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Motivation

® Machine learning (ML) has received great attention in the
quantum community these days.

Classical ML Enhancing ML
for quantum physics/chemistry with quantum computers

The goal : The goal :

Solve challenging quantum Design quantum ML algorithms
many-body problems that yield

better than significant advantage
traditional classical algorithms over any classical algorithm
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“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606.
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439.
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



Motivation

® Yet, many fundamental questions remain to be answered.

Classical ML Enhancing ML
for quantum physics/chemistry with quantum computers

The question ®: The question ®:
How can ML be more useful What are the advantages of
than non-ML algorithms? quantum ML in general?

&3 &5

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606.
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439.
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



General Setting

® |n this work, we focus on training an ML model to predict
x = fe(x) = Tr(OE(|xXx])),

where x is a classical input, & is an unknown CPTP map, and O is an observable.

® This is very general: includes any function computable by a quantum computer.

Example 1 Example 2

Predicting outcomes of Predicting ground state properties
physical experiments of a physical system

x : parameters describing the experiment X : parameters describing a physical system
& : the physical process in the experiment & : a process for preparing ground state

O : what the scientist measure O : the property we want to predict




General Setting

Classical machine learning

® |earning agents can actively
perform experiments to learn a

prediction model.

® FEach query begins with a choice of

classical input x and ends with an

arbitrary POVM measurement.

® A prediction model h(x) = f<(x) is

created after learning.
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® Similar to classical ML setting.

® FEach query consists of an arbitrary
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The setup is closely related to Quantum Algorithmic Measurements by Aharonov, Cotler, Qi




Main Questions

Information-theoretic aspect: .|I|

Do classical ML need significantly more experiments (query complexity)
than quantum ML to predict fe(x) = Tr(O&(|xXx|))?

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.




Information-theoretic aspect

Theorem (Huang, Kueng, Preskill; 2021 [1])

Consider any observable O, any family of CPTP maps & = { &} with n-qubit
input and m-qubit output, and any input distribution .

Suppose a quantum ML uses N, queries to the unknown CPTP map & to

learn a prediction model /1;(x) that achieves a prediction error of

2
oo o) — fe0)| <.
then there is a classical ML using N < O(mNy/e€) to learn a prediction model

hq(x) that achieves a prediction error of

E, o | he@) —fz0|” < 0).

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Information-theoretic aspect

. Concept/hypothesis class
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Information-theoretic aspect

Good news for classical ML,

bad news for quantum ML.

® No large separation in query complexity for small average
prediction error even on quantum problems.

® Other measures of prediction error (e.g., worst-case)
admits provable exponential advantage; see [1] for an
example based on shadow tomography.

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.



Main Questions

Information-theoretic aspect: .|I|

Do classical ML need significantly more experiments (query complexity)
than quantum ML to predict fe(x) = Tr(O&(|xXx|))?

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.




Main Questions

Information-theoretic aspect: .|I|

Do classical ML need significantly more experiments (query complexity)
than quantum ML to predict fe(x) = Tr(O&(|xXx|))? No!

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.




Main Questions
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than quantum ML to predict fe(x) = Tr(O&(|xXx|))? No!
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Computational aspect: |:|

Could classical ML use data to efficiently compute fo(x) = Tr(O&(|xXx|))
even if fo(x) is hard to compute with a classical computer?

[2] Power of data in quantum machine learning, arXiv:2011.01938.




Computational aspect

® The formal difference between classical ML and non-ML algorithm is
that ML algorithm can learn from data.

® \We define a complexity class for classical algorithm that could learn
from sampled data (BPP/samp).

® BPP/samp is a restricted class of P/poly.

+ Training data + Advice

A n+1 \ Tovr = {(zi,9i)} / n+1 \ an+1 = 0100...0100 /

Quantum
Computation
(BQP)

Problem n \ T = {(25,y:)} / n \ a, = 1010...110 / /
Size
L Classical
n-1\ Tn-1 = {(zi,9:)} / n-1\ ap—1 = 111... 001/ Algorithm BPP/samp

(BPP)
Classical ML

algorithm with data
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P/poly
BPP C P/poly

[2] Power of data in quantum machine learning, arXiv:2011.01938.



