

Optimal universal programming of unitary gates

Yuxiang Yang

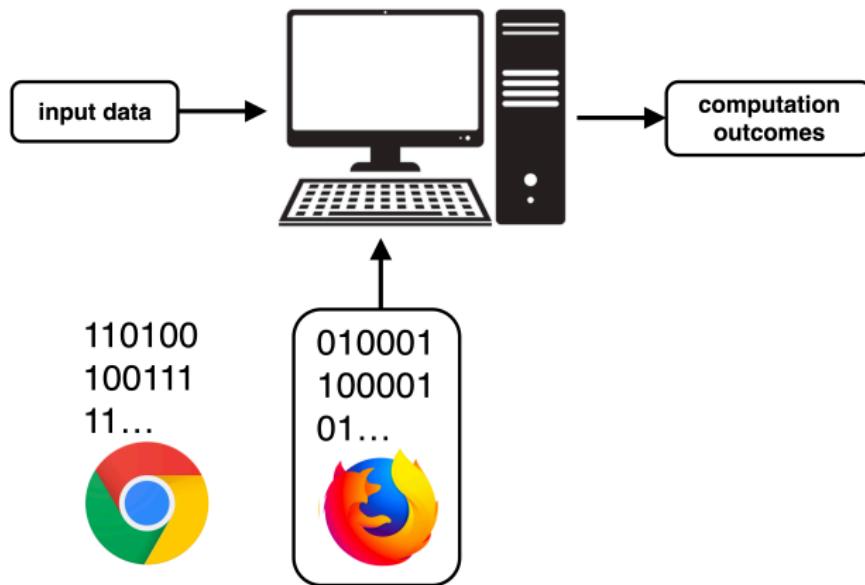
Institute for Theoretical Physics, ETH Zürich

Joint work with Renato Renner and Giulio Chiribella
PRL 125, 210501 (Editors' suggestion; arXiv 2007.10363)

ETH zürich

QIP 2021, Munich

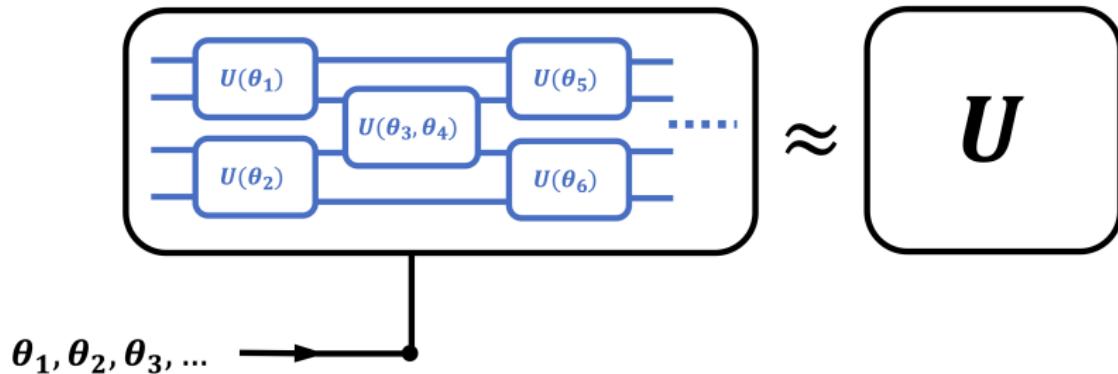
Programming



“010001...” → **programs** of functions.

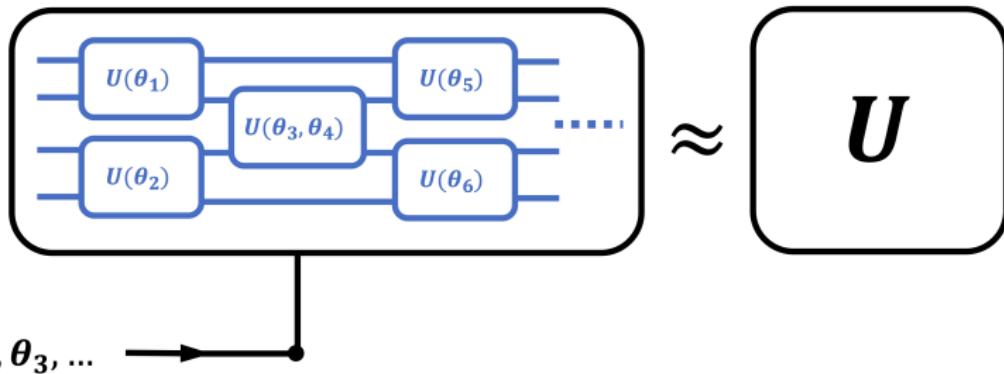
Programming quantum computers

Example: variational approach.



