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Motivation
• Machine learning (ML) has received great attention in the 

quantum community these days.

Classical ML 
for quantum physics/chemistry

Enhancing ML 
with quantum computers

The goal      : 
Solve challenging quantum 

many-body problems 
better than 

traditional classical algorithms

The goal      : 
Design quantum ML algorithms 

that yield 
significant advantage 

over any classical algorithm

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606. 
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439. 
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



Motivation
• Yet, many fundamental questions remain to be answered.

Classical ML 
for quantum physics/chemistry

Enhancing ML 
with quantum computers

The question      : 
How can ML be more useful 

than non-ML algorithms?

The question      : 
What are the advantages of 

quantum ML in general?

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606. 
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439. 
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



General Setting
• In this work, we focus on training an ML model to predict 

                                         , 
where  is a classical input,  is an unknown CPTP map, and  is an observable. 

• This is very general: includes any function computable by a quantum computer.

x ↦ fℰ(x) = Tr(Oℰ(|x⟩⟨x|))
x ℰ O

Example 1 Example 2
Predicting outcomes of 
physical experiments

Predicting ground state properties 
of a physical system

 parameters describing the experimentx :

 the physical process in the experimentℰ :

 what the scientist measureO :

 parameters describing a physical systemx :

 a process for preparing ground stateℰ :

 the property we want to predictO :
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• Learning agents can actively 

perform experiments to learn a 

prediction model. 

• Each query begins with a choice of 

classical input  and ends with an 

arbitrary POVM measurement. 

• A prediction model  is 

created after learning.

x

h(x) ≈ fℰ(x)
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General Setting
Quantum machine learning 

• Similar to classical ML setting. 

• Each query consists of an arbitrary 

access to the CPTP map  (the 

input can be entangled, and no 

measurement at the end). 

• A prediction model  is 

stored in a quantum memory 

instead of a classical memory.

ℰ

h(x) ≈ fℰ(x)
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The setup is closely related to Quantum Algorithmic Measurements by Aharonov, Cotler, Qi



Main Questions
Information-theoretic aspect:

Do classical ML need significantly more experiments (query complexity) 
than quantum ML to predict  ?fℰ(x) = Tr(Oℰ(|x⟩⟨x|))

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Computational aspect:

Could classical ML use data to efficiently compute   
even if  is hard to compute with a classical computer?

fℰ(x) = Tr(Oℰ(|x⟩⟨x|))
fℰ(x)

[2] Power of data in quantum machine learning, arXiv:2011.01938.

Application:
Could we train classical ML to predict ground state properties?

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.



Information-theoretic aspect

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Consider any observable , any family of CPTP maps  with -qubit 
input and -qubit output, and any input distribution . 

Suppose a quantum ML uses  queries to the unknown CPTP map  to 
learn a prediction model  that achieves a prediction error of  

                                           

then there is a classical ML using  to learn a prediction model 
 that achieves a prediction error of  

                                          

O ℱ = {ℰ} n
m 𝒟

NQ ℰ
hQ(x)

𝔼x∼𝒟 hQ(x) − fℰ(x)
2

≤ ϵ,
NC ≤ 𝒪(mNQ/ϵ)

hC(x)
𝔼x∼𝒟 hC(x) − fℰ(x)

2
≤ 𝒪(ϵ) .

Theorem (Huang, Kueng, Preskill; 2021 [1])
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in statistical learning theory
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Average prediction error



Information-theoretic aspect

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• No large separation in query complexity for small average 
prediction error even on quantum problems. 

• Other measures of prediction error (e.g., worst-case) 
admits provable exponential advantage; see [1] for an 
example based on shadow tomography.

Good news for classical ML, 
bad news for quantum ML.
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Computational aspect
• The formal difference between classical ML and non-ML algorithm is 

that ML algorithm can learn from data. 

• We define a complexity class for classical algorithm that could learn 
from sampled data (BPP/samp). 

• BPP/samp is a restricted class of P/poly.