Computational aspect

® Classical algorithms learning from data could solve problems

that can not be solved by non-ML algorithms.

® This is only true when data can not be computed in BPP.

(such as data from quantum experiments)

+ Training data

Tn+1 = {(zi, i)}

b o\

+ Advice
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Problem
Size

n-1\ Tn—1 = {(zi, i)} /
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[2] Power of data in quantum machine learning, arXiv:2011.01938.



Computational aspect

® A sufficient condition for solving quantum problems with computationally
efficient classical ML algorithm:s.

® Consider a training data of {(x;, y, =fg(xl-))}iicl, then there is an efficient classical

ML algorithm producing Aq(x) with

2 \)
E, o | o) 0| < 0 <\§) .

® The classical ML algorithm is based on a kernel matrix K and

s =) (K™)fux)fis(x).
L,]

[2] Power of data in quantum machine learning, arXiv:2011.01938.
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Application: }_{

Could we train classical ML to predict ground state representation?

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.




Application

® Consider in the experimental lab, we can synthesize physical systems
in the ground state p(x) of some local Hamiltonian H(x).

® Here, x € [—1,1]" is the known controllable parameters, while

x = H(x) is not perfectly known.

® Could we design a classical ML algorithm that can learn from physical
experiments to predict efficient representation of p(x) for new input x?

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.



Application

We give a classical ML algorithm with rigorous guarantees.

Learning phase: for each of N experiments,
1. Samples a random controllable parameter x; ~ Unif[—1,1]".

2. Performs a randomized measurement on the ground state p(x;) to construct a
single-shot classical shadow S(p(x,)) [4].

Prediction phase: predicts the ground state representation for new x to be
N

oA() = D ka6 X)S(p(x),
i=1
where K, (x,y) = 11|k, £ A exp (iz(k,x — y)) (l,-Dirichlet kernel).
keZ"

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.

[4] Predicting many properties of a quantum system from very few measurements, Nat. Phys.



Application

Theorem (Huang, Kueng, Preskill; 2021 [3])

For any smooth class of local Hamiltonians in a finite spatial dimension with a
constant spectral gap, given the number of experiments N = poly(n),

Eyi—1,1 | Te(00, () = TH(Op()) | < e,

L L
for any sum of local observables O = Z O; with leOjll = (O(1) and €: const.
j=1 j=1

® NP-complete for computing 1-body local observables to constant error in 2D local
Hamiltonians with a constant spectral gap [5].

® Proof relies on classical shadow formalism, quasi-adiabatic evolution, and generalization
bounds of kernel methods.

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.

[5] Sub-exponential algorithm for 2D frustration-free spin systems with gapped subsystems.



Application

Theorem (Huang, Kueng, Preskill; 2021 [3])

For any smooth class of local Hamiltonians in a finite spatial dimension with a
constant spectral gap, given the number of experiments N = poly(n),

Eyi—1,1 | Te(00, () = TH(Op()) | < e,

L L
for any sum of local observables O = Z O; with leOjll = (O(1) and €: const.
j=1 j=1

® A matching lower bound could be proved for any classical ML algorithm.

® Using information-theoretic bounds [1], a near-matching lower bound holds for any
quantum ML algorithm (no large quantum advantage in this generality).

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.
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Numerics verity the

theoretical predictions CO n CI u Si 0 n

Exponential separation
for worst-case error.

Do classical ML need significantly more experiments (query complexity)
than quantum ML to predict fe(x) = Tr(O&(|xXx|))? No!

Information-theoretic aspect:

Ll

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Quantum ML is still
Computational aspect: computationally more powerful.

Could classical ML use data to efficiently compute fo(x) = Tr(O&(|xXx|))
even if fo(x) is hard to compute with a classical computer? Yes!

[2] Power of data in quantum machine learning, arXiv:2011.01938.

We should expect more
applications with quantum ML!

Could we train classical ML to predict ground state representation? Yes!

Application:

[3] Provable machine learning algorithms for quantum many-body problems, In preparation.



