

Implementation of quantum measurements using classical resources and only a single ancillary qubit

Tanmay Singal, Filip Maciejewski
& Michał Oszmaniec

qip
/21

QUANTIN
RESEARCH GROUP

Center for Theoretical Physics
Polish Academy of Sciences

$\frac{d^3x}{dx^3}$
 $\frac{d^2y}{dx^2}$
 $\frac{dxdy}{dx^2}$
 $\frac{dxdydx}{dx^3}$
 $\frac{dxdydx}{dx^3}$
 $\frac{dx}{dx}$
 $\frac{dx}{dx}$
 $\frac{dx}{dx}$

European
Funds
Smart Growth

Republic
of Poland

Foundation for
Polish Science

European Union
European Regional
Development Fund

Outline of Presentation

- The problem: cost of implementing general quantum measurements.

Outline of Presentation

- The problem: cost of implementing general quantum measurements.
- Resources: classical vs quantum.

Outline of Presentation

- The problem: cost of implementing general quantum measurements.
- Resources: classical vs quantum.
- Scheme to implement general measurement with single ancillary qubit with post-selection.

Outline of Presentation

- The problem: cost of implementing general quantum measurements.
- Resources: classical vs quantum.
- Scheme to implement general measurement with single ancillary qubit with post-selection.
- Performance of the scheme: good or bad? Evidence of performance:
 - Numerical results for SIC POVMs, IC POVMs, random POVMs. (by Filip Maciejewski)
 - Analytical results for Haar-random POVMs.

Outline of Presentation

- The problem: cost of implementing general quantum measurements.
- Resources: classical vs quantum.
- Scheme to implement general measurement with single ancillary qubit with post-selection.
- Performance of the scheme: good or bad? Evidence of performance:
 - Numerical results for SIC POVMs, IC POVMs, random POVMs. (by Filip Maciejewski)
 - Analytical results for Haar-random POVMs.
- Conjecture.

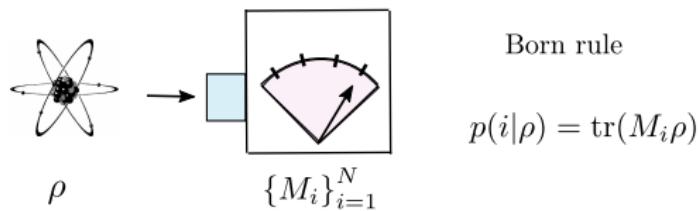
Outline of Presentation

- The problem: cost of implementing general quantum measurements.
- Resources: classical vs quantum.
- Scheme to implement general measurement with single ancillary qubit with post-selection.
- Performance of the scheme: good or bad? Evidence of performance:
 - Numerical results for SIC POVMs, IC POVMs, random POVMs. (by Filip Maciejewski)
 - Analytical results for Haar-random POVMs.
- Conjecture.
- Analysis of noisy implementation.

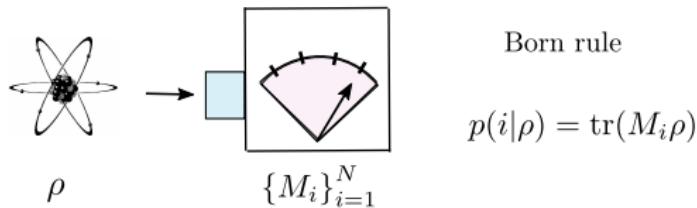
Outline of Presentation

- The problem: cost of implementing general quantum measurements.
- Resources: classical vs quantum.
- Scheme to implement general measurement with single ancillary qubit with post-selection.
- Performance of the scheme: good or bad? Evidence of performance:
 - Numerical results for SIC POVMs, IC POVMs, random POVMs. (by Filip Maciejewski)
 - Analytical results for Haar-random POVMs.
- Conjecture.
- Analysis of noisy implementation.
- Conclusion.

Measurements in quantum mechanics



Measurements in quantum mechanics



Applications

- Quantum communication, e.g., quantum state discrimination¹
- Quantum metrology²
- Quantum tomography³
- Quantum computation, e.g. hidden subgroup problem⁴

¹JMO 57(3) 160–180 (2010)

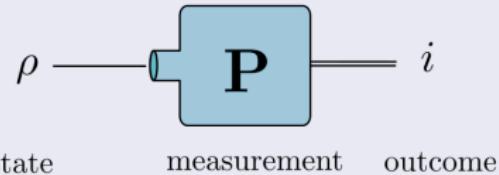
²J. Phys. A: Math. Gen. 47(42) 424006 (2014)

³RMP 89 035002 (2017)

⁴CJCTS 06 Vol 2006 (2006)

Positive Operator Valued Measure (POVM)

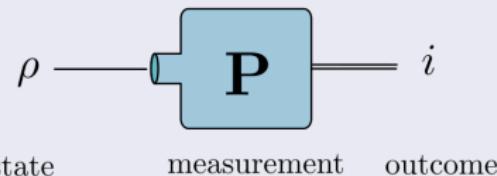
Projective measurements (simpler)



Description: $P_i \geq 0$, $\sum_i P_i = \mathbb{1}$, $P_i P_j = \delta_{ij}$

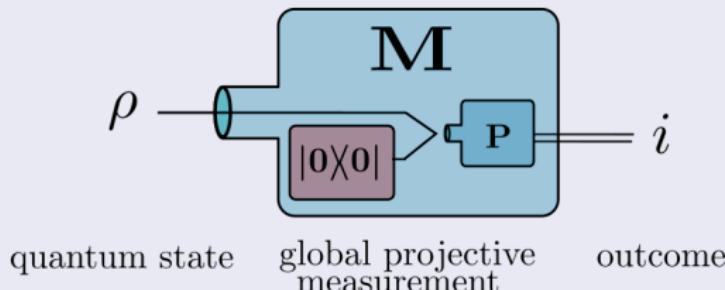
Positive Operator Valued Measure (POVM)

Projective measurements (simpler)



Description: $P_i \geq 0, \sum_i P_i = \mathbb{1}, P_i P_j = \delta_{ij}$

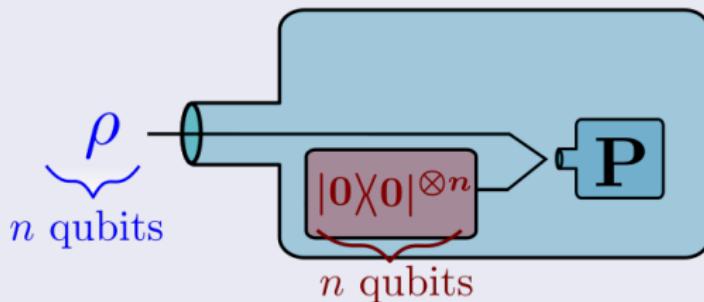
General measurements aka POVMs (Naimark's dilation theorem)



Description: $\mathbf{M} = (M_1, M_2, \dots, M_n), M_i \geq 0, \sum_i M_i = \mathbb{1}$

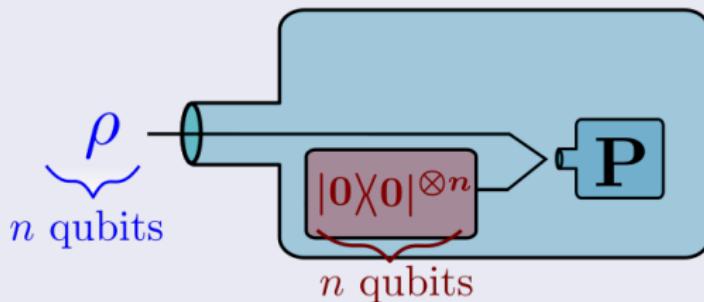
Resources needed to implement general POVMs

Generalized Naimark dilation theorem (PRL 119, 190501 (2017))



Resources needed to implement general POVMs

Generalized Naimark dilation theorem (PRL 119, 190501 (2017))

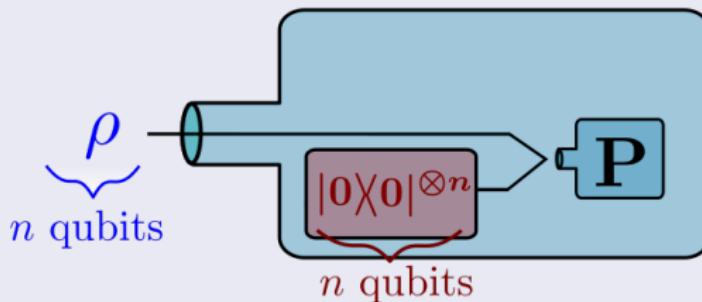


Experimental challenges (especially on NISQ!)

- More ancillary qubits \Rightarrow larger circuit width \Rightarrow more noise
- Limitations to qubit connectivity in NISQ.

Resources needed to implement general POVMs

Generalized Naimark dilation theorem (PRL 119, 190501 (2017))



Experimental challenges (especially on NISQ!)

- More ancillary qubits \Rightarrow larger circuit width \Rightarrow more noise
- Limitations to qubit connectivity in NISQ.

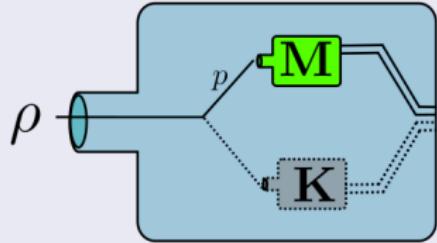
Motivation

Find ways to implement general POVM with fewer quantum resources (ancillary qubits)

Classical resources at our disposal

If **classical randomness** is free, then following operations are free¹.

