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@ Scheme to implement general measurement with single
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@ Performance of the scheme: good or bad? Evidence of
performance:

e Numerical results for SIC POVMS, IC POVMs, random
POVMs. (by Filip Maciejewski)
e Analytical results for Haar-random POV Ms.

e Conjecture.
@ Analysis of noisy implementation.

@ Conclusion.
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Applications

@ Quantum communication, e.g., quantum state discrimination?!

@ Quantum metrology?

@ Quantum tomography 3

@ Quantum computation, e.g. hidden subgroup problem *

JMO 57(3) 160-180 (2010)
J. Phys. A: Math. Gen. 47(42) 424006 (2014)
RMP 89 035002 (2017)

1
2
3
4CJCTS 06 Vol 2006 (2006)



Positive Operator Valued Measure (POVM)

Projective measurements (simpler)

p—@:i

state measurement outcome

Description: P; >0, Y. P, =1, PiP; = &;




Positive Operator Valued Measure (POVM)

Projective measurements (simpler)

p—@zi

state measurement outcome

Description: P; >0, Y. P, =1, PiP; = &;

General measurements aka POVMs (Naimark'’s dilation theorem)

M

P |oXo| @:= i

quantum state global projective outcome
measurement

Description: M = (Ml,Mg, 000 ,Mn), M; >0, Zz M; =1




Resources needed to implement general POVMs

Generalized Naimark dilation theorem (PRL 119, 190501 (2017))
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Resources needed to implement general POVMs
Generalized Naimark dilation theorem (PRL 119, 190501 (2017))
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n qubits

Experimental challenges (especially on NISQ!

@ More ancillary qubits = larger circuit width = more noise

@ Limitations to qubit connectivity in NISQ.

Find ways to implement general POVM with fewer quantum
resources (ancillary qubits)
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Classical resources at our disposal

If classical randomness is free, then following operations are free!.

Free Operations

Classical mixing
probabilistic mixture of POVMs

1J. Phys. A: Math. Gen. 38, 5979 (2005)
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Classical resources at our disposal

If classical randomness is free, then following operations are free!.

Free Operations

L=pM+(1-pK Q(M)
Classical mixing Classical postprocessing
probabilistic mixture of POVMs coarse — graining over outcomes

1J. Phys. A: Math. Gen. 38, 5979 (2005)
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Post-Selection: another POVM operation

General post-selection operation
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Target POVM: M = (My, My, - -+, M,,) rankM; = 1.

@ Choose partition X1, Xo, - -
k=mn/m.

@ Find POVMs: Nx,, Nx,, ---

Nx, a

, X, of [n], such that |X;| = m. Here

» Nx
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The scheme: randomly implement N, 's with fixed probability.
Then coarse-grain over certain outcomes.
Using post-selection, M is implemented with success probability

qSuCC .



Scheme using classical resources and one ancillary qubit |l

Target POVM: M = (My, Mo, -+, M,,) rankM; =1
Actually, Nx,'s are constructed using M;'s.

Input M

IS
-

[;M’?“ ~gNx)

Constraint on m so that Nx; are implementable using a single
ancillary qubit: m < d.
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Scheme using classical resources and one ancillary qubit |l

Target POVM: M = (My, Mo, -+, M,,) rankM; =1

Actually, Nx,'s are constructed using M;'s.

Input M

IS
-

[;M’?“ ~gNx)

-1

Success probability : gsucc = Z Z M;
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A little bit more about qgucc

n/ -1

Gsucc [{Xg}] = Z M;

j=1||ieXx;

3
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A little bit more about qgucc

-1

n/m
Gsucc [{Xg}] = Z Z M;
j=1 ||ieX;

@ Maximum qgyucc requires optimization over all partitions.

@ Physical interpretation of qgycc: it is the average number of
trials to sample M once: 1/qgycc-
Hence, qgucc is the figure of merit of the scheme.

@ (succ IS related to other resource-theoretic quantities of M
(will see in a while).
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Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

@ Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

@ Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

@ Worst case: qsyec = 1/d. Not feasible for large d.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

@ Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

@ Worst case: qsyec = 1/d. Not feasible for large d.

Current scheme

@ Scaling of qgucc significantly better.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

@ Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

@ Worst case: qsyec = 1/d. Not feasible for large d.

Current scheme

@ Scaling of qgucc significantly better.

@ We expect (succ IS above a constant, for all POVMs, all
dimensions.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

@ Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

@ Worst case: qsyec = 1/d. Not feasible for large d.

Current scheme

@ Scaling of qgucc significantly better.

@ We expect (succ IS above a constant, for all POVMs, all
dimensions.
@ Strong evidence for this in this work.

o Numerical results.
o Analytic results.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

@ Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

@ Worst case: qsyec = 1/d. Not feasible for large d.

Current scheme

@ Scaling of qgucc significantly better.

@ We expect (succ IS above a constant, for all POVMs, all
dimensions.
@ Strong evidence for this in this work.

o Numerical results.
o Analytic results.

