoretical
contributions, and some part of Power of data in quantum machine learning [15], which contains more empirical studies. To facilitate assessment,
we present all relevant theoretical and empirical contributions in a self-contained manuscript.

1 This is not a severe restriction, since one can truncate floating-point representations of continuous parameters to a finite number of digits.
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The proof is based on three steps. We first lower-bound the sample complexity of the best quantum ML model using tools
from quantum communication complexity (encode the family F and the quantum ML model into a communication protocol
and apply a mutual information analysis). Subsequently, we identify a concrete classical ML model that minimizes the
training error for a related class of functions (tight statistical analysis yields upper bound on sample complexity). Finally,
we combine these results by means of a fundamental relation between covering and packing nets. We also prove that this
result is tight by constructing a learning problem with NC ≥ Ω(mNQ/ε) for any classical ML.

The contrapositive of Theorem 1 is almost as interesting as the statement itself. Suppose that there exists a quantum
problem that really is hard for classical ML – in the sense that the sample complexity is prohibitively large. Then, quantum
ML is incapable of offering substantial improvements. From an information-theoretic perspective, all quantum problems that
can approximately be solved with quantum ML can also be approximately solved with classical ML.

It is instructive to relate the above setting to quantum probably approximately correct (PAC) learning [3–5, 22, 26], which
established rigorous results on the lack of quantum advantage in sample complexity for learning classical Boolean function
h : {0, 1}n → {0, 1}. In quantum PAC learning, the quantum ML models (quantum learners) are restricted to obtaining
quantum samples of the form

∑
x

√
D(x) |x〉 |h(x)〉, where D(x) is the probability for sampling x in the input distribution D

and h(x) is the classical Boolean function. Furthermore, quantum PAC learning addresses the worst-case input distribution
D?. This leaves open the potential for large quantum advantage in more general settings, such as when the quantum ML
can access E arbitrarily instead of just obtaining the quantum sample or when we focus on certain distribution D instead of
the worst-case D?. Our result closes these open questions by giving the maximum separation in a general setting where the
existence of exponential quantum advantage might be expected.

We conclude by emphasizing that only achieving an average prediction error – see Eq. (2) – is crucial in the context of
Theorem 1. The situation looks drastically different if we insist on predicting f(x) accurately for all x ∈ {0, 1}n. In this
case, we show that exponential separations in sample complexity (NC vs. NQ) do occur for certain learning problems.

III. COMPUTATIONAL ASPECT

Another important figure of merit is efficiency in terms of runtime. The availability of training data can empower classical
ML algorithms in a way similar to how advice provides additional power to classical computers. To capture this phenomenon
rigorously, we introduce the complexity class BPP/samp. A language L of bit strings is in BPP/samp if and only if there
exists probabilistic Turing machines D and M such that the following hold. For any input size n, the “sampler” D generates
samples x with |x| = n in polynomial time. The “learner” M takes an input x of size n along with T = {(xi, yi)}poly(n)

i=1 of
polynomial size, where xi is sampled using Turing machine D for input size n, and yi conveys language membership for xi:
yi = 1 if xi ∈ L and yi = 0 if xi 6∈ L. And, we require
• The probabilistic Turing machine M to process all inputs x in polynomial time (polynomial runtime).
• For all x ∈ L, M outputs 1 with probability greater than or equal to 2/3 (prob. completeness).
• For all x /∈ L, M outputs 1 with probability less than or equal to 1/3 (prob. soundness).

It is not hard to show that BPP is contained in BPP/samp. This inclusion is in fact strict (there are languages in BPP/samp
but not in BPP). This suggests that some challenging quantum problems may be solved using classical ML models that
learn from data obtained in physical experiments. However, this prospect is not without limitations. We have also show
that BPP/samp is contained in P/poly.

To support the aforementioned complexity-theoretic insights, we present a sufficient condition for solving quantum prob-
lems with efficient classical ML. Fix f(x) = tr(O E(|x〉〈x|)) and consider a training set T = {(xi, yi = f(xi))}NC

i=1. Let k(·, ·)
be an efficiently computable kernel function whose associated kernel matrix Kij = k(xi, xj) is normalized (tr(K) = NC) and
obeys the condition s(T ; k) =

∑NC

i=1

∑NC

j=1(K−1)ijf(xi)f(xj)� NC . Then, one could efficiently train a classical ML model
to produce a function fC(x) that is guaranteed to obey

E
x∼D
|fC(x)− tr(O E(|x〉〈x|))|2 ≤ O

(√
s(T ; k)/NC

)
� 1, with high probability. (3)

In words, efficient classical ML can achieve very small prediction errors – even if E(|x〉〈x|) is hard to simulate classically!
The error bound (3) is not limited to classical ML, but also holds for quantum ML with an associated kernel [9, 14].

IV. CONCRETE EXAMPLE: PREDICTING GROUND STATE REPRESENTATIONS

Let us consider m-qubit local Hamiltonians H(x) parameterized by some classical description x ∈ [−1, 1]n. We also assume
that we do not know the function x 7→ H(x) perfectly. The goal is to produce a model σ(x) that accurately approximates
the ground state ρ(x) of Hamiltonian H(x); more precisely, observable properties thereof. In this case, E is a cooling process
that prepares the ground state: E(|x〉〈x|) = ρ(x) and we want to predict f(x) = tr (Oρ(x)). We give a classical ML algorithm
that comes with rigorous guarantees. The starting point is the classical shadow formalism [17]. It allows for converting
randomized quantum measurement outcomes into efficient classical representations S(ρ) of the underlying quantum state ρ.
We use this formalism to turn ground state measurement outcomes into suitable classical training data T = {(xi, S(ρ(xi))}NC

i=1
with xi ∼ Unif[−1, 1]n. Subsequent prediction is based on an `2-Dirichlet kernel:

σ(x) =
∑NC

i=1
κ(x, xi)S(ρ(xi)) with κ(x, y) =

∑
k∈Zn

1 {‖k‖2 ≤ Λ} exp (iπ〈k, x− y〉) . (4)

We then use quasi-adiabatic continuation [6, 13, 20] to ensure generalization beyond training data. This guarantee is strongest
if the parametrization x 7→ H(x) is sufficiently smooth and all Hamiltonians H(x) have constant spectral gap. In this case,
we can efficiently predict the expectation of any local observable for the ground state of new Hamiltonians H(x) to small,
constant error averaging over input x. The general statement reads as follows.



