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Port-based teleportation and its importance The port-based teleportation (PBT) protocol introduced in 2008 by
Ishizaka and Hiroshima is a variant of quantum teleportation scheme which transmits the unknown state to the
receiver without requiring any corrections on his/her side [1, 2] in the opposite to the standard setting presented
in [3]. In the primary setting in this protocol, the sender and the receiver share N copies of the maximally entangled
states (resource state), where each singlet is a two-qudit state, called port (see the left panel of Figure 1). The
sender implements a joint POVM on the teleported system θC and the half of the resource state, getting an outcome
1 ≤ i ≤ N transmitted through a classical channel to the receiver. To recover the state the receiver just has to pick up
the right port, pointed by classical message i. Depending on the type of POVM, one distinguishes two operational
regimes: probabilistic and deterministic. In the former case, the measurement is designed to ensure that the teleported
state arrives intact to the receiver, but there is a small probability of failure. In the latter case, the state always gets
to the receiver but incurs some distortion, and its performance is described by fidelity computed between the input
and the output state. We can also introduce the optimised versions of PBT. In this case Alice before measurements
applies a global operation OA on her half of the resource state resulting in sharing non-maximally entangled state.
This boosts the performance of both variants of PBT, giving us square improvement in N. We will refer to those
scenarios as optimal PBT (OPBT) and non-optimal PBT.

PBT protocols allow for entirely new applications in modern quantum information science. For instance, PBT has
found its place in non-local quantum computations and position-based cryptography [4] resulted in new attacks
on the cryptographic primitives, reducing the amount of consumable entanglement from doubly exponential to
exponential, communication complexity [5] connecting the field of communication complexity and a Bell inequality
violation, theory of universal programmable quantum processor performing computation by teleportation [1],
universal simulator for qubit channels [6] improving simulations of the amplitude damping channel and allowing
to obtain limitations of the fundamental nature for quantum channels discrimination [7]. Recently some aspects of
PBT play a role in the general theory of identification of cause-effect relations [8], construction of universal quantum
circuit for inverting general unitary operations [9] as well as theory of storage and retrieval of unitary quantum
channels [10].
Problem: One could ask what happens if we wish to teleport using PBT a state of composite system or several
systems, let us say k. One of the answer could be the following:

• Run the original PBT with dimension of the port equal to dk, however the performance of the PBT protocols
gets worse with growing local dimension [11, 12].

• We could also keep dimensions of the ports and split the resource state into k packages and then run k PBT
procedures independently. However, here we need to reduce the number of shared entangled pairs between
the parties, which possibly also reduces efficiency of the transfer.

Motivation: To send a large amount of quantum information more effectively than in the pre-existing methods
described above. In the next part of this note, we argue that there is an efficient way to achieve the described goal.

OUR SOLUTION: Multiport based teleportation scheme

We propose a novel scheme - an extension of original PBT scheme, that allows to teleport many systems in one go.
(see the right panel of Figure 1). We further obtain analytical formulas and useful bounds for performance of the
proposed protocol.

• Analytical formulas for deterministic scheme:

– Useful compact lower bound for entanglement fidelity F in non-optimal case [13] by considering equiv-
alent task which is state discrimination problem [1, 4] and an exact expression for F, by exploiting tools
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FIG. 1: On the left-hand side we present the scheme for the standard PBT, while on the right for multi-port based protocols.
On the right-hand side we depict configuration for MPBT scheme. Two parties share N copies EPR pairs Φ+
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+
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where |ψ+
d 〉 = (1/

√
d)∑i |ii〉. Alice to teleport an unknown joint state θC = θC1C2···Ck , where k ≤ bN/2c, to Bob performs a

global measurement (the blue trapeze) on systems C1 · · ·Ck A1 · · · AN , getting a classical outcome i = (i1, i2, . . . , ik). She
transmits the outcome i via classical communication to Bob. The index i indicates on which k ports on the Bob’s side the
teleported state arrives (red stars). To recover the state he has permute selected ports according to index i. In both versions by
the grey rectangle we denote the optimal operation OA applied by Alice to boost the performance of all variants of the
protocols.

coming from representation theory [14]:
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where mµ, dµ denotes multiplicity and dimension of irreducible representations (irreps) of symmetric
group S(N) for which Young diagrams µ can be obtained from Young diagrams α of N − k boxes by
adding k boxes. By mµ/α we denote the number of possible ways when going from α to µ.

