

The axiomatic and operational approaches to resource theories of magic do not coincide

Markus Heinrich (Heinrich Heine University Düsseldorf & University of Cologne)

The axiomatic and operational approaches to resource theories of magic do not coincide

arXiv:2011.11651

Arne Heimendahl
(math department)

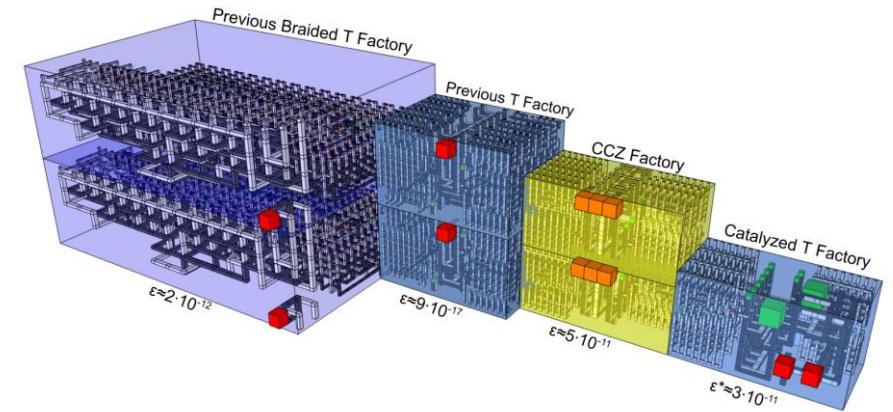
David Gross

Markus Heinrich

Motivation

Magic state model = Model of fault-tolerant universal QC

Problem: Huge overhead



[Gidney and Fowler 2019]

Resource theory of magic

quantifying “magic”

Classical simulation

Distillation rates

Achievable via

“Stabiliser operations” ?

“Stabiliser-preserving channels” ?

Introduction

Stabiliser operations, Gottesman-Knill, and
resources in quantum computing

Stabiliser operations and Gottesman-Knill

A *stabiliser operation* (SO) is a circuit consisting of

- Preparation and measurement in the computational basis
- Application of phase, Hadamard and controlled-NOT gates
- Classical randomness and control

“Clifford” circuit

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Gottesman-Knill theorem: SO are efficiently simulable on a classical computer

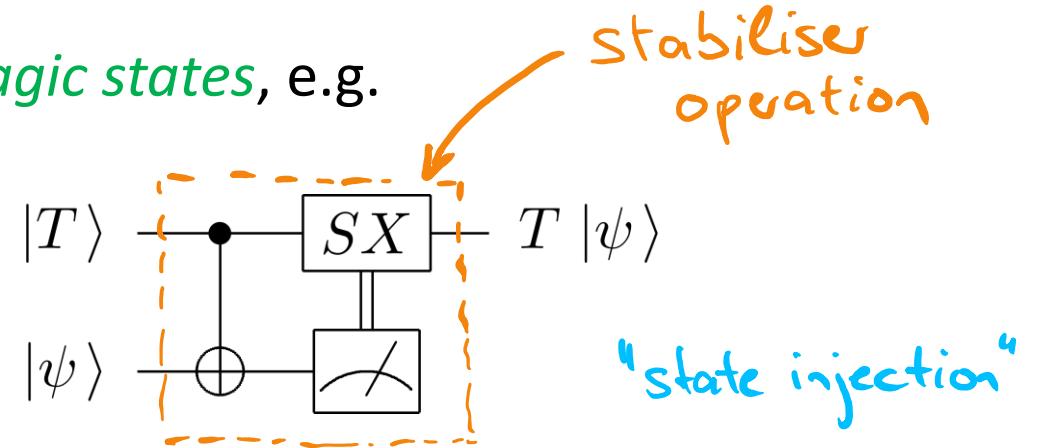
⇒ Not “powerful” in a quantum computational sense
(otherwise very useful!)

Going universal: Magic states

Other *diagonal gates* can be applied using *magic states*, e.g.