Now over to Filip for the numerics.
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Success probability of implementation

— s = : e : L XY S Sy e

= We saw that_:

’QSucc ({Xj}) =' Z | Z MH

zEX

* Problem (?): finding good partition could in principle be very hérd...

= How it looks in practice?
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= We tested three cIass-es ofﬁ'ra-nk-l POVMs with n = d2 outcomes:
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= We tested three cIass-es of rank-1 POVMs with n = d2 outcomes:

1. Haar-random. - | = < i
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= Informatlonally Complete (IC), covariant w.r.p. to 7% ® 7%
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Informationally complete -
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= We te'sted three cIass-es of rank-1 POVMs with n = d2 outcomes:

1. Haar-random. A -
= Informatlonally Complete (IC) covariant w.r.p. to 7% ® 7%

spans [:(H) . — = = |¢O>
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= We te'sted three cIass-es of rank-1 POVMs with n = d2 outcomes:

1. Haar-random. A -
= Informat|onally Complete (IC) covariant w.r.p. to 7% 7%
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= We tested three cIass-es of rank-1 POVMs with n = d2 outcomes:

1. Haar-random. -
2. Informat|onally Complete (IC) covariant w.r.p. to 7% 7%

soans L (H) | |¢g> = Ug )

3. Symmetric Informationally Complete (SIC). . - M

Z° 7%
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= We tested three cIassAes of rank-1 POVMs with n = d2 outcomes:

1. Haar-random. -
2. Informat|onally Complete (IC) covariant w.r.p. to 7% 7%
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3. Symmetric Informationally Complete (SIC). . - M
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= We tested three cIass-es of rank-1 POVMs with n = d? outcomes:

1. Haar-random. . -
2. Informatlonally Complete (1C), covariant* w.r.p. to 7% @ 74

3. Symmetric Informationally Complete (SIC) 2

1 G, M. D. Ariano, P. Perinotti;and M. F. Sacchi, Journal of Optics B: Quantum and Semiclassical Optics 6, S487 (2004).
2 www.physics.umb.edu/Research/QBism/solutions.html, www.physics.usyd.edu.au/~sflammia/SIC/, http://sicpovm.markus-grassl.de/
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Tested measurements
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= We tested three cIass-es of rank-1 POVMs with n = d2 outcomes:

1. Haar-random. . -
2. Informatlonally Complete (1C), covariant* w.r.p. to 7¢ @ 72

3. Symmetric Informationally Complete (SIC) * .
*  Special thanks to Markus Grassl for sharing SIC POVMs in high dlmen5|ons'

1 G. M. D. Ariano, P. Perinotti;and M. F. Sacchi, Journal of Optics B: Quantum and Semiclassical Optics 6, S487 (2004).
2 www.physics.umb.edu/Research/QBism/solutions.html, www.physics.usyd.edu.au/~sflammia/SIC/, http://sicpovm.markus-grassl.de/
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* Numerical simulations:
~ construct measurement of interest, ,
- choose the best out of (preferably) smaII number of partitions,

=

{succ ({Xj}) = Z Z MH
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Numerical results

Numerical simulations:

~ construct measurement of interest, ,
- choose the best out of (preferably) smaII number of partitions,

dsucc ({X

- in our simulations m = | X|

=

)= (S w

e X

= d (this is the one requiring single ancilla).
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Numerical results - random and SIC (loglog)

Y axis (logarithmic): |
success probability MINUS 25%
X axis (Iogarithmic):

dimension '

dimensions range :
* random:d <1024
 SICd <2208
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Numerical results - random and SIC (loglog)

Y axis (logarithmic):

*  random success probability MINUS 25%
X axis (logarithmic):
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Numerical results - (non-symmetric) IC

e —————

Y axis:
success probability

X axis:
dimension

dimensions range :
* random:d <1024
* SICd <2208

success probability

1024 1209
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Y axis (logarithmic):
success probability MINUS 19%

X axis (logarithmic):
dimension

dimensions range :
* random:d <1024
* SICd <2208

success probability MINUS 19% (log)

10°
dimension (log)
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- Itis easy to find quite good 'partifiohs.



Conclusions

- Itis easy to find quite good partitions.

= For non-symmetric infor',mationally complete POVMs it is unclear...
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Conclusions

- Itis easy to find quite good partitions.
= For non-symmetric inforlmationally complete POVMs it is unclear...

= ...butSiCand Haar-random POVMs seem to be above 25%.
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Conclusions

It is easy to find quite good partifiohs.

For non-symmetric inforlmat-ionally complete POVMs it is unclear...

~ ...butSICand Haar-random POVMs seem to be above 25%.

Now Tanmay will explain why for Haar-random POVMs those results are not so surprising!-
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Conclusions
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For non-symmetric infor,mat-ionally complete POVMs it is unclear...

~ ...butSICand Haar-random POVMs seem to be above 25%.

