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Positive Operator Valued Measure (POVM)

Projective measurements (simpler)

Description: Pi ≥ 0,
∑

i Pi = 1, PiPj = δij

General measurements aka POVMs (Naimark’s dilation theorem)

Description: M = (M1,M2, · · · ,Mn), Mi ≥ 0,
∑
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Resources needed to implement general POVMs

Generalized Naimark dilation theorem (PRL 119, 190501 (2017))

Experimental challenges (especially on NISQ!)

More ancillary qubits ⇒ larger circuit width ⇒ more noise

Limitations to qubit connectivity in NISQ.

Motivation

Find ways to implement general POVM with fewer quantum
resources (ancillary qubits)
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Classical resources at our disposal

If classical randomness is free, then following operations are free1.

Free Operations

1
J. Phys. A: Math. Gen. 38, 5979 (2005)
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Post-Selection: another POVM operation

General post-selection operation

Outcomes of L partitioned into two sets: i1, · · · , ik, and j1, · · · , jl.
Sample from ia’s, neglect ja’s.

L = qsucc(M, 0) + (1− qsucc)(0n,1)
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Scheme using classical resources and one ancillary qubit I

Target POVM: M = (M1,M2, · · · ,Mn) rankMi = 1.

Choose partition X1, X2, · · · , Xk of [n], such that |Xi| = m. Here
k = n/m.

Find POVMs: NX1
, NX2

, · · · , NXk
.

The scheme: randomly implement NXj ’s with fixed probability.
Then coarse-grain over certain outcomes.
Using post-selection, M is implemented with success probability
qsucc.
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Scheme using classical resources and one ancillary qubit II

Target POVM: M = (M1,M2, · · · ,Mn) rankMi = 1

Actually, NXi ’s are constructed using Mi’s.

Constraint on m so that NXj are implementable using a single
ancillary qubit: m ≤ d.

Success probability : qsucc =

n/m∑
j=1

∥∥∥∥∥∥
∑
i∈Xj

Mi

∥∥∥∥∥∥
−1 .
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A little bit more about qsucc

qsucc [{Xj}] =

n/m∑
j=1

∥∥∥∥∥∥
∑
i∈Xj

Mi

∥∥∥∥∥∥
−1 .

Maximum qsucc requires optimization over all partitions.

Physical interpretation of qsucc: it is the average number of
trials to sample M once: 1/qsucc.
Hence, qsucc is the figure of merit of the scheme.

qsucc is related to other resource-theoretic quantities of M
(will see in a while).
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Is this scheme good?

Earlier work along the same lines: PRA 100, 012351 (2019)

Simulate arbitrary POVM with classical resources only - no
ancillary qubits.

Worst case: qsucc = 1/d. Not feasible for large d.

Current scheme

Scaling of qsucc significantly better.

We expect qsucc is above a constant, for all POVMs, all
dimensions.

Strong evidence for this in this work.

Numerical results.
Analytic results.

Now over to Filip for the numerics.
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▪ We saw that:

Success probability of implementation

▪ How it looks in practice?
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Tested measurements
=

▪ We tested three classes of rank-1 POVMs with n = d2 outcomes:

1. Haar-random.

2. Informationally Complete (IC), covariant1 w.r.p. to                     .

3. Symmetric Informationally Complete (SIC) 2

1 G. M. D. Ariano, P. Perinotti, and M. F. Sacchi, Journal of Optics B: Quantum and Semiclassical Optics 6, S487 (2004).
2  www.physics.umb.edu/Research/QBism/solutions.html, www.physics.usyd.edu.au/~sflammia/SIC/, http://sicpovm.markus-grassl.de/
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▪ We tested three classes of rank-1 POVMs with n = d2 outcomes:

1. Haar-random.

2. Informationally Complete (IC), covariant1 w.r.p. to                     .

3. Symmetric Informationally Complete (SIC) 2

▪ Special thanks to Markus Grassl for sharing SIC POVMs in high dimensions!

Tested measurements

1 G. M. D. Ariano, P. Perinotti, and M. F. Sacchi, Journal of Optics B: Quantum and Semiclassical Optics 6, S487 (2004).
2  www.physics.umb.edu/Research/QBism/solutions.html, www.physics.usyd.edu.au/~sflammia/SIC/, http://sicpovm.markus-grassl.de/
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Numerical results

▪ Numerical simulations:
– construct measurement of interest,

– choose the best out of (preferably)  small number of partitions,

– in our simulations m = |Xj| = d (this is the one requiring single ancilla). 

=

24



Numerical results – random and SIC

Y axis: 
success probability

X axis: 
dimension

dimensions range :
• random: d       1024
• SIC d      2208 
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U(d2) =

d

d2

… …



Analytic Result I

Simpler version of result for n = d2 and m = d.

Fix partition, e.g., X1 = {1, 2, · · · , d}, X2 = {d+ 1, · · · , 2d}, · · ·
From Filip’s slides we saw that:

M = M(U).
So, qsucc = qsucc ( M(U) ) = qsucc(U).