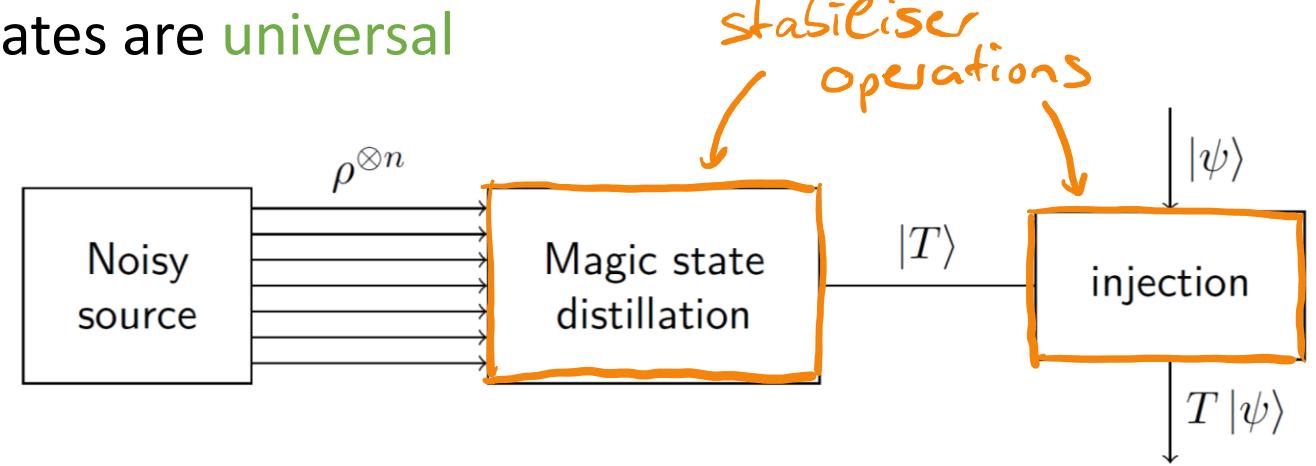
$$T = \text{diag}(1, e^{i\pi/4})$$

$$\Rightarrow |T\rangle := \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi/4} |1\rangle \right)$$



Fact: Stabiliser operations + magic states are *universal*

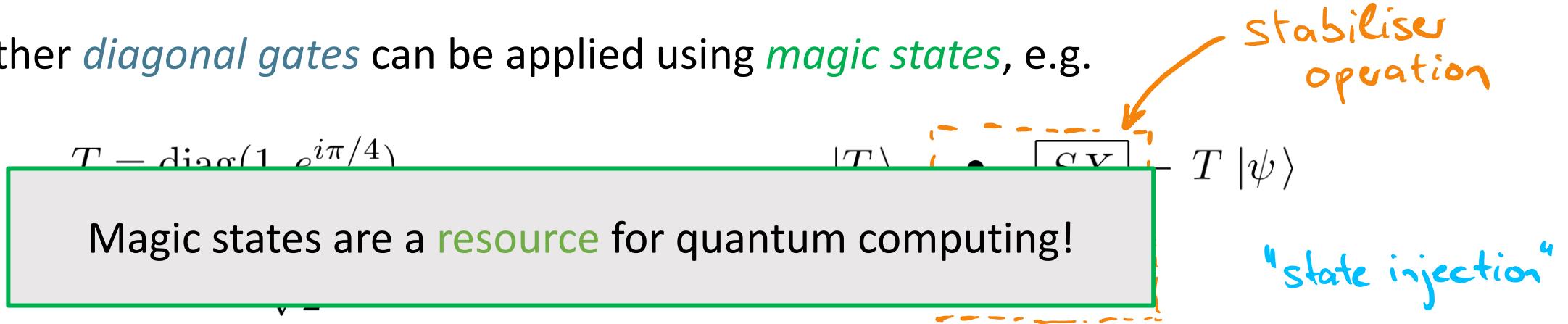
Fact: Noisy states can be *distilled*



[Bravyi and Kitaev 2005]