[2] Power of data in quantum machine learning, arXiv:2011.01938.

n
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n+1

Tn = {(xi, yi)}

Tn�1 = {(xi, yi)}

Tn+1 = {(xi, yi)}

Classical ML
algorithm with data

(BPP/samp)

P/poly

n

n-1

n+1 an+1 = 0100 . . . 0100

an = 1010 . . . 110

an�1 = 111 . . . 001

+ Advice+ Training data

BPP ( P/poly

Problem
Size

Classical
Algorithm

(BPP)
BPP/samp

Quantum
Computation

(BQP)

P/poly



Computational aspect
• Classical algorithms learning from data could solve problems 

that can not be solved by non-ML algorithms. 

• This is only true when data can not be computed in BPP. 
(such as data from quantum experiments)

[2] Power of data in quantum machine learning, arXiv:2011.01938.
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Computational aspect

[2] Power of data in quantum machine learning, arXiv:2011.01938.

• A sufficient condition for solving quantum problems with computationally 
efficient classical ML algorithms. 

• Consider a training data of , then there is an efficient classical 

ML algorithm producing  with  

                                  

• The classical ML algorithm is based on a kernel matrix  and 

                                          .

{(xi, yi = fℰ(xi))}
NC
i=1

hC(x)

𝔼x∼𝒟 hC(x) − fℰ(x)
2

≤ 𝒪 ( s
NC ) .

K

s = ∑
i, j

(K−1)ij fℰ(xi)fℰ(xj)
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Application

• Consider in the experimental lab, we can synthesize physical systems 
in the ground state  of some local Hamiltonian . 

• Here,  is the known controllable parameters, while 
 is not perfectly known. 

• Could we design a classical ML algorithm that can learn from physical 
experiments to predict efficient representation of  for new input ?

ρ(x) H(x)

x ∈ [−1,1]n

x ↦ H(x)

ρ(x) x

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.



Application
We give a classical ML algorithm with rigorous guarantees. 

Learning phase: for each of  experiments, 

1. Samples a random controllable parameter . 

2. Performs a randomized measurement on the ground state  to construct a 
single-shot classical shadow  [4]. 

Prediction phase: predicts the ground state representation for new  to be 

                                            , 

where  ( -Dirichlet kernel).

N

xi ∼ Unif[−1,1]n

ρ(xi)
S(ρ(xi))

x

σΛ(x) =
N

∑
i=1

κΛ(x, xi)S(ρ(xi))

κΛ(x, y) = ∑k∈ℤn
1 {∥k∥2 ≤ Λ} exp (iπ⟨k, x − y⟩) l2

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.

[4] Predicting many properties of a quantum system from very few measurements, Nat. Phys.



Application
For any smooth class of local Hamiltonians in a finite spatial dimension with a 
constant spectral gap, given the number of experiments , 

                              , 

for any sum of local observables   with  and : const.

N = poly(n)

𝔼x∼[−1,1]n |Tr(OσΛ(x)) − Tr(Oρ(x)) |2 ≤ ϵ

O =
L

∑
j=1

Oj

L

∑
j=1

∥Oj∥ = 𝒪(1) ϵ

Theorem (Huang, Kueng, Preskill; 2021 [3])

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.

• NP-complete for computing 1-body local observables to constant error in 2D local 
Hamiltonians with a constant spectral gap [5]. 

• Proof relies on classical shadow formalism, quasi-adiabatic evolution, and generalization 
bounds of kernel methods.

[5] Sub-exponential algorithm for 2D frustration-free spin systems with gapped subsystems.



Application
Theorem (Huang, Kueng, Preskill; 2021 [3])

• A matching lower bound could be proved for any classical ML algorithm. 

• Using information-theoretic bounds [1], a near-matching lower bound holds for any 
quantum ML algorithm (no large quantum advantage in this generality).

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.
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Conclusion
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Exponential separation 
for worst-case error.

Quantum ML is still 
computationally more powerful.

We should expect more 
applications with quantum ML!

Numerics verify the 
theoretical predictions