Programming quantum computers

Example: variational approach.



Programming cost: how many bits do we need for the program $(\theta_1, \theta_2, \theta_3, \dots)$ to achieve desired accuracy?

Programming quantum computers

Solovay-Kitaev algorithm [Kitaev'97; Dawson-Nielson'05]

For a universal gate set \mathbf{G} and any $\epsilon > 0$, any $U \in \text{SU}(d)$ can be ϵ -approximated by a sequence of gates in \mathbf{G} of length $\sim (\log_2(1/\epsilon))^c$. Here $c \approx 3.97$ is admissible.

Programming quantum computers

Solovay-Kitaev algorithm [Kitaev'97; Dawson-Nielson'05]

For a universal gate set \mathbf{G} and any $\epsilon > 0$, any $U \in \text{SU}(d)$ can be ϵ -approximated by a sequence of gates in \mathbf{G} of length $\sim (\log_2(1/\epsilon))^c$. Here $c \approx 3.97$ is admissible.

- Programming from universal gate set (synthesis) requires bit strings of length $\rightarrow \log_2 |\mathbf{G}| \cdot (\log_2(1/\epsilon))^c$ (prefactor could be smaller).

Programming quantum computers

Solovay-Kitaev algorithm [Kitaev'97; Dawson-Nielson'05]

For a universal gate set \mathbf{G} and any $\epsilon > 0$, any $U \in \text{SU}(d)$ can be ϵ -approximated by a sequence of gates in \mathbf{G} of length $\sim (\log_2(1/\epsilon))^c$. Here $c \approx 3.97$ is admissible.

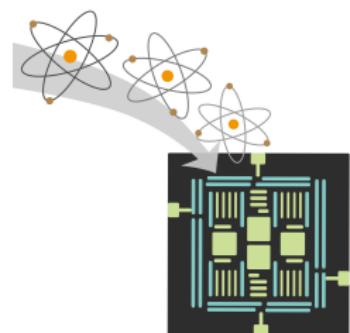
- Programming from universal gate set (synthesis) requires bit strings of length $\rightarrow \log_2 |\mathbf{G}| \cdot (\log_2(1/\epsilon))^c$ (prefactor could be smaller).
- Exact ($\epsilon = 0$) programming?
Smaller cost?

Programming quantum computers

Solovay-Kitaev algorithm [Kitaev'97; Dawson-Nielson'05]

For a universal gate set \mathbf{G} and any $\epsilon > 0$, any $U \in \text{SU}(d)$ can be ϵ -approximated by a sequence of gates in \mathbf{G} of length $\sim (\log_2(1/\epsilon))^c$. Here $c \approx 3.97$ is admissible.

- Programming from universal gate set (synthesis) requires bit strings of length $\rightarrow \log_2 |\mathbf{G}| \cdot (\log_2(1/\epsilon))^c$ (prefactor could be smaller).
- Exact ($\epsilon = 0$) programming?
Smaller cost?
Quantum programs?

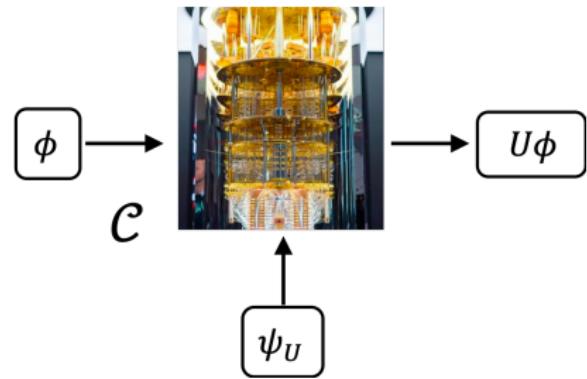


Quantum universal programmability

- Implement any unitary U of dim d in a **programmable** way.