Now Tanmay will explain why for Haar-random POVMs those results are not so surprising!-

Ud?) 2 A4 =

wl

) )

d



Analytic Result |

Simpler version of result for n = d? and m = d.
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Analytic Result |
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Fix partition, e.g., Xy ={1,2,---,d}, Xo={d+1,---,2d}, ---
From Filip’s slides we saw that:

M = M(U)
So, Qsucc = QSucc( M(U) ) = QSucc(U)-

So when U(d?) equipped with Haar-probability measure, qgucc(U) is a
random variable on U(d?).

Behaviour of qgucc for Haar-random POVMs

Pr(U € U(d?) | qsuec(U) < 6.5% ) < exp(—cdlogd),
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Analytic Result |

Simpler version of result for n = d? and m = d.
Fix partition, e.g., Xy ={1,2,---,d}, Xo={d+1,---,2d}, ---
From Filip’s slides we saw that:

M = M(U)
So, Qsucc = QSucc( M(U) ) = QSucc(U)-

So when U(d?) equipped with Haar-probability measure, qgucc(U) is a
random variable on U(d?).

Behaviour of qgucc for Haar-random POVMs

Pr(U € U(d?) | qsuec(U) < 6.5% ) < exp(—cdlogd),

_ 1
where ¢ = e

Also have results for general n and m.
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Analytic Result I

Behaviour of qgyucc for Haar-random POVMs

Pr(U € Un) | qauec(U) £ 6.5% ) < exp(—c dlogd),
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Behaviour of qgyucc for Haar-random POVMs

Pr(U € Un) | qauec(U) £ 6.5% ) < exp(—c dlogd),

QSucc(U) > 6.5%

] seee) < 65%
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Analytic Result Il

Behaviour of qgyucc for Haar-random POVMs

Pr(U € Un) | qauec(U) £ 6.5% ) < exp(—c dlogd),

QSucc(U) Z 6.5%

] seee) < 65%

d larger
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Analytic Result Il

Behaviour of qgyucc for Haar-random POVMs

Pr(U € Un) | qauec(U) £ 6.5% ) < exp(—c dlogd),

QSucc(U) > 6.5%

] seee) < 65%

d still larger
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Analytic Result Il

Behaviour of qgyucc for Haar-random POVMs

Pr(U € Un) | qauec(U) £ 6.5% ) < exp(—c dlogd),

QSucc(U) > 6.5%

] seee) < 65%

shrinks as exp(—O(d))
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Based on these results,

For any POVM, M, the success probability is above a
constant, c, which is independent of dimension, i.e.,

dsucc>C, for all dimensions.
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dimension.
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Based on these results,

For any POVM, M, the success probability is above a
constant, c, which is independent of dimension, i.e.,

dsucc>C, for all dimensions.

Significance:
@ Feasability to implement scheme for high dimensions.
@ Consequences from resource-theoretic standpoint:

e Robustness wrt d-simulable outcome POVMs: quantum state
discrimination: number of auxiliary qubits doesn't scale with

dimension.
o Critical visibility: randomness extraction.

Implementing POVMs with classical resources and one ancilla

T Singal, F Maciejewski, M Oszmaniec



Noise Analysis

Target POVM: Haar-random, M = (M, -+, My2)

1
Noise model®: M; —s nM; + (1 — 77)@

n = n (gate complexity)
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Same noise model in Google's demonstration of quantum advantage
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Noise Analysis

Target POVM: Haar-random, M = (M, -+, My2)

1
Noise model®: M; —s nM; + (1 — 77)@

n = n (gate complexity)
n qubits p{ —:I:%=
0 %omplexity ~ 24

m> l — 11 | =
n qubits 00— — =
———{_|

Standard Naimark method: nyx ~ exp(—exp(4n))

VWAV IV W WV

n qubits
q p{ Gate complexity: ~ 22"
L1 —
one qubit 01 l_lr {1

Our scheme: 7,5 ~ exp(—exp(2n))

Our scheme’s much better!

2 . . , :
Same noise model in Google's demonstration of quantum advantage
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@ Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qgucc.
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o Numerics: SIC, Haar-random POVMs: qguec > 25%.
e Numerics: IC POVMs: qguee = 19%.
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e Analytics: Haar-random POVMs: qgucc > 6.5%.
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Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.
Propose scheme to implement general POVM using

e classical resources,

e single ancillary qubit.
Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qgucc.
Strong evidence that qgucc > constant, for all POVMs, all
dimensions.

o Numerics: SIC, Haar-random POVMs: qguec > 25%.
e Numerics: IC POVMs: qguee = 19%.

~

e Analytics: Haar-random POVMs: qgucc > 6.5%.
Conjecture: (gucc is above constant for all POVMs, all
dimensions.
Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.
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Scope of our results

Scope in experiment

@ Only a single ancillary qubit used.

@ (succ IS very high, for arbitrary dimension.

Scope in theory: applications and future directions

@ Resource theory of measurements?
e Simulating POVMs using restricted classes of POVMs,
e Significance of ggycc: related to entanglement cost of
measurement, visibility, etc?

@ Non-locality: for e.g. randomness generation, local models .

@ Simulation of random circuits with other circuits.

?Quantum 3 133 (2019)
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