Going universal: Magic states

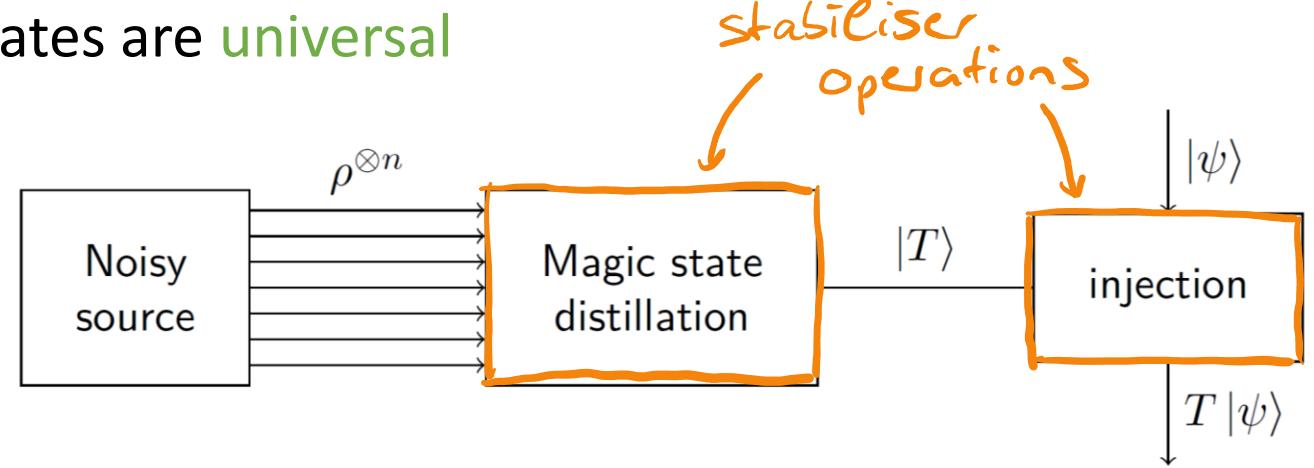
Other *diagonal gates* can be applied using *magic states*, e.g.



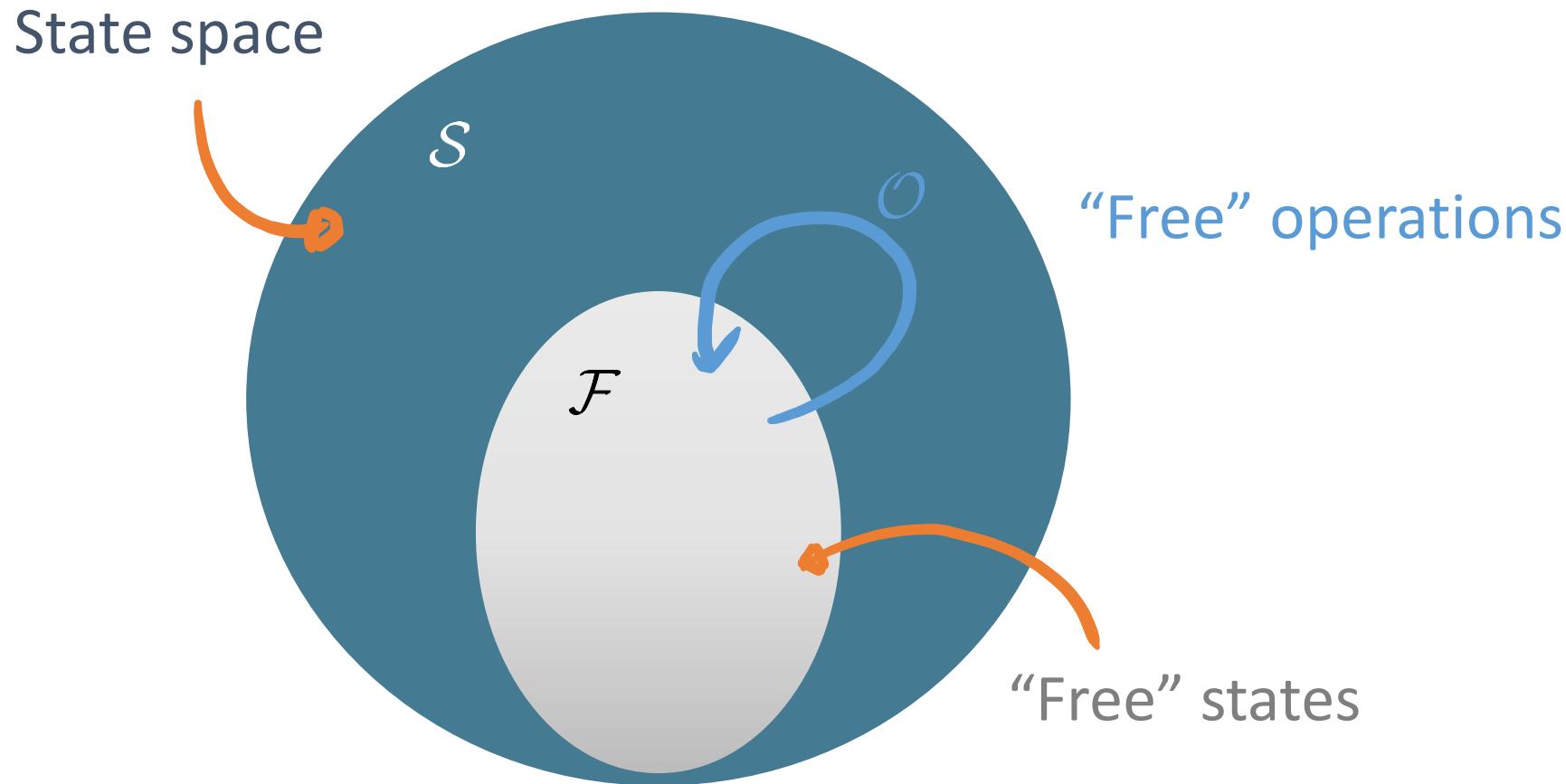
Fact: Stabiliser operations + magic states are **universal**