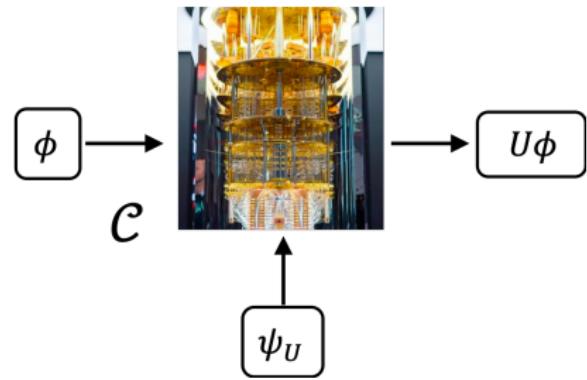
Quantum universal programmability

- Implement any unitary U of dim d in a **programmable** way.
- Task: to design $(\mathcal{C}, \{|\psi_U\rangle\})$.



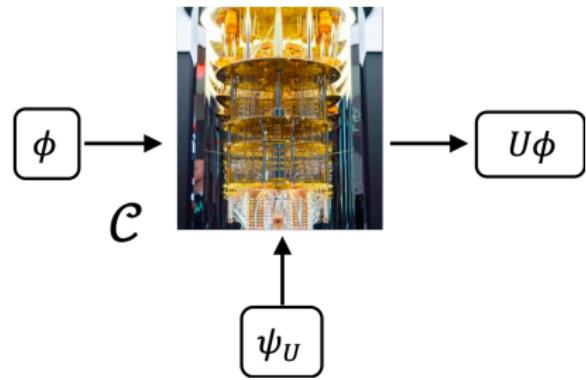
Quantum universal programmability

- Implement any unitary U of dim d in a **programmable** way.
- Task: to design $(\mathcal{C}, \{|\psi_U\rangle\})$.
- Input to the **universal** processor arbitrary $|\phi\rangle$ and a program state $|\psi_U\rangle$; output $U|\phi\rangle$.



Quantum universal programmability

- Implement any unitary U of dim d in a **programmable** way.
- Task: to design $(\mathcal{C}, \{|\psi_U\rangle\})$.
- Input to the **universal** processor arbitrary $|\phi\rangle$ and a program state $|\psi_U\rangle$; output $U|\phi\rangle$.



No programming (Nielsen and Chuang '97)

For any $d \geq 2$, to allow for programming arbitrary $U \in \text{SU}(d)$, $|\psi_U\rangle$ needs to be **infinite dimensional**.

Approximate programmability

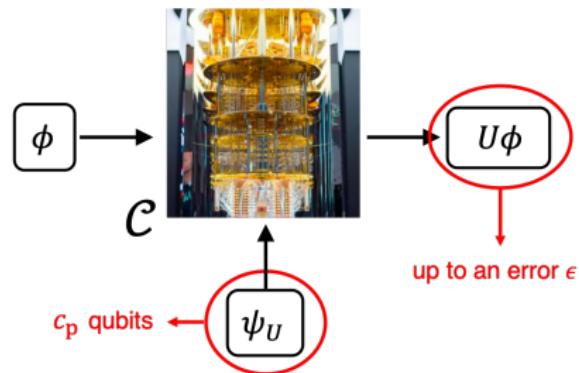
- Allow an error $\leq \epsilon$ (diamond norm) in the output.

Approximate programmability

- Allow an error $\leq \epsilon$ (diamond norm) in the output.
- Programming cost (# qubits needed to describe U)

$$c_p := \log_2 |\text{span}\{|\psi_U\rangle\langle\psi_U|\}_U|$$

can be finite (via, e.g., Solovay-Kitaev).