Free Operations



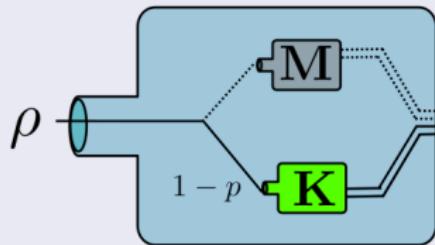
Classical mixing
probabilistic mixture of POVMs

¹ J. Phys. A: Math. Gen. 38, 5979 (2005)

Classical resources at our disposal

If **classical randomness** is free, then following operations are free¹.

Free Operations



$$\mathbf{L} = p\mathbf{M} + (1 - p)\mathbf{K}$$

Classical mixing

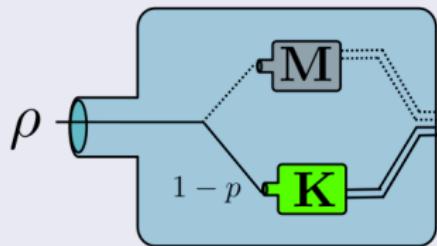
probabilistic mixture of POVMs

¹J. Phys. A: Math. Gen. 38, 5979 (2005)

Classical resources at our disposal

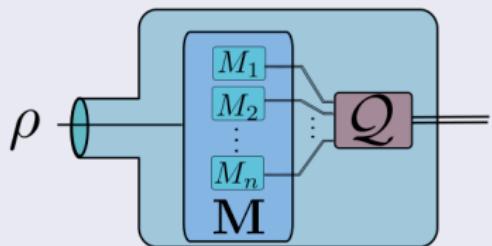
If **classical randomness** is free, then following operations are free¹.

Free Operations



$$\mathbf{L} = p\mathbf{M} + (1 - p)\mathbf{K}$$

Classical mixing
probabilistic mixture of POVMs



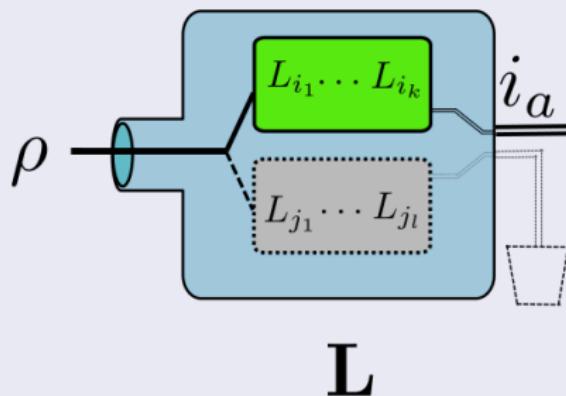
$$\mathcal{Q}(\mathbf{M})$$

Classical postprocessing
coarse – graining over outcomes

¹ J. Phys. A: Math. Gen. 38, 5979 (2005)

Post-Selection: another POVM operation

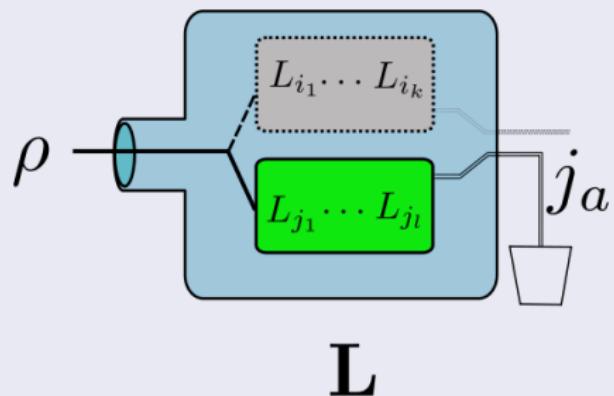
General post-selection operation



Outcomes of \mathbf{L} partitioned into two sets: i_1, \dots, i_k , and j_1, \dots, j_l .
Sample from i_a 's, neglect j_a 's.

Post-Selection: another POVM operation

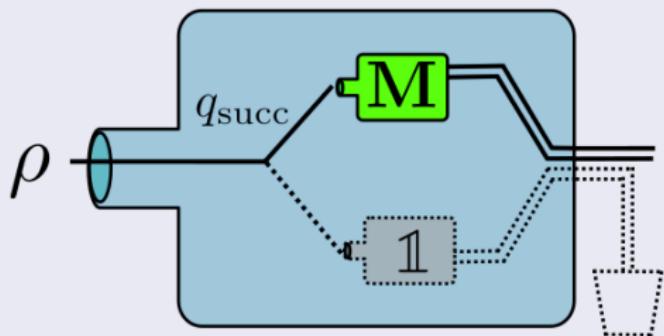
General post-selection operation



Outcomes of \mathbf{L} partitioned into two sets: i_1, \dots, i_k , and j_1, \dots, j_l .
Sample from i_a 's, neglect j_a 's.

Post-Selection: another POVM operation

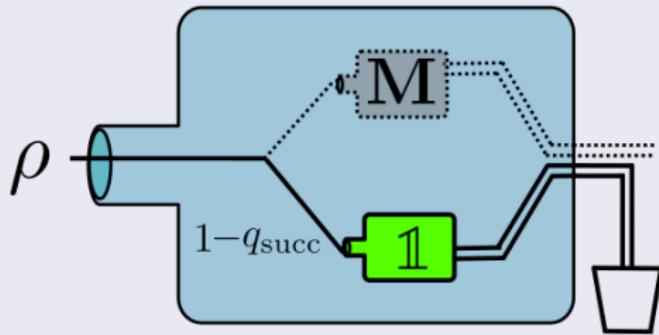
Simulating M by post-selection on L



$$L = q_{\text{succ}}(M, 0) + (1 - q_{\text{succ}})(\mathbf{0}_n, \mathbb{1})$$

Post-Selection: another POVM operation

Simulating M by post-selection on L



$$\mathbf{L} = q_{\text{succ}}(\mathbf{M}, 0) + (1 - q_{\text{succ}})(\mathbf{0}_n, \mathbf{1})$$

Scheme using classical resources and one ancillary qubit I

Target POVM: $\mathbf{M} = (M_1, M_2, \dots, M_n)$ $\text{rank}M_i = 1$.

Scheme using classical resources and one ancillary qubit I

Target POVM: $\mathbf{M} = (M_1, M_2, \dots, M_n)$ $\text{rank}M_i = 1$.

- Choose partition X_1, X_2, \dots, X_k of $[n]$, such that $|X_i| = m$. Here $k = n/m$.

Scheme using classical resources and one ancillary qubit I

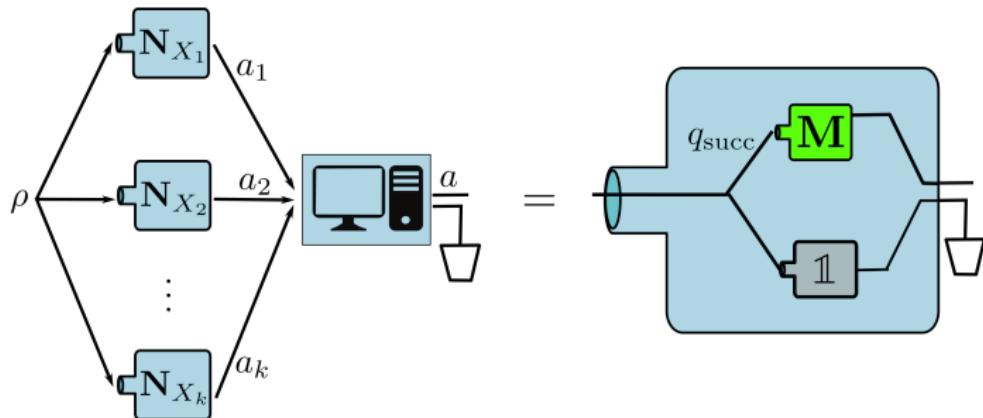
Target POVM: $\mathbf{M} = (M_1, M_2, \dots, M_n)$ $\text{rank}M_i = 1$.

- Choose partition X_1, X_2, \dots, X_k of $[n]$, such that $|X_i| = m$. Here $k = n/m$.
- Find POVMs: $\mathbf{N}_{X_1}, \mathbf{N}_{X_2}, \dots, \mathbf{N}_{X_k}$.

Scheme using classical resources and one ancillary qubit I

Target POVM: $\mathbf{M} = (M_1, M_2, \dots, M_n)$ $\text{rank} M_i = 1$.

- Choose partition X_1, X_2, \dots, X_k of $[n]$, such that $|X_i| = m$. Here $k = n/m$.
- Find POVMs: $\mathbf{N}_{X_1}, \mathbf{N}_{X_2}, \dots, \mathbf{N}_{X_k}$.



The scheme: randomly implement \mathbf{N}_{X_j} 's with fixed probability.

Then coarse-grain over certain outcomes.

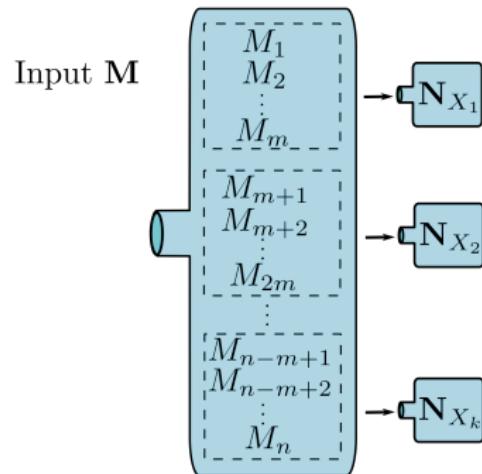
Using post-selection, \mathbf{M} is implemented with success probability

q_{succ} .