Fact: Noisy states can be **distilled**

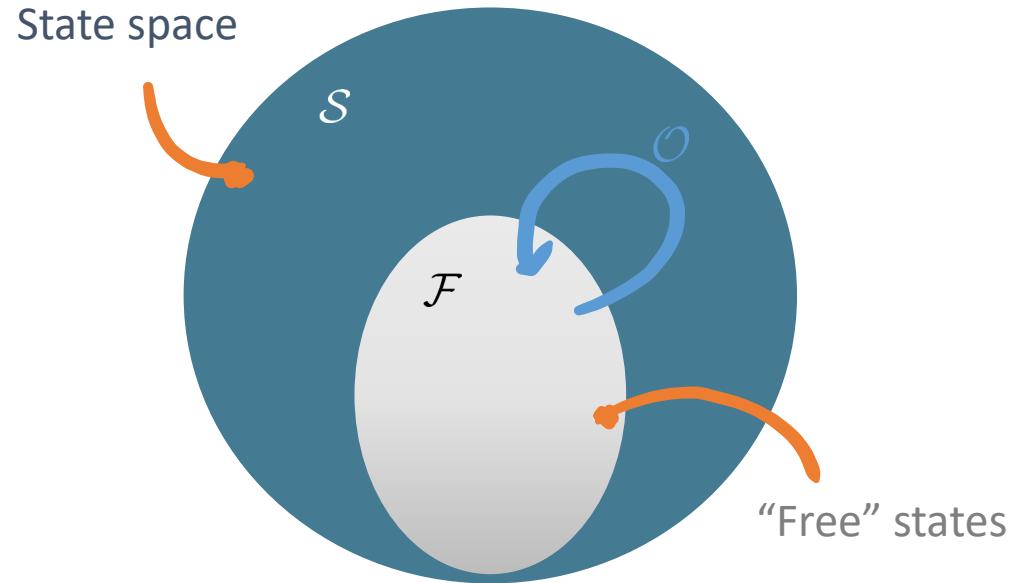
[Bravyi and Kitaev 2005]



Resource theories in a nutshell



Resource theories in a nutshell



“Free” operations

Operational:
“Prepare this, apply
that, measure those”

Axiomatic:
“Any channel which
maps \mathcal{F} to itself”

Example: Entanglement

Free states = **separable states**

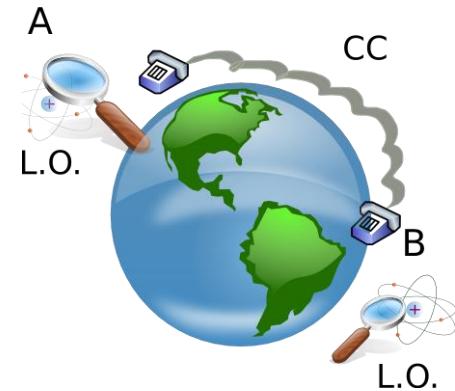
Free operations:

Operational: *Local operations and classical communication (LOCC)*

Axiomatic: *Separable channels (SEP)*

“Classic” result:

$$\text{LOCC}_1 \subsetneq \text{LOCC}_k \subsetneq \text{LOCC}_{k+1} \subsetneq \text{LOCC} \subsetneq \overline{\text{LOCC}} \subsetneq \text{SEP}$$



“Magic” as a resource

Free states := states which can be prepared by SO = **stabiliser polytope** (for qubits)