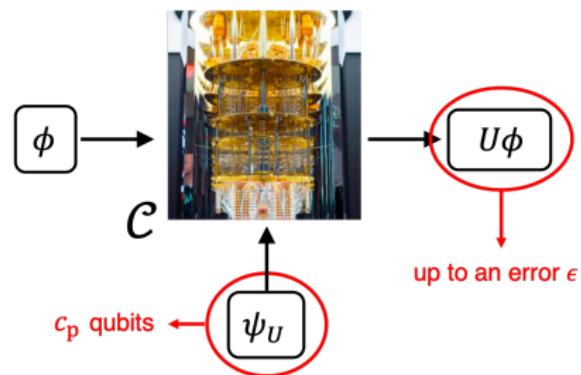
Approximate programmability

- Allow an error $\leq \epsilon$ (diamond norm) in the output.
- Programming cost (# qubits needed to describe U)

$$c_p := \log_2 |\text{span}\{|\psi_U\rangle\langle\psi_U|\}_U|$$

can be finite (via, e.g., Solovay-Kitaev).

- Allowing a chance of failure also works [Vidal-Masanes-Cirac-2002-PRL].



Optimal programming

The optimal programming problem

Consider programming of unitary gates of dimension d .
What is the optimal tradeoff between ϵ and c_P ?

Optimal programming

The optimal programming problem

Consider programming of unitary gates of dimension d .
What is the optimal tradeoff between ϵ and c_p ?

- An open problem for 23 years.

Nielsen and Chuang, Phys. Rev. Lett. 79, 321 (1997);

Kim et al., Phys. Rev. A 65, 012302 (2001)

Ishizaka and Hiroshima, Phys. Rev. Lett. 101, 240501 (2008);

Kubicki, Palazuelos, and Perez-Garcia, Phys. Rev. Lett. 122, 080505 (2019); (QIP'19)

Sedlak, Bisio, and Ziman, Phys. Rev. Lett. 122, 170502 (2019)

...

Optimal programming

The optimal programming problem

Consider programming of unitary gates of dimension d .
What is the optimal tradeoff between ϵ and c_P ?

- An open problem for 23 years.

Nielsen and Chuang, Phys. Rev. Lett. 79, 321 (1997);

Kim et al., Phys. Rev. A 65, 012302 (2001)

Ishizaka and Hiroshima, Phys. Rev. Lett. 101, 240501 (2008);

Kubicki, Palazuelos, and Perez-Garcia, Phys. Rev. Lett. 122, 080505 (2019); (QIP'19)

Sedlak, Bisio, and Ziman, Phys. Rev. Lett. 122, 170502 (2019)

...

- Resource quantification of implementing quantum computing.
Also a benchmark for any practical approach.

Optimal programming

The optimal programming problem

Consider programming of unitary gates of dimension d . What is the optimal tradeoff between ϵ and c_P ?

- Leads to port-based teleportation [\[Ishizaka-Hiroshima-2008-PRL\]](#) see also [\[Studziński-Mozrzymas-Kopszak-Horodecki-QIP'21\]](#), which has applications in cryptography [\[Christandl et al.-2020-CMP\]](#) and computing [\[Beigi-König-2011-NJP\]](#).

Optimal programming

The optimal programming problem

Consider programming of unitary gates of dimension d . What is the optimal tradeoff between ϵ and c_P ?

- Leads to port-based teleportation [\[Ishizaka-Hiroshima-2008-PRL\]](#) see also [\[Studziński-Mozrzymas-Kopszak-Horodecki-QIP'21\]](#), which has applications in cryptography [\[Christandl et al.-2020-CMP\]](#) and computing [\[Beigi-König-2011-NJP\]](#).
- Programmable measurements [\[Dušek-Bužek-2002-PRA; Fiurášek-Dušek-Filip-2002-PRL; D'Ariano-Perinotti-2005-PRL\]](#).

The main message of our work

- The optimal cost-accuracy¹ tradeoff identified to be

$$c_P \rightarrow \frac{d^2 - 1}{2} \log_2 \left(\frac{1}{\epsilon} \right).$$

¹ ϵ : diamond norm error

The main message of our work

- The optimal cost-accuracy¹ tradeoff identified to be

$$c_P \rightarrow \frac{d^2 - 1}{2} \log_2 \left(\frac{1}{\epsilon} \right).$$

- Optimal programming uses genuine quantum states as programs.