– Explicit and effective expression for F in the qubit case exploiting theory of angular momentum, see
technical manuscript or [13]:

– Efficiently computable formula for fidelity in optimal scheme in terms maximal eigenvalue of a some
matrix - generalisation of teleportation matrix MF from [12] - which encodes the relationship between a
set of Young diagrams and emerges as the optimal solution of the semidefinite program [15].

• Analytical formulas in probabilistic scheme:

– Exact value of success probability in non-optimal case:
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– Extremely simple formula for psucc in optimal case [15]:
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APPLICATION. Asymptotic scaling of number of teleported particles: MPBT beats PBT.

We have applied the above formulas for performance of MPBT to obtain qualitative improvement of asymptotic
"teleportation capacities" of MPBT scheme over the PBT based schemes. Specifically, we let the number of
ports N grow to infinity, and consider teleportation of k qubits, with k ' Nα, 0 ≤ α ≤ 1. In the limit
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N → ∞ we obtain sharp phase-like transitions in α, with faithful transmission below some threshold α0, and
completely flawed transmission above the threshold:
Deterministic scheme (see Figure 2a): even non-optimal MPBT beats optimal PBT.

– applying so-called packaged PBT, i.e. sending every particle via a package of N/k ports, we are able to
teleport k particles with N ports using PBT. For α > 2/3 fidelity is asymptotically zero.

– applying MPBT we obtain asymptotically faithful teleportation, i.e. F → 1 for all α < 1.

Probabilistic scheme (Figure 2b): optimal MPBT beats optimal PBT.

– Faithful teleportation (i.e. such that psucc → 1 for N → ∞) is obtained both in OPBT and MPBT in the
same region α < 1/2; psucc drops to zero for α < 1/2.

– OMPBT given by (3) allows for significantly better teleportation: psucc → 1 for all α < 1.

(a) (b)

FIG. 2: Scaling of entanglement fidelity for transmission of k = Nα qubits. (a) optimal PBT protocol (blue)
compared with the bound for the fidelity in MPBT, given by (1) (yellow). (b) exact value of psucc for OMPBT (3)
(blue) compared with the one obtained by OPBT (yellow). Each four curves correspond to number of ports
N = 102, 103, 104 and 105. We proved that the curves become step functions for N → ∞.

MAIN TECHNICAL CONTRIBUTION

• We present novel mathematical tools concerning both standard Schur-Weyl duality [16] based on n-fold tensor
product of unitary transformations, U⊗n, as well as, its "skew" version based on the product of type U⊗N ⊗
U⊗k (bar denotes complex conjugation). Up to now the full characterisation of irreps for A(k)

n (d) has been
done for k = 1 and successfully applied to PBT [12, 17, 18]. However here, one has to solve far more complex
problem - finding an orthonormal operator basis for k > 1. In particular, our contribution is:

– We connect commutant of U⊗N ⊗U⊗k with algebra of the partially transposed permutation operators
A(k)

n (d) and identify idealM(k) crucial for solving MPBT.

– We construct an irreducible orthonormal operator basis withinM(k) and investigate its properties.
– We deliver expressions for evaluating partial trace over an arbitrary number of particles from group-

theoretic objects (i.e. Young projectors), extending our previous knowledge in this direction.
– Developing formalism of partially reduced irreducible representations (PRIR) - a new toolkit for efficient

computations in operator basis ofM(k).

• These results are of the separate interests, since they play a role in:

– New perspective in physics by studying: antiferromagnetic systems [19], gravity theories [20, 21] and
particle physics [22] or quantum reference frame problems [23–26]

– Modern applied mathematics: shows a connection between the above-mentioned physical applications
and and Jucys-Murphy elements [27, 28] and a novel approach to representation theory of symmetric
group presented in [29] (Fields medal in 2006), together with direction to its extensions.
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