Scheme using classical resources and one ancillary qubit II

Target POVM: $\mathbf{M} = (M_1, M_2, \dots, M_n)$ $\text{rank} M_i = 1$

Actually, \mathbf{N}_{X_i} 's are constructed using M_i 's.

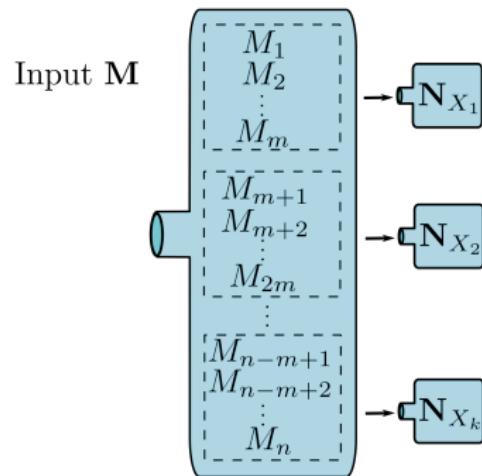


Constraint on m so that \mathbf{N}_{X_j} are implementable using a single ancillary qubit: $m \leq d$.

Scheme using classical resources and one ancillary qubit II

Target POVM: $\mathbf{M} = (M_1, M_2, \dots, M_n)$ $\text{rank } M_i = 1$

Actually, \mathbf{N}_{X_i} 's are constructed using M_i 's.



Success probability : $q_{\text{succ}} = \left(\sum_{j=1}^{n/m} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$.

A little bit more about q_{succ}

$$q_{\text{succ}} [\{X_j\}] = \left(\sum_{j=1}^{n/m} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}.$$

A little bit more about q_{succ}

$$q_{\text{succ}} [\{X_j\}] = \left(\sum_{j=1}^{n/m} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}.$$

- Maximum q_{succ} requires optimization over all partitions.

A little bit more about q_{succ}

$$q_{\text{succ}} [\{X_j\}] = \left(\sum_{j=1}^{n/m} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}.$$

- Maximum q_{succ} requires optimization over all partitions.
- Physical interpretation of q_{succ} : it is the average number of trials to sample \mathbf{M} once: $1/q_{\text{succ}}$.

Hence, q_{succ} is the figure of merit of the scheme.

A little bit more about q_{succ}

$$q_{\text{succ}} [\{X_j\}] = \left(\sum_{j=1}^{n/m} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}.$$

- Maximum q_{succ} requires optimization over all partitions.
- Physical interpretation of q_{succ} : it is the average number of trials to sample \mathbf{M} once: $1/q_{\text{succ}}$.
Hence, q_{succ} is the figure of merit of the scheme.
- q_{succ} is related to other resource-theoretic quantities of \mathbf{M} (will see in a while).

Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

- Simulate arbitrary POVM with classical resources only - no ancillary qubits.

Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

- Simulate arbitrary POVM with classical resources only - no ancillary qubits.
- Worst case: $q_{\text{succ}} = 1/d$. Not feasible for large d .

Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

- Simulate arbitrary POVM with classical resources only - no ancillary qubits.
- Worst case: $q_{\text{succ}} = 1/d$. Not feasible for large d .

Current scheme

- Scaling of q_{succ} significantly better.

Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

- Simulate arbitrary POVM with classical resources only - no ancillary qubits.
- Worst case: $q_{\text{succ}} = 1/d$. Not feasible for large d .

Current scheme

- Scaling of q_{succ} significantly better.
- We expect q_{succ} is above a constant, for all POVMs, all dimensions.

Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

- Simulate arbitrary POVM with classical resources only - no ancillary qubits.
- Worst case: $q_{\text{succ}} = 1/d$. Not feasible for large d .

Current scheme

- Scaling of q_{succ} significantly better.
- We expect q_{succ} is above a constant, for all POVMs, all dimensions.
- Strong evidence for this in this work.
 - Numerical results.
 - Analytic results.

Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

- Simulate arbitrary POVM with classical resources only - no ancillary qubits.
- Worst case: $q_{\text{succ}} = 1/d$. Not feasible for large d .

Current scheme

- Scaling of q_{succ} significantly better.
- We expect q_{succ} is above a constant, for all POVMs, all dimensions.
- Strong evidence for this in this work.
 - Numerical results.
 - Analytic results.

Now over to Filip for the numerics.

European
Funds
Smart Growth

Republic
of Poland

Foundation for
Polish Science

European Union
European Regional
Development Fund

Numerical interlude

Tanmay Singal, Filip Maciejewski, Michał Oszmaniec

24th Annual Conference on Quantum Information Processing (QIP 2021)

Success probability of implementation

- We saw that:

$$q_{\text{succ}}(\{X_j\})$$

Success probability of implementation

- We saw that:

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Success probability of implementation

- We saw that:

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

- Problem (?): finding **good** partition could in principle be very hard...

Success probability of implementation

- We saw that:

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

- Problem (?): finding **good partition** could in principle be very hard...
- How it looks in **practice**?

Tested measurements

- We tested three classes of **rank-1** POVMs with $n = d^2$ outcomes:

$$q_{\text{succ}} (\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Haar random

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.

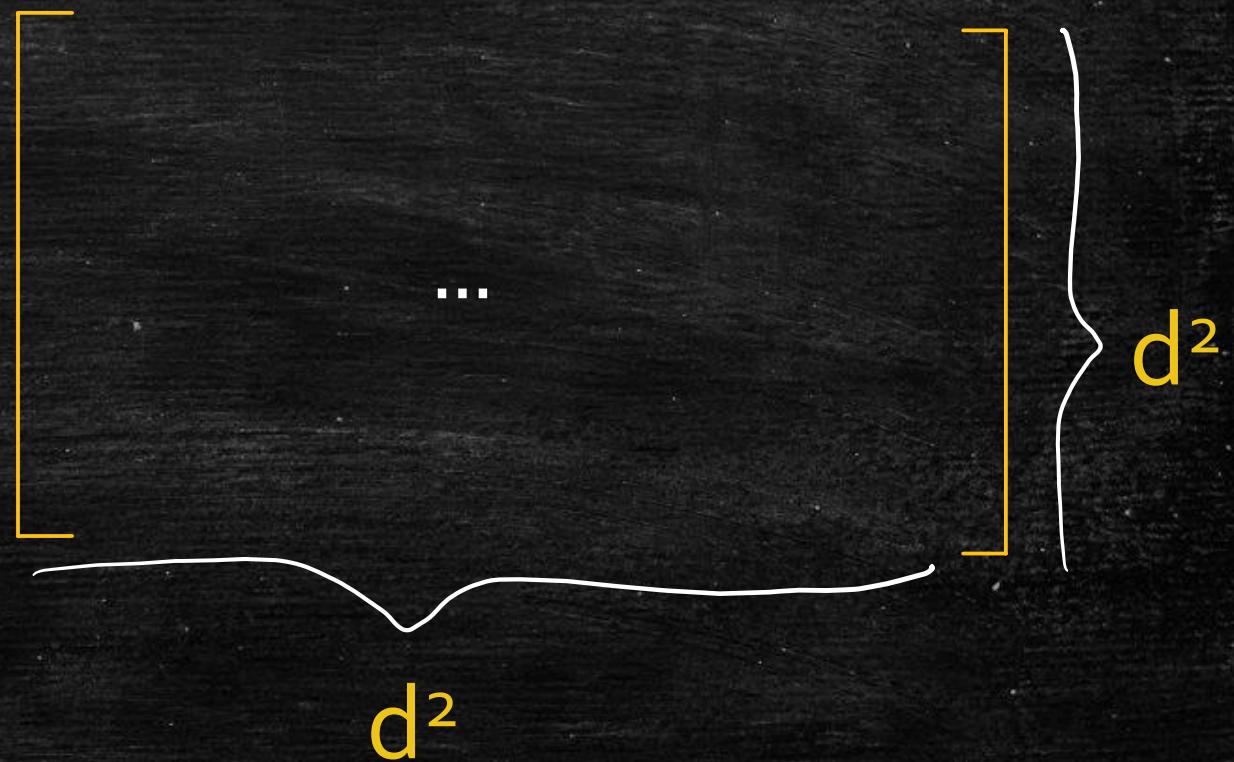
$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Haar random

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:

1. Haar-random.

$$U(d^2) \ni V =$$

$$\left[\begin{array}{c} \dots \\ \vdots \end{array} \right] \quad \left. \right\} d^2$$


Haar random

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:

1. Haar-random.

$$U(d^2) \ni V =$$

$$\left[\left| \tilde{\psi}^1 \right\rangle \dots \left| \tilde{\psi}^i \right\rangle \dots \left| \tilde{\psi}^{d^2} \right\rangle \right] \} d^2$$

Haar random

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:

1. Haar-random.

$$U(d^2) \ni V =$$

$$\left[\left| \tilde{\psi}^1 \right\rangle \dots \left| \tilde{\psi}^i \right\rangle \dots \left| \tilde{\psi}^{d^2} \right\rangle \right] \} d$$

d^2

$$M_i = \left| \tilde{\psi}^i \right\rangle \left\langle \tilde{\psi}^i \right|$$

Haar random

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:

1. Haar-random.

$$U(d^2) \ni V =$$

drawn randomly
from Haar measure

$$\left[\left| \tilde{\psi}^1 \right\rangle \dots \left| \tilde{\psi}^i \right\rangle \dots \left| \tilde{\psi}^{d^2} \right\rangle \right] \} d$$

d^2

$$M_i = \left| \tilde{\psi}^i \right\rangle \left\langle \tilde{\psi}^i \right|$$

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

spans $\mathcal{L}(\mathcal{H})$

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

spans $\mathcal{L}(\mathcal{H})$

$|\psi^0\rangle$

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

spans $\mathcal{L}(\mathcal{H})$

$$|\psi^g\rangle = U_g |\psi^0\rangle$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

spans $\mathcal{L}(\mathcal{H})$

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

$$|\psi^g\rangle = U_g |\psi^0\rangle \bigcap_{\mathbb{Z}^d \otimes \mathbb{Z}^d}$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

spans $\mathcal{L}(\mathcal{H})$

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

$$|\psi^g\rangle = U_g |\psi^0\rangle$$

$$\bigcap_{\mathbb{Z}^d \otimes \mathbb{Z}^d}$$

$$M_g \approx |\psi^g\rangle \langle \psi^g|$$

Informationally complete

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.
spans $\mathcal{L}(\mathcal{H})$
 3. Symmetric Informationally Complete (SIC).