3

Figure 1: Empirical performance of classical ML for quantum problems. (Left) Predicting measurement outcomes after quantum
evolutions using a training set of size N = 600 with comparison to the quantum kernel method [14]. (Right) Predicting ground state
properties of 2D Heisenberg models with random interactions for different system size m and training data N .

Theorem 2. Consider a smoothly parametrized class {H(x) : x ∈ [−1, 1]n} of local Hamiltonians in a finite spatial di-
mension. Assume that each H(x) has constant spectral gap. Let O =

∑L
j=1Oj be a sum of L local observables and set

B =
∑
j ‖Oj‖. We consider the data to be T = {(xi, S(ρ(xi))}NC

i=1 with xi ∼ Unif[−1, 1]n. Then, for ε > 0,

NC = B2nO(B2/ε) ensures that the resulting model σ(x) obeys Ex∼[−1,1]n | tr(Oσ(x))− tr(Oρ(x))|2 ≤ ε (5)

with high probability. Moreover, the runtime for computing tr(Oσ(x)) is bounded by O((m+ L)B2nO(B2/ε)).

The classical ML actually works for more general classes of Hamiltonians. Rel. (5) holds as long as the smoothness condition
Ex∼[−1,1]n ‖∇x tr(Oρ(x))‖22 ≤ O(B2) is satisfied. Neither geometric locality nor a constant spectral gap is genuinely needed.
At this level of generality, the sample complexity is tight up to logarithmic factors. We prove the following (almost) matching
lower bound.

Theorem 3. Consider a quantum ML model that learns from NQ quantum data {xi, ρ(xi)}
NQ

i=1 to generate σ(x). Suppose
the quantum ML model is strong enough to achieve small prediction error Ex∼[−1,1]n | tr(Oσ(x))− tr(Oρ(x))|2 ≤ ε. Then,

NQ ≥ B2nΩ(B2/ε)/ log(B) and the quantum runtime is lower bounded by B2nΩ(B2/ε)/ log(B). (6)

Theorem 3 also lower-bounds the optimal sample complexity of classical ML models. Invoking (the contrapositive of)
Theorem 1 then implies that even a more powerful quantum ML model with explicit access to the cooling process E for
preparing ground states cannot perform substantially better. Hence, there can not be significant quantum advantages in the
general setting. We also note that existing classical algorithms for solving ground state [1, 2, 18], which do not learn from
data, only work for a spatial dimension less than two, while Theorem 2 applies to any finite spatial dimension.

V. NUMERICAL EXPERIMENTS

a. Predicting outcomes after a quantum evolution: Suppose that the unknown CPTP map implements a unitary evo-
lution ρinit(x) 7→ E(ρinit(x)) = Uρinit(x)U† and the state ρinit(x) is parametrized by a classical input x ∈ [−1, 1]n. The
goal is to predict the resulting expectation value of a local observable: f(x) = tr

(
OUρinit(x)U†

)
. We compare classical ML

procedures with a promising quantum ML model [14]. Based on the quantum kernel k(xi, xj) = tr(ρinit(xi)ρinit(xj)), this
quantum model is known to yield rigorous advantages for certain problems based on discrete logarithm [19]. Fig. 1(a) depicts
a numerical comparison up to 28 qubits. The two plots correspond to two different encoding procedures x 7→ ρinit(x). We see
that the best classical ML achieves small prediction error and even outperforms the quantum ML model. This discrepancy
is particularly pronounced for large system sizes. We refer to manuscript [15] for additional theoretical underpinning. The
manuscript also supplies necessary conditions for quantum advantages in quantum problems.
b. Predicting ground state properties of the 2D Heisenberg model: Suppose that the classical input x = ~J describes the

coupling constants in the 2D Hamiltonian H( ~J) =
∑
〈ij〉 Jij(XiXj + YiYj + ZiZj) on n qubits. We consider the training of

classical ML models to predict the expectation of local energy XiXj + YiYj + ZiZj in the ground state of H( ~J). Fig. 1(b)
compares the results to exact diagonalization in terms of both prediction error and computation time. Perhaps surprisingly,
the runtime is nearly independent of the system size m, and only depends on the training data size N . There are also
substantial runtime savings comparing to exact diagonalization.

VI. CONCLUSION

We have collected rigorous and empirical evidence that classical ML for quantum problems can be more powerful than
one might expect. From an optimistic perspective, these results provide the foundation for training classical ML models
to predict properties in unexplored quantum systems. This could be relevant for designing novel materials, catalysts, and
pharmaceuticals, where existing data are already available to train the ML models. From a pessimistic perspective, these
findings narrow the scope for quantum advantages in ML problems. One should not take quantum advantages for granted
– even if the underlying problem has a quantum origin. The search for interesting quantum problems whose solutions come
with genuine quantum advantages might be even more important (and less trivial) than previously anticipated.
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