¹ ϵ : diamond norm error

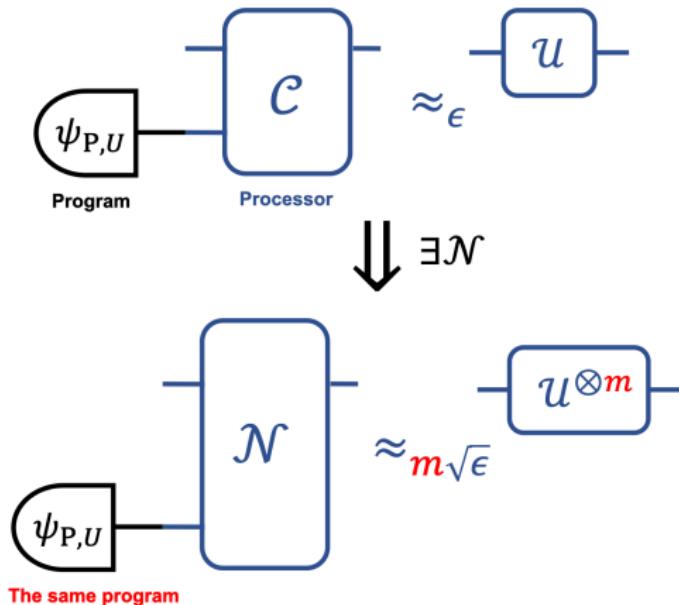
Comparison with previous results

c_P in the leading order of $1/\epsilon$.

	Upper bounds	Lower bounds
Prior works	$d^2 \log_2 (1/\epsilon)$ (QIP'19) [Kubicki-Palazuelos-Pérez-García-2019-PRL] $(4d^2 \log_2 d)/\epsilon^2$ port-based teleportation	$\propto (1 - \epsilon)d$ [Kubicki-Palazuelos-Pérez-García-2019-PRL] $(\frac{d-1}{2}) \log_2 (1/\epsilon)$ [Pérez-García-2006-PRA]
This work	$\left(\frac{d^2-1}{2}\right) \log_2 (1/\epsilon)$	$\left(\frac{d^2-1}{2}\right) \log_2 (1/\epsilon)^*$

* : the exact scaling is $\alpha \log_2 (1/\epsilon)$ for any constant $\alpha < (d^2 - 1)/2$.

Proof idea of lower bound on c_P (Step 1)

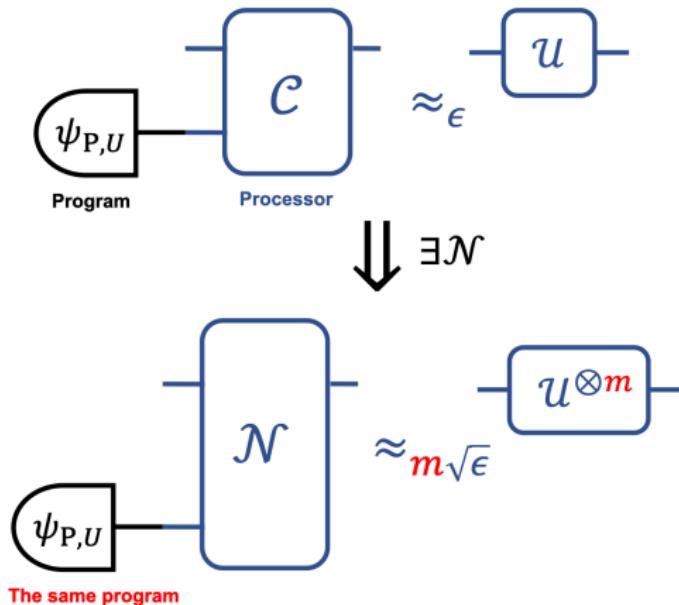


- **QR recycling Lemma:**

[Chiribella-Yang-Renner-2019-QIP'20]