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

$$|\psi^g\rangle = U_g |\psi^0\rangle$$

$$\bigcap_{\mathbb{Z}^d \otimes \mathbb{Z}^d}$$

$$M_g \approx |\psi^g\rangle \langle \psi^g|$$

SIC

$$q_{\text{succ}} (\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

- We tested **three classes** of **rank-1** POVMs with $n = d^2$ outcomes:

1. Haar-random.
2. **Informationally Complete (IC)**, covariant w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.

spans $\mathcal{L}(\mathcal{H})$

3. **Symmetric Informationally Complete (SIC)**.

$$Tr(M^g M^{\tilde{g}}) = \text{constant}$$

$$|\psi^g\rangle = U_g |\psi^0\rangle$$

$$\bigcap_{\mathbb{Z}^d \otimes \mathbb{Z}^d}$$

$$M_g \approx |\psi^g\rangle \langle \psi^g|$$

Tested measurements

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant¹ w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.
 3. Symmetric Informationally Complete (SIC)²

¹ G. M. D. Ariano, P. Perinotti, and M. F. Sacchi, *Journal of Optics B: Quantum and Semiclassical Optics* 6, S487 (2004).

² www.physics.umb.edu/Research/QBism/solutions.html, www.physics.usyd.edu.au/~sflammia/SIC/, <http://sicpovm.markus-grassl.de/>

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Tested measurements

- We tested three classes of rank-1 POVMs with $n = d^2$ outcomes:
 1. Haar-random.
 2. Informationally Complete (IC), covariant¹ w.r.p. to $\mathbb{Z}^d \otimes \mathbb{Z}^d$.
 3. Symmetric Informationally Complete (SIC) ²
- Special thanks to Markus Grassl for sharing SIC POVMs in high dimensions!

¹ G. M. D. Ariano, P. Perinotti, and M. F. Sacchi, *Journal of Optics B: Quantum and Semiclassical Optics* 6, S487 (2004).

² www.physics.umb.edu/Research/QBism/solutions.html, www.physics.usyd.edu.au/~sflammia/SIC/, <http://sicpovm.markus-grassl.de/>

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Numerical results

- Numerical simulations:
 - construct measurement of interest,

Numerical results

- Numerical simulations:
 - construct measurement of interest,
 - choose the **best** out of (preferably) **small number** of partitions,

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Numerical results

- Numerical simulations:
 - construct measurement of interest,
 - choose the best out of (preferably) $\underbrace{\text{small number}}_{\leq 24}$ of partitions,

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

Numerical results

- Numerical simulations:
 - construct measurement of interest,
 - choose the best out of (preferably) $\underbrace{\text{small number}}_{\leq 24}$ of partitions,

$$q_{\text{succ}}(\{X_j\}) = \left(\sum_{X_j} \left\| \sum_{i \in X_j} M_i \right\| \right)^{-1}$$

- in our simulations $m = |X_j| = d$ (this is the one requiring single ancilla).

Numerical results - random and SIC

Y axis:

success probability

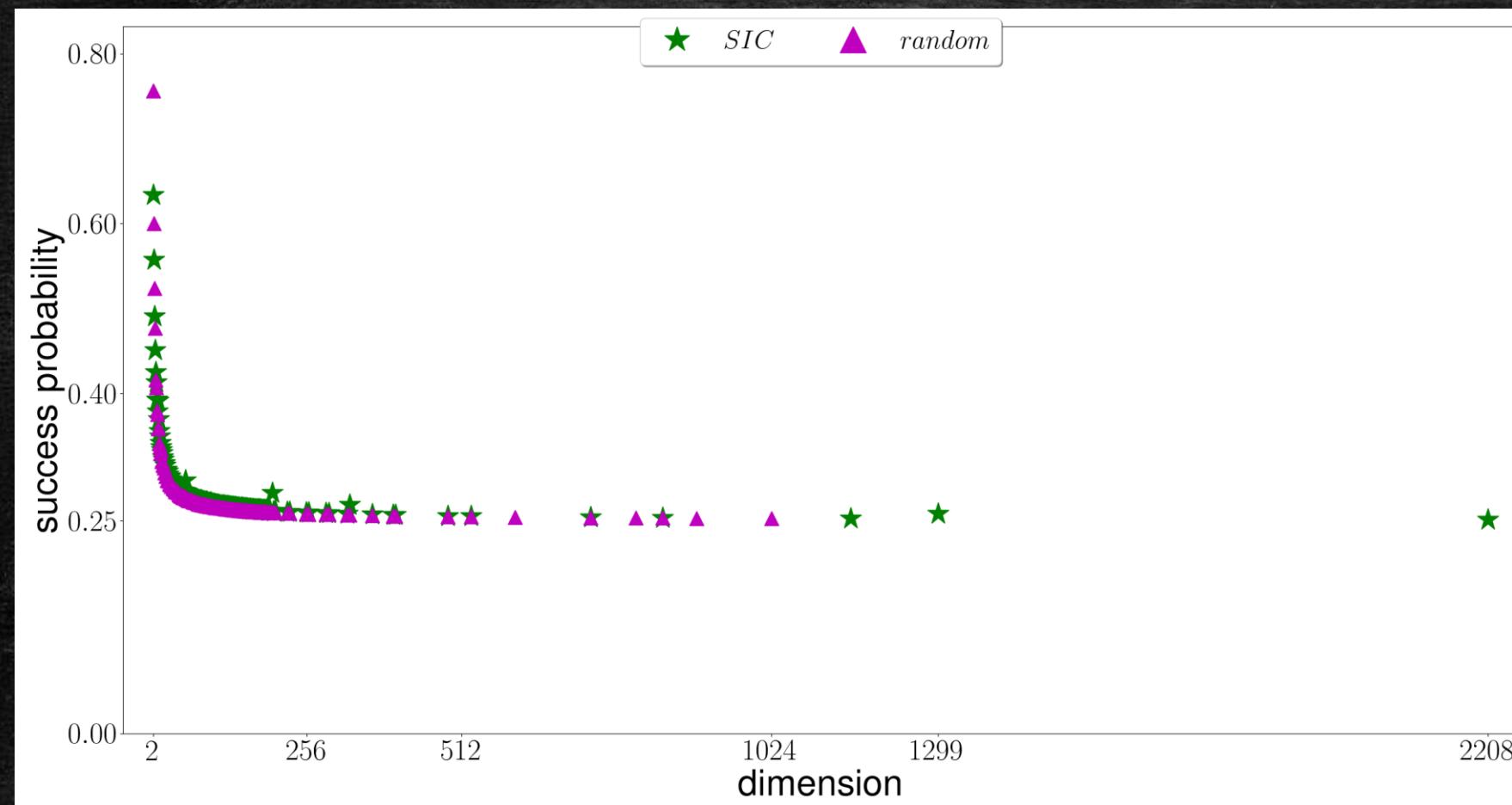
X axis:

dimension

dimensions range :