So when U(d2) equipped with Haar-probability measure, qsucc(U) is a

random variable on U(d2).

Behaviour of qsucc for Haar-random POVMs

Pr(U ∈ U(d2) | qsucc(U) ≤ 6.5% ) ≤ exp( −c d log d ),

where c = 1
12 .

Also have results for general n and m.
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Analytic Result II

Behaviour of qsucc for Haar-random POVMs

Pr(U ∈ U(n) | qsucc(U) ≤ 6.5% ) ≤ exp(−c d logd),
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Conjecture

Based on these results,

Conjecture

For any POVM, M, the success probability is above a
constant, c, which is independent of dimension, i.e.,

qsucc≥c, for all dimensions.

Significance:

Feasability to implement scheme for high dimensions.

Consequences from resource-theoretic standpoint:

Robustness wrt d-simulable outcome POVMs: quantum state
discrimination: number of auxiliary qubits doesn’t scale with
dimension.
Critical visibility: randomness extraction.
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Noise Analysis

Target POVM: Haar-random, M = (M1, · · · ,Md2)

Noise model2: Mi −→ ηMi + (1− η) 1
d2

η = η (gate complexity)

Standard Naimark method: ηNk ∼ exp(−exp(4n))

Our scheme: ηps ∼ exp(−exp(2n))

Our scheme’s much better!

2
Same noise model in Google’s demonstration of quantum advantage
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Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Propose scheme to implement general POVM using

classical resources,
single ancillary qubit.

Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qsucc.

Strong evidence that qsucc ≥ constant, for all POVMs, all
dimensions.

Numerics: SIC, Haar-random POVMs: qsucc ≥ 25%.
Numerics: IC POVMs: qsucc & 19%.
Analytics: Haar-random POVMs: qsucc ≥ 6.5%.

Conjecture: qsucc is above constant for all POVMs, all
dimensions.

Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Propose scheme to implement general POVM using

classical resources,
single ancillary qubit.

Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qsucc.

Strong evidence that qsucc ≥ constant, for all POVMs, all
dimensions.

Numerics: SIC, Haar-random POVMs: qsucc ≥ 25%.
Numerics: IC POVMs: qsucc & 19%.
Analytics: Haar-random POVMs: qsucc ≥ 6.5%.

Conjecture: qsucc is above constant for all POVMs, all
dimensions.

Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Propose scheme to implement general POVM using

classical resources,
single ancillary qubit.

Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qsucc.

Strong evidence that qsucc ≥ constant, for all POVMs, all
dimensions.

Numerics: SIC, Haar-random POVMs: qsucc ≥ 25%.
Numerics: IC POVMs: qsucc & 19%.
Analytics: Haar-random POVMs: qsucc ≥ 6.5%.

Conjecture: qsucc is above constant for all POVMs, all
dimensions.

Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Propose scheme to implement general POVM using

classical resources,
single ancillary qubit.

Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qsucc.

Strong evidence that qsucc ≥ constant, for all POVMs, all
dimensions.

Numerics: SIC, Haar-random POVMs: qsucc ≥ 25%.
Numerics: IC POVMs: qsucc & 19%.
Analytics: Haar-random POVMs: qsucc ≥ 6.5%.

Conjecture: qsucc is above constant for all POVMs, all
dimensions.

Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Propose scheme to implement general POVM using

classical resources,
single ancillary qubit.

Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qsucc.

Strong evidence that qsucc ≥ constant, for all POVMs, all
dimensions.

Numerics: SIC, Haar-random POVMs: qsucc ≥ 25%.
Numerics: IC POVMs: qsucc & 19%.
Analytics: Haar-random POVMs: qsucc ≥ 6.5%.

Conjecture: qsucc is above constant for all POVMs, all
dimensions.

Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Summary and significance

General POVM on n qubits requires n ancillary qubits.
Implementation issues: noisy, limitations of qubit connectivity.

Propose scheme to implement general POVM using

classical resources,
single ancillary qubit.

Cost of implementation: probabilistic scheme,
implements target POVM with success probability, qsucc.

Strong evidence that qsucc ≥ constant, for all POVMs, all
dimensions.

Numerics: SIC, Haar-random POVMs: qsucc ≥ 25%.
Numerics: IC POVMs: qsucc & 19%.
Analytics: Haar-random POVMs: qsucc ≥ 6.5%.

Conjecture: qsucc is above constant for all POVMs, all
dimensions.

Noise compounding in circuits significantly less in our scheme,
than Naimark dilation method.

T Singal, F Maciejewski, M Oszmaniec Implementing POVMs with classical resources and one ancilla



Scope of our results

Scope in experiment

Only a single ancillary qubit used.

qsucc is very high, for arbitrary dimension.

Scope in theory: applications and future directions

Resource theory of measurementsa

Simulating POVMs using restricted classes of POVMs,
Significance of qsucc: related to entanglement cost of
measurement, visibility, etc?

Non-locality: for e.g. randomness generation, local models .

Simulation of random circuits with other circuits.

a
Quantum 3 133 (2019)
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