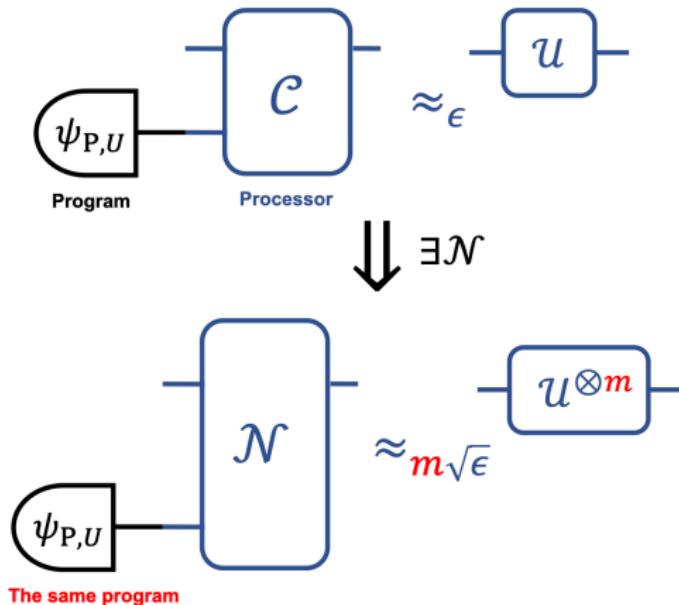
Resource to implement a **unitary** can be **recycled** for up to $1/\sqrt{\epsilon}$ times.

Proof idea of lower bound on c_P (Step 1)



- **QR recycling Lemma:**
[Chiribella-Yang-Renner-2019-QIP'20]
Resource to implement a **unitary** can be **recycled** for up to $1/\sqrt{\epsilon}$ times.
- A **quantum** feature.

Proof idea of lower bound on c_P (Step 1)



- **QR recycling Lemma:**
[Chiribella-Yang-Renner-2019-QIP'20]
Resource to implement a **unitary** can be **recycled** for up to $1/\sqrt{\epsilon}$ times.
- A **quantum** feature.
- Can be applied to general resource theories (see [Chiribella-Yang-Renner-2019]).

The same program

Proof idea of lower bound on c_P (Step 2)

- $|\psi_U\rangle$ programs U to precision $1/\epsilon$
 $\Rightarrow |\psi_U\rangle$ programs $1/\sqrt{\epsilon}$ copies of U to precision $O(1)$.

Proof idea of lower bound on c_P (Step 2)

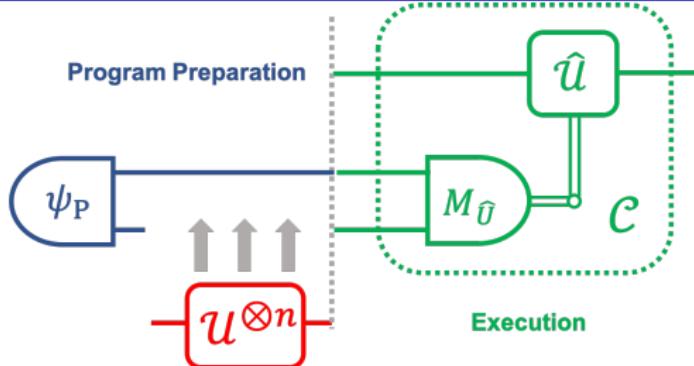
- $|\psi_U\rangle$ programs U to precision $1/\epsilon$
 $\Rightarrow |\psi_U\rangle$ programs $1/\sqrt{\epsilon}$ copies of U to precision $O(1)$.
- Intuitively, one needs a large enough ($\frac{1}{\epsilon}$ -dependent) system to hold that much information.

Proof idea of lower bound on c_P (Step 2)

- $|\psi_U\rangle$ programs U to precision $1/\epsilon$
 $\Rightarrow |\psi_U\rangle$ programs $1/\sqrt{\epsilon}$ copies of U to precision $O(1)$.
- Intuitively, one needs a large enough ($\frac{1}{\epsilon}$ -dependent) system to hold that much information.
- Quantification:
 $U^{\otimes m}$ has $\approx (d^2 - 1) \log m$ qubits of information about U
(measured by the Holevo information χ [Holevo-1973])

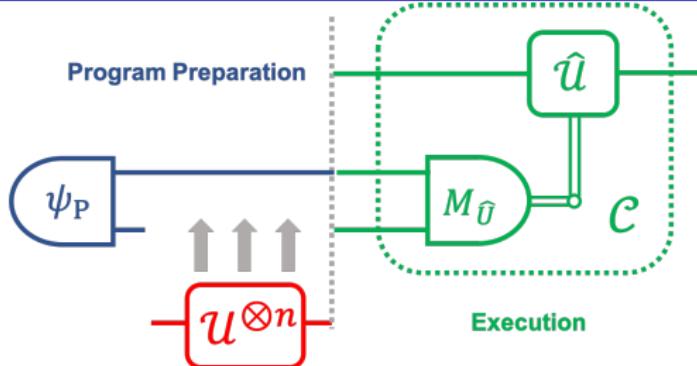
$$\Rightarrow c_P \gtrapprox \frac{d^2 - 1}{2} \log \left(\frac{1}{\epsilon} \right).$$