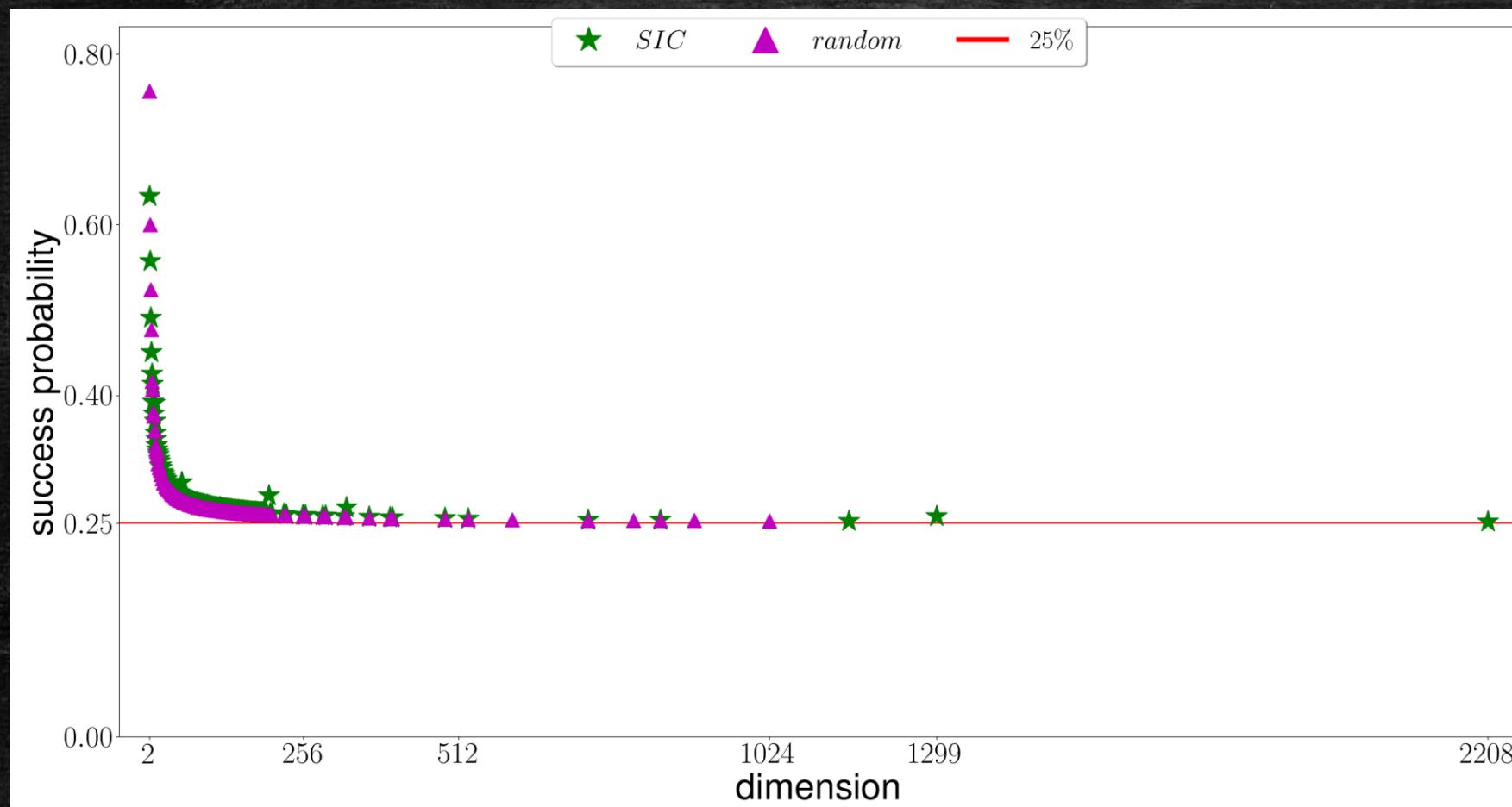
- random: $d \leq 1024$
- SIC $d \leq 2208$

Numerical results - random and SIC



Y axis:
success probability
X axis:
dimension
dimensions range :
• random: $d \leq 1024$
• SIC $d \leq 2208$

Numerical results - random and SIC



Y axis:
success probability
X axis:
dimension
dimensions range :
• random: $d \leq 1024$
• SIC $d \leq 2208$

Numerical results - random and SIC (loglog)

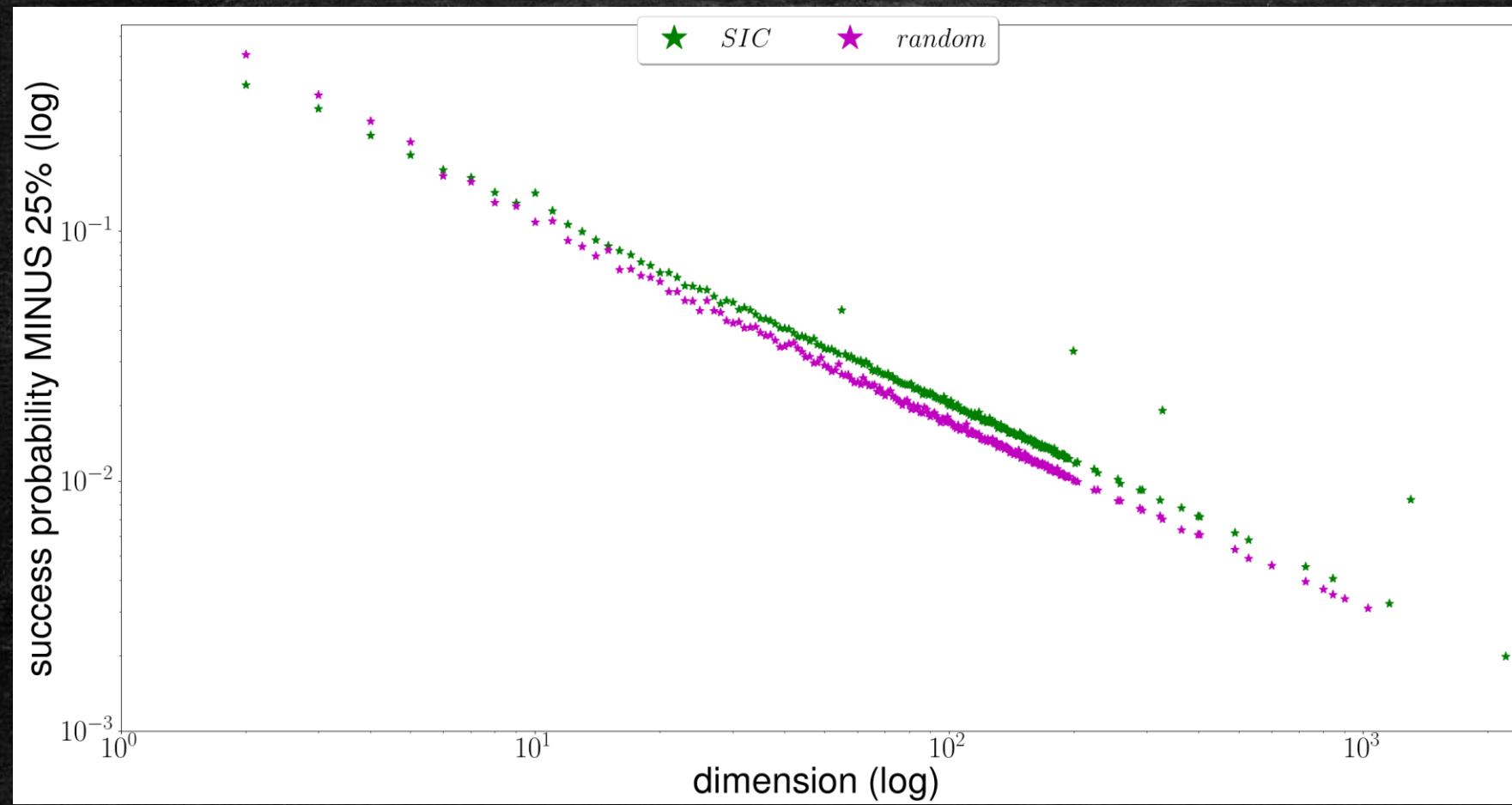
Y axis (logarithmic):
success probability MINUS 25%

X axis (logarithmic):
dimension

dimensions range :

- random: $d \leq 1024$
- SIC $d \leq 2208$

Numerical results - random and SIC (loglog)



Y axis (logarithmic):
success probability MINUS 25%

X axis (logarithmic):
dimension

dimensions range :
• random: $d \leq 1024$
• SIC $d \leq 2208$

Numerical results - (non-symmetric) IC

Y axis:

success probability

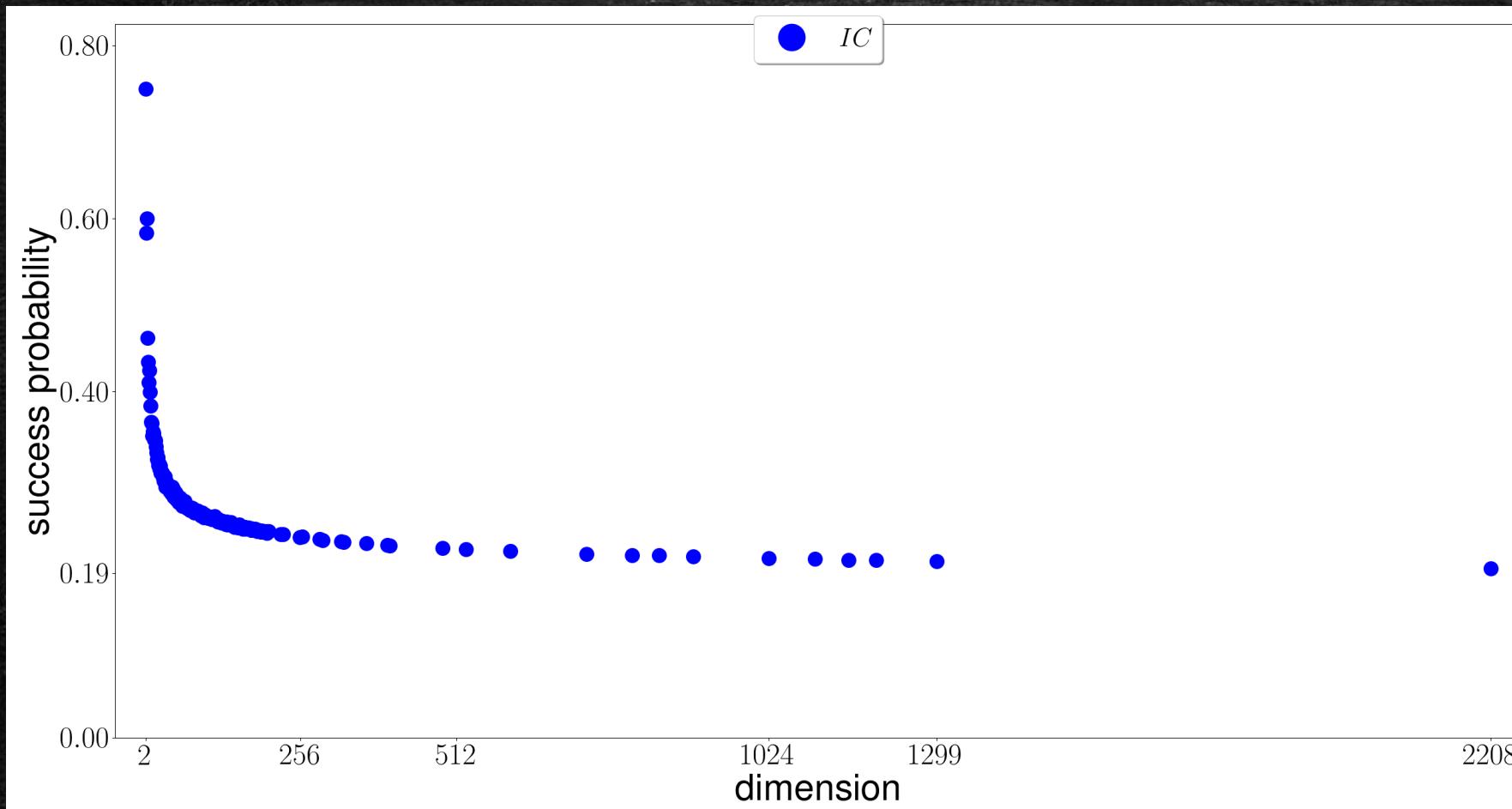
X axis:

