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Programming

“010001...” → programs of functions.
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Programming quantum computers

Example: variational approach.

Programming cost: how many bits do we need for the program
(θ1, θ2, θ3, . . . ) to achieve desired accuracy?
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Programming quantum computers

Solovay-Kitaev algorithm [Kitaev’97;Dawson-Nielson’05]
For a universal gate set G and any ϵ > 0, any U ∈ SU(d) can be
ϵ-approximated by a sequence of gates in G of length
∼ (log2(1/ϵ))

c. Here c ≈ 3.97 is admissible.

Programming from universal gate set (synthesis)
requires bit strings of length
→ log2 |G| · (log2(1/ϵ))

c
(prefactor could be smaller).

Exact (ϵ = 0) programming?
Smaller cost?
Quantum programs?
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Quantum universal programmability

Implement any unitary U of dim
d in a programmable way.

Task: to design (C, {|ψU⟩}).
Input to the universal processor
arbitrary |ϕ⟩ and a program
state |ψU⟩; output U|ϕ⟩.

No programming (Nielsen and Chuang ’97)
For any d ≥ 2, to allow for programming arbitrary U ∈ SU(d), |ψU⟩
needs to be infinite dimensional.
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Approximate programmability

Allow an error ≤ ϵ (diamond
norm) in the output.

Programming cost
(# qubits needed to describe U)

cP := log2 |span{|ψU⟩⟨ψU|}U|

can be finite (via, e.g., Solovay-Kitaev).

Allowing a chance of failure also
works [Vidal-Masanes-Cirac-2002-PRL].
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Optimal programming

The optimal programming problem
Consider programming of unitary gates of dimension d.
What is the optimal tradeoff between ϵ and cP?

An open problem for 23 years.
Nielsen and Chuang, Phys. Rev. Lett. 79.321 (1997);
Kim et al., Phys. Rev. A 65, 012302 (2001)
Ishizaka and Hiroshima, Phys. Rev. Lett. 101, 240501 (2008);
Kubicki, Palazuelos, and Perez-Garcıa, Phys. Rev. Lett. 122, 080505 (2019); (QIP’19)
Sedlak, Bisio, and Ziman, Phys. Rev. Lett. 122, 170502 (2019)

...

Resource quantification of implementing quantum computing.
Also a benchmark for any practical approach.
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Optimal programming

The optimal programming problem
Consider programming of unitary gates of dimension d. What is
the optimal tradeoff between ϵ and cP?

Leads to port-based teleportation [Ishizaka-Hiroshima-2008-PRL] see also

[Studziński-Mozrzymas-Kopszak-Horodecki-QIP’21], which has applications in
cryptography [Christandl et al.-2020-CMP] and computing [Beigi-König-2011-NJP].

Programmable measurements
[Dušek-Bužek-2002-PRA; Fiurášek-Dušek-Filip-2002-PRL; D’Ariano-Perinotti-2005-PRL].
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The main message of our work

The optimal cost-accuracy1 tradeoff identified to be

cP → d2 − 1

2
log2

(
1

ϵ

)
.

Optimal programming uses genuine quantum states as
programs.

1ϵ: diamond norm error
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Comparison with previous results

cP in the leading order of 1/ϵ.

Upper bounds Lower bounds

Prior works

d2 log2 (1/ϵ)(QIP’19)

[Kubicki-Palazuelos-Pérez-García-2019-PRL]

(4d2 log2 d)/ϵ2
port-based teleportation

∝ (1− ϵ)d
[Kubicki-Palazuelos-Pérez-García-2019-PRL](d−1

2

)
log2 (1/ϵ)

[Pérez-García-2006-PRA]

This work
(

d2−1
2

)
log2 (1/ϵ)

(
d2−1
2

)
log2 (1/ϵ)

∗

∗ : the exact scaling is α log2(1/ϵ) for any constant α < (d2 − 1)/2.
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Proof idea of lower bound on cP (Step 1)

QR recycling Lemma:
[Chiribella-Yang-Renner-2019-QIP’20]

Resource to implement
a unitary can be recycled
for up to 1/

√
ϵ times.

A quantum feature.

Can be applied to
general resource theories
(see [Chiribella-Yang-Renner-2019]).
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Proof idea of lower bound on cP (Step 2)

|ψU⟩ programs U to precision 1/ϵ
⇒ |ψU⟩ programs 1/

√
ϵ copies of U to precision O(1).

Intuitively, one needs a large enough (1ϵ -dependent) system to
hold that much information.

Quantification:
U⊗m has ≈ (d2 − 1) logm qubits of information about U
(measured by the Holevo information χ [Holevo-1973])

⇒ cP ⪆ d2 − 1

2
log

(
1

ϵ

)
.

Yuxiang Yang Optimal programming



Intro
Lower bound
Upper bound

Conclusion

Proof idea of lower bound on cP (Step 2)

|ψU⟩ programs U to precision 1/ϵ
⇒ |ψU⟩ programs 1/

√
ϵ copies of U to precision O(1).

Intuitively, one needs a large enough (1ϵ -dependent) system to
hold that much information.

Quantification:
U⊗m has ≈ (d2 − 1) logm qubits of information about U
(measured by the Holevo information χ [Holevo-1973])

⇒ cP ⪆ d2 − 1

2
log

(
1

ϵ

)
.

Yuxiang Yang Optimal programming



Intro
Lower bound
Upper bound

Conclusion

Proof idea of lower bound on cP (Step 2)

|ψU⟩ programs U to precision 1/ϵ
⇒ |ψU⟩ programs 1/

√
ϵ copies of U to precision O(1).

Intuitively, one needs a large enough (1ϵ -dependent) system to
hold that much information.

Quantification:
U⊗m has ≈ (d2 − 1) logm qubits of information about U
(measured by the Holevo information χ [Holevo-1973])

⇒ cP ⪆ d2 − 1

2
log

(
1

ϵ

)
.

Yuxiang Yang Optimal programming



Intro
Lower bound
Upper bound

Conclusion

Upper bound: designing an optimal programmer

Programs prepared by “learning” U [Bisio et al.-’10-PRA] via n ≫ 1
instances.

Processor executes U via measure-and-operate.
Optimal programming = Learning via Metrology
Programs are a new class of quantum states with high performance
in metrology (see SI of the paper).
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Upper bound

Theorem
The program cost cP of the metrological protocol is upper bounded
as

cP ≤
(

d2 − 1

2

)
log2

(
162π2d2

ϵ

)
.

Upper bound ϵ→0−−−−−−→ Lower bound
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Conclusion & Open questions

The optimal cost-accuracy tradeoff in programming:

cP → d2 − 1

2
log2

(
1

ϵ

)
.

Programming a (large) quantum computer: cP vs. d?
Observation: d2 − 1 = # real parameters for SU(d).

Conjecture
To program U ∈ S with S parametrized by ν parameters,
cP → (ν/2) log(1/ϵ).
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