Upper bound: designing an optimal programmer



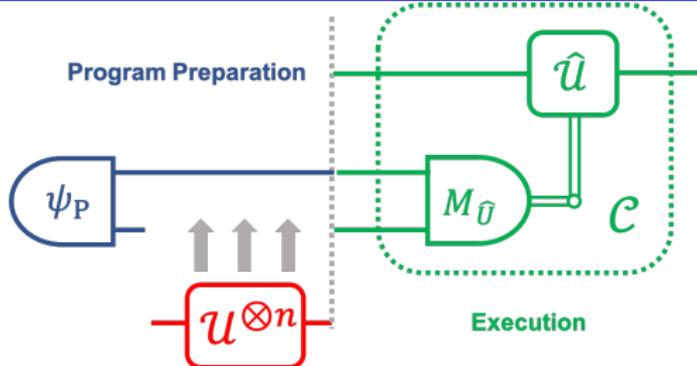
- Programs prepared by “learning” U [Bisio et al.-’10-PRA] via $n \gg 1$ instances.

Upper bound: designing an optimal programmer



- Programs prepared by “learning” U [Bisio et al.-’10-PRA] via $n \gg 1$ instances.
- Processor executes U via measure-and-operate.

Upper bound: designing an optimal programmer



- Programs prepared by “learning” U [Bisio et al.-’10-PRA] via $n \gg 1$ instances.
- Processor executes U via measure-and-operate.
- **Optimal programming = Learning via Metrology**
Programs are a **new** class of **quantum** states with high performance in metrology (see SI of the paper).

Upper bound

Theorem

The program cost c_P of the metrological protocol is upper bounded as

$$c_P \leq \left(\frac{d^2 - 1}{2} \right) \log_2 \left(\frac{162\pi^2 d^2}{\epsilon} \right).$$

Upper bound

Theorem

The program cost c_P of the metrological protocol is upper bounded as

$$c_P \leq \left(\frac{d^2 - 1}{2} \right) \log_2 \left(\frac{162\pi^2 d^2}{\epsilon} \right).$$

Upper bound $\xrightarrow{\epsilon \rightarrow 0}$ Lower bound

Conclusion & Open questions

- The optimal cost-accuracy tradeoff in programming:

$$c_P \rightarrow \frac{d^2 - 1}{2} \log_2 \left(\frac{1}{\epsilon} \right).$$

Conclusion & Open questions

- The optimal cost-accuracy tradeoff in programming:

$$c_P \rightarrow \frac{d^2 - 1}{2} \log_2 \left(\frac{1}{\epsilon} \right).$$

- Programming a (large) quantum computer: c_P vs. d ?

Conclusion & Open questions

- The optimal cost-accuracy tradeoff in programming:

$$c_P \rightarrow \frac{d^2 - 1}{2} \log_2 \left(\frac{1}{\epsilon} \right).$$

- Programming a (large) quantum computer: c_P vs. d ?
- Observation: $d^2 - 1 = \#$ real parameters for $SU(d)$.

Conclusion & Open questions

- The optimal cost-accuracy tradeoff in programming:

$$c_{\mathbb{P}} \rightarrow \frac{d^2 - 1}{2} \log_2 \left(\frac{1}{\epsilon} \right).$$

- Programming a (large) quantum computer: $c_{\mathbb{P}}$ vs. d ?
- Observation: $d^2 - 1 = \#$ real parameters for $SU(d)$.

Conjecture

To program $U \in \mathbf{S}$ with \mathbf{S} parametrized by ν parameters,
 $c_{\mathbb{P}} \rightarrow (\nu/2) \log(1/\epsilon)$.

Acknowledgement & Advertisement

Renato Renner

- I'm joining the University of Hong Kong as an AP in the summer of 2021.
- Looking for PhD students & Postdocs in quantum metrology and quantum information!
- Contact me: yxyang@hku.hk

Giulio Chiribella