dimension

dimensions range :

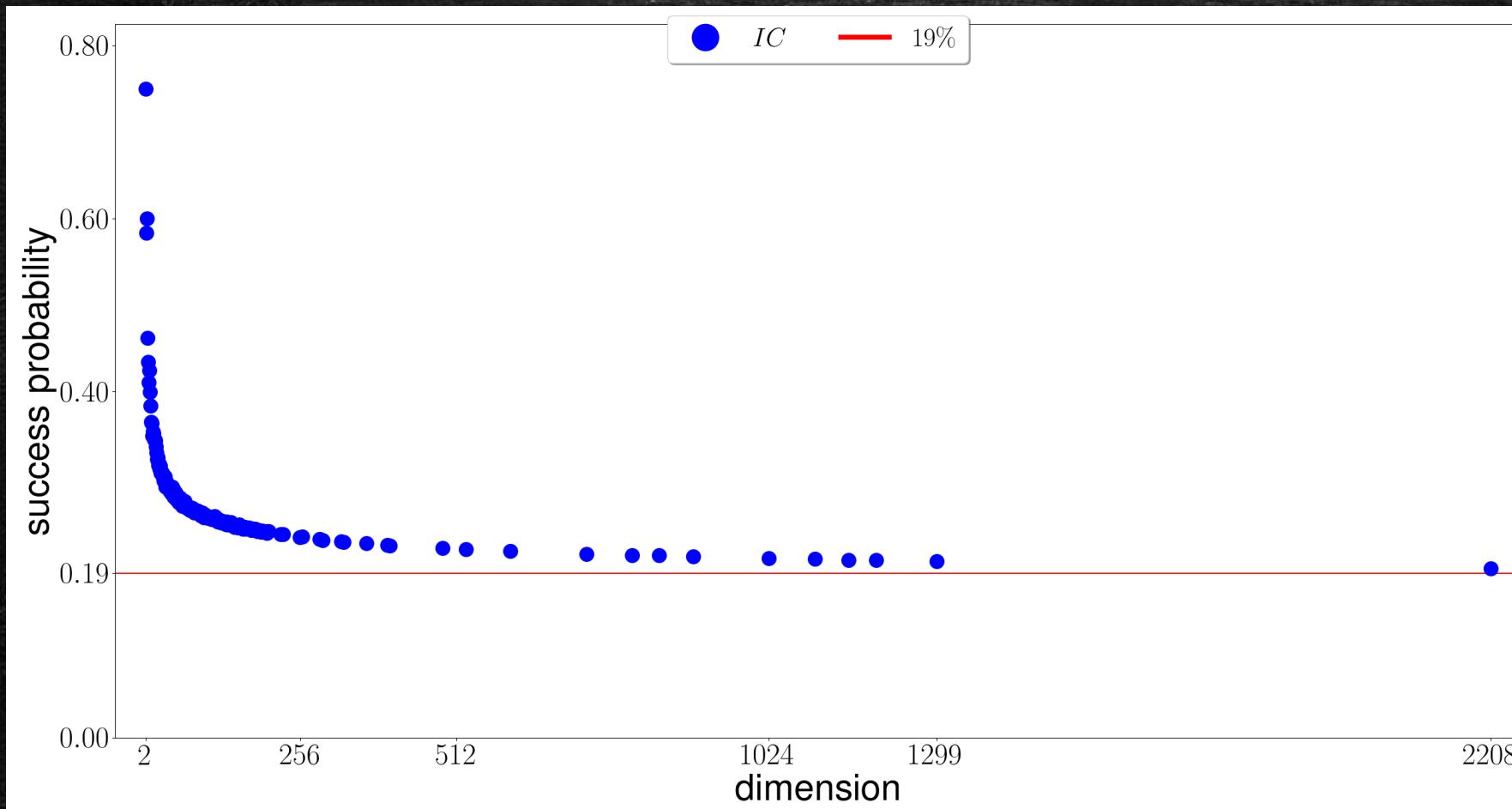
- random: $d \leq 1024$
- SIC $d \leq 2208$

Numerical results - (non-symmetric) IC

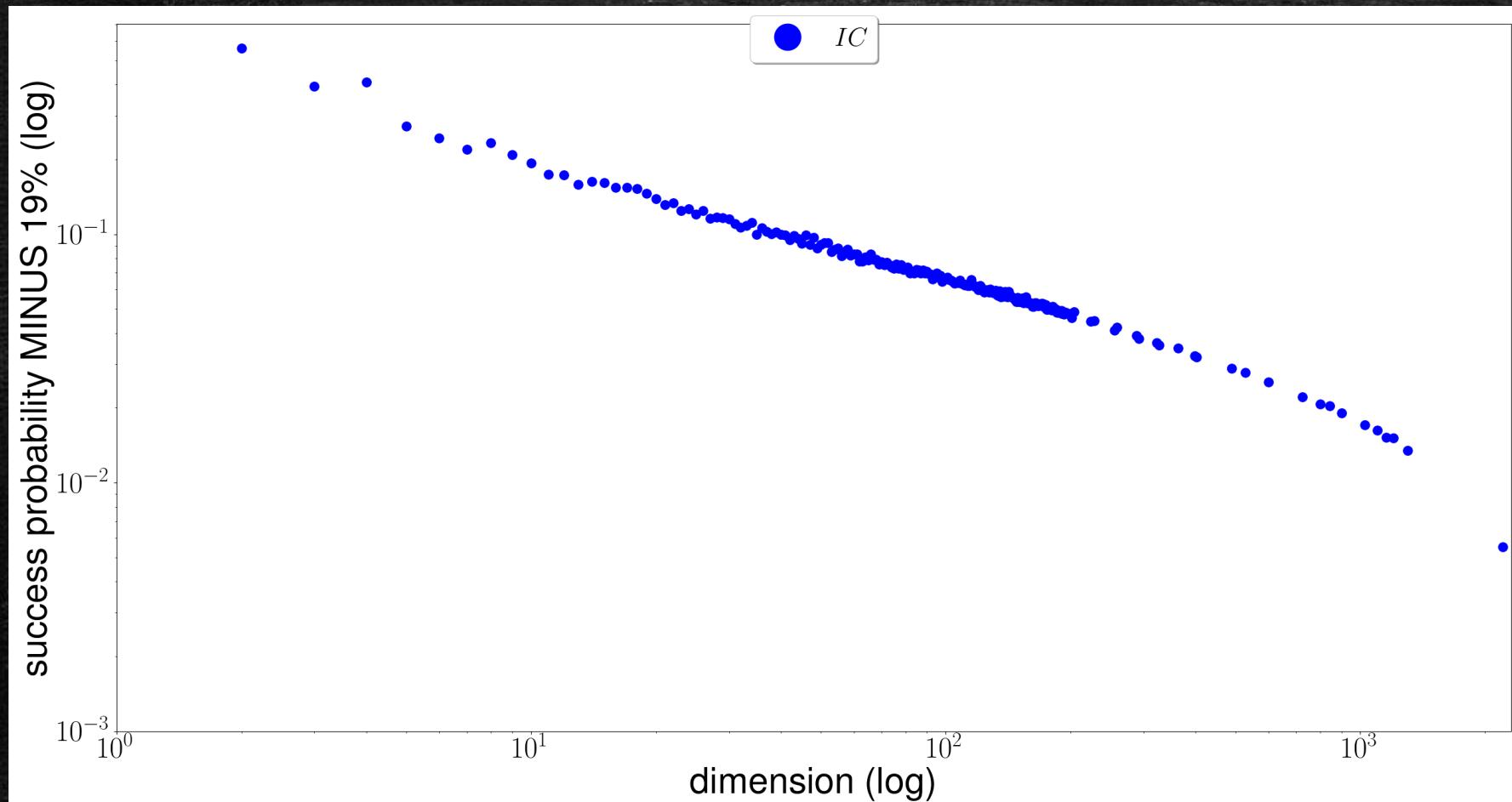


Y axis:
success probability
X axis:
dimension
dimensions range :
• random: $d \leq 1024$
• SIC $d \leq 2208$

Numerical results - (non-symmetric) IC



Numerical results - (non-symmetric) IC (loglog)



Y axis (logarithmic): success probability MINUS 19%

X axis (logarithmic): dimension

dimensions range :

- random: $d \leq 1024$
- SIC $d \leq 2208$

Conclusions

- It is easy to find quite good partitions.

Conclusions

- It is easy to find quite good partitions.
- For non-symmetric informationally complete POVMs it is unclear...

Conclusions

- It is easy to find quite good partitions.
- For non-symmetric informationally complete POVMs it is unclear...
- ...but SIC and Haar-random POVMs seem to be above 25%.

Conclusions

- It is easy to find quite good partitions.
- For non-symmetric informationally complete POVMs it is unclear...
- ...but SIC and Haar-random POVMs seem to be above 25%.
- Now Tanmay will explain why for Haar-random POVMs those results are not so surprising!

Conclusions

- It is easy to find quite good partitions.
- For non-symmetric informationally complete POVMs it is unclear...
- ...but SIC and Haar-random POVMs seem to be above 25%.
- Now Tanmay will explain why for Haar-random POVMs those results are not so surprising!

$$M_i = |\tilde{\psi}^i\rangle\langle\tilde{\psi}^i|$$

$$U(d^2) \ni A = \left[\begin{array}{cccc} |\tilde{\psi}^1\rangle & \dots & |\tilde{\psi}^i\rangle & \dots & |\tilde{\psi}^{d^2}\rangle \end{array} \right] \} d^2$$

Analytic Result I

Simpler version of result for $n = d^2$ and $m = d$.

Analytic Result I

Simpler version of result for $n = d^2$ and $m = d$.

Fix partition, e.g., $X_1 = \{1, 2, \dots, d\}$, $X_2 = \{d + 1, \dots, 2d\}$, \dots

Analytic Result I

Simpler version of result for $n = d^2$ and $m = d$.

Fix partition, e.g., $X_1 = \{1, 2, \dots, d\}$, $X_2 = \{d + 1, \dots, 2d\}$, \dots

From Filip's slides we saw that:

$$\mathbf{M} = \mathbf{M}(U).$$

So, $q_{\text{succ}} = q_{\text{succ}}(\mathbf{M}(U)) = q_{\text{succ}}(U).$

Analytic Result I

Simpler version of result for $n = d^2$ and $m = d$.

Fix partition, e.g., $X_1 = \{1, 2, \dots, d\}$, $X_2 = \{d + 1, \dots, 2d\}$, \dots

From Filip's slides we saw that:

$$\mathbf{M} = \mathbf{M}(U).$$
$$\text{So, } q_{\text{succ}} = q_{\text{succ}}(\mathbf{M}(U)) = q_{\text{succ}}(U).$$

So when $U(d^2)$ equipped with Haar-probability measure, $q_{\text{succ}}(U)$ is a random variable on $U(d^2)$.

Analytic Result I

Simpler version of result for $n = d^2$ and $m = d$.

Fix partition, e.g., $X_1 = \{1, 2, \dots, d\}$, $X_2 = \{d + 1, \dots, 2d\}$, \dots

From Filip's slides we saw that:

$$\mathbf{M} = \mathbf{M}(U).$$
$$\text{So, } q_{\text{succ}} = q_{\text{succ}}(\mathbf{M}(U)) = q_{\text{succ}}(U).$$

So when $U(d^2)$ equipped with Haar-probability measure, $q_{\text{succ}}(U)$ is a random variable on $U(d^2)$.

Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(d^2) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$

$$\text{where } c = \frac{1}{12}.$$

Analytic Result I

Simpler version of result for $n = d^2$ and $m = d$.

Fix partition, e.g., $X_1 = \{1, 2, \dots, d\}$, $X_2 = \{d + 1, \dots, 2d\}$, \dots

From Filip's slides we saw that:

$$\mathbf{M} = \mathbf{M}(U).$$
$$\text{So, } q_{\text{succ}} = q_{\text{succ}}(\mathbf{M}(U)) = q_{\text{succ}}(U).$$

So when $U(d^2)$ equipped with Haar-probability measure, $q_{\text{succ}}(U)$ is a random variable on $U(d^2)$.

Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(d^2) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$

$$\text{where } c = \frac{1}{12}.$$

Also have results for general n and m .

Analytic Result II

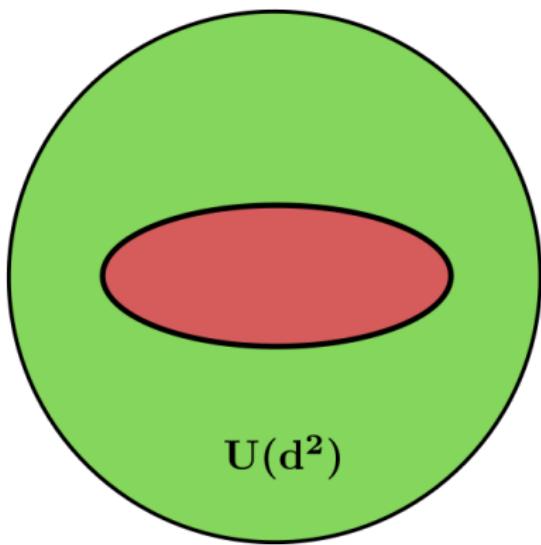
Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(n) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$

Analytic Result II

Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(n) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$



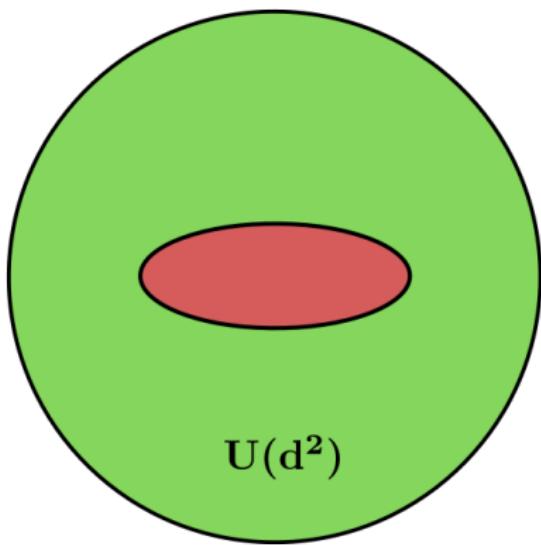
$q_{\text{succ}}(U) \geq 6.5\%$

$q_{\text{succ}}(U) \leq 6.5\%$

Analytic Result II

Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(n) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$



$q_{\text{succ}}(U) \geq 6.5\%$

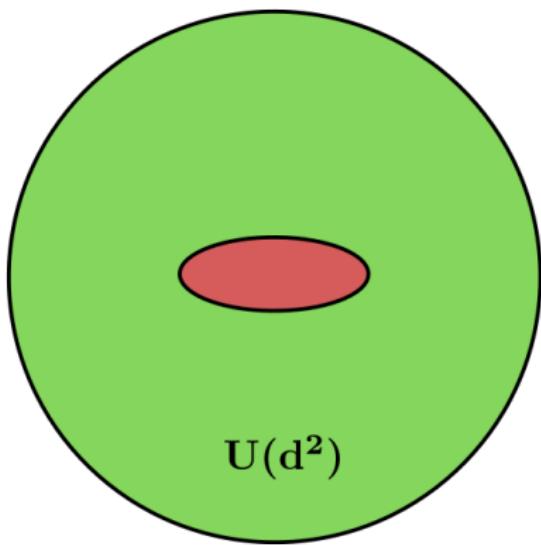
$q_{\text{succ}}(U) \leq 6.5\%$

d larger

Analytic Result II

Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(n) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$



$q_{\text{succ}}(U) \geq 6.5\%$

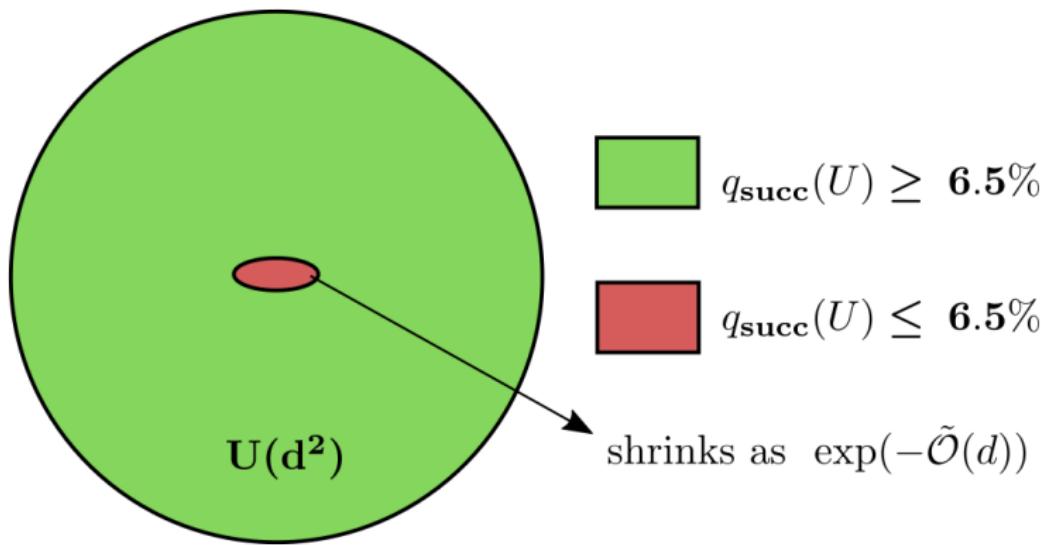
$q_{\text{succ}}(U) \leq 6.5\%$

d still larger

Analytic Result II

Behaviour of q_{succ} for Haar-random POVMs

$$\Pr(U \in U(n) \mid q_{\text{succ}}(U) \leq 6.5\%) \leq \exp(-c d \log d),$$



Conjecture

Based on these results,

Conjecture

For any POVM, M , the success probability is above a constant, c , which is independent of dimension, i.e.,

$$q_{\text{succ}} \geq c, \text{ for all dimensions.}$$

Conjecture

Based on these results,

Conjecture

For any POVM, M , the success probability is above a constant, c , which is independent of dimension, i.e.,

$$q_{\text{succ}} \geq c, \text{ for all dimensions.}$$

Significance:

Conjecture

Based on these results,

Conjecture

For any POVM, M , the success probability is above a constant, c , which is independent of dimension, i.e.,

$$q_{\text{succ}} \geq c, \text{ for all dimensions.}$$

Significance:

- Feasibility to implement scheme for high dimensions.

Conjecture

Based on these results,

Conjecture

For any POVM, M , the success probability is above a constant, c , which is independent of dimension, i.e.,

$$q_{\text{succ}} \geq c, \text{ for all dimensions.}$$

Significance:

- Feasibility to implement scheme for high dimensions.
- Consequences from resource-theoretic standpoint:

Conjecture

Based on these results,

Conjecture

For any POVM, M , the success probability is above a constant, c , which is independent of dimension, i.e.,

$$q_{\text{succ}} \geq c, \text{ for all dimensions.}$$

Significance:

- Feasibility to implement scheme for high dimensions.
- Consequences from resource-theoretic standpoint:
 - Robustness wrt d -simulable outcome POVMs: quantum state discrimination: number of auxiliary qubits doesn't scale with dimension.

Conjecture

Based on these results,

Conjecture

For any POVM, M , the success probability is above a constant, c , which is independent of dimension, i.e.,

$$q_{\text{succ}} \geq c, \text{ for all dimensions.}$$

Significance:

- Feasibility to implement scheme for high dimensions.
- Consequences from resource-theoretic standpoint:
 - Robustness wrt d -simulable outcome POVMs: quantum state discrimination: number of auxiliary qubits doesn't scale with dimension.
 - Critical visibility: randomness extraction.

Noise Analysis

Target POVM: Haar-random, $\mathbf{M} = (M_1, \dots, M_{d^2})$

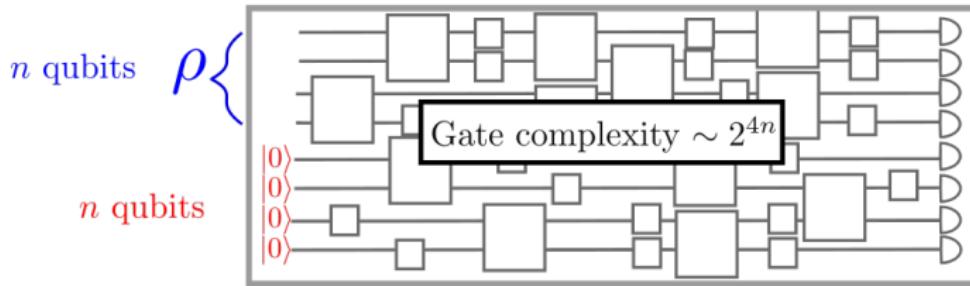
Noise model²: $M_i \longrightarrow \eta M_i + (1 - \eta) \frac{\mathbb{1}}{d^2}$
 $\eta = \eta$ (gate complexity)

²Same noise model in Google's demonstration of quantum advantage

Noise Analysis

Target POVM: Haar-random, $\mathbf{M} = (M_1, \dots, M_{d^2})$

Noise model²: $M_i \longrightarrow \eta M_i + (1 - \eta) \frac{\mathbb{1}}{d^2}$
 $\eta = \eta$ (gate complexity)



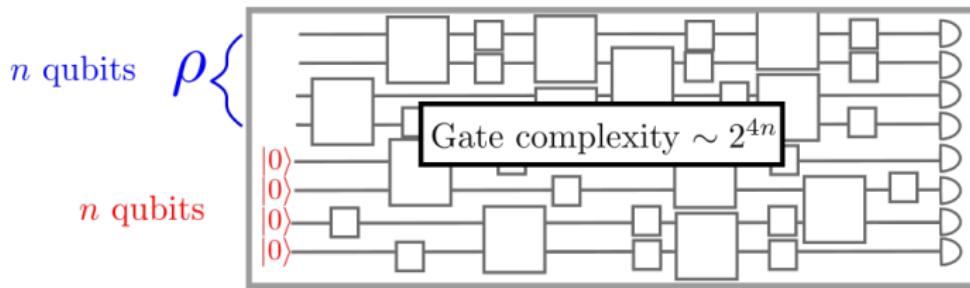
Standard Naimark method: $\eta_{Nk} \sim \exp(-\exp(4n))$

²Same noise model in Google's demonstration of quantum advantage

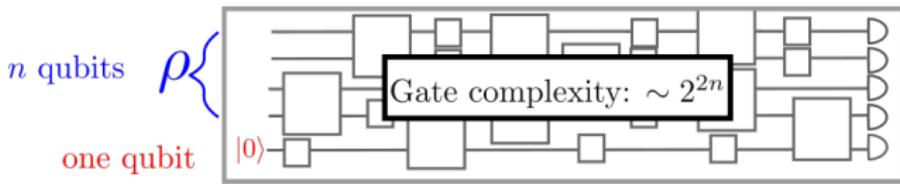
Noise Analysis

Target POVM: Haar-random, $\mathbf{M} = (M_1, \dots, M_{d^2})$

Noise model²: $M_i \longrightarrow \eta M_i + (1 - \eta) \frac{\mathbb{1}}{d^2}$
 $\eta = \eta$ (gate complexity)



Standard Naimark method: $\eta_{Nk} \sim \exp(-\exp(4n))$



Our scheme: $\eta_{ps} \sim \exp(-\exp(2n))$

Our scheme's much better!

²Same noise model in Google's demonstration of quantum advantage

Summary and significance

- General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Summary and significance

- General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.
- Propose scheme to implement general POVM using
 - classical resources,
 - single ancillary qubit.

Summary and significance

- General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.
- Propose scheme to implement general POVM using
 - classical resources,
 - single ancillary qubit.
- Cost of implementation: probabilistic scheme,
implements target POVM with success probability, q_{succ} .

Summary and significance

- General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.
- Propose scheme to implement general POVM using
 - classical resources,
 - single ancillary qubit.
- Cost of implementation: probabilistic scheme,
implements target POVM with success probability, q_{succ} .
- Strong evidence that $q_{\text{succ}} \geq \text{constant}$, for all POVMs, all dimensions.
 - Numerics: SIC, Haar-random POVMs: $q_{\text{succ}} \geq 25\%$.
 - Numerics: IC POVMs: $q_{\text{succ}} \gtrsim 19\%$.
 - Analytics: Haar-random POVMs: $q_{\text{succ}} \geq 6.5\%$.

Summary and significance

- General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.
- Propose scheme to implement general POVM using
 - classical resources,
 - single ancillary qubit.
- Cost of implementation: probabilistic scheme,
implements target POVM with success probability, q_{succ} .
- Strong evidence that $q_{\text{succ}} \geq \text{constant}$, for all POVMs, all dimensions.
 - Numerics: SIC, Haar-random POVMs: $q_{\text{succ}} \geq 25\%$.
 - Numerics: IC POVMs: $q_{\text{succ}} \gtrsim 19\%$.
 - Analytics: Haar-random POVMs: $q_{\text{succ}} \geq 6.5\%$.
- Conjecture: q_{succ} is above constant for all POVMs, all dimensions.

Summary and significance

- General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.
- Propose scheme to implement general POVM using
 - classical resources,
 - single ancillary qubit.
- Cost of implementation: probabilistic scheme,
implements target POVM with success probability, q_{succ} .
- Strong evidence that $q_{\text{succ}} \geq \text{constant}$, for all POVMs, all dimensions.
 - Numerics: SIC, Haar-random POVMs: $q_{\text{succ}} \geq 25\%$.
 - Numerics: IC POVMs: $q_{\text{succ}} \gtrsim 19\%$.
 - Analytics: Haar-random POVMs: $q_{\text{succ}} \geq 6.5\%$.
- Conjecture: q_{succ} is above constant for all POVMs, all dimensions.
- Noise compounding in circuits significantly less in our scheme, than Naimark dilation method.

Scope of our results

Scope in experiment

- Only a single ancillary qubit used.
- q_{succ} is very high, for arbitrary dimension.

Scope in theory: applications and future directions

- Resource theory of measurements^a
 - Simulating POVMs using restricted classes of POVMs,
 - Significance of q_{succ} : related to entanglement cost of measurement, visibility, etc?
- Non-locality: for e.g. randomness generation, local models .
- Simulation of random circuits with other circuits.

^aQuantum 3 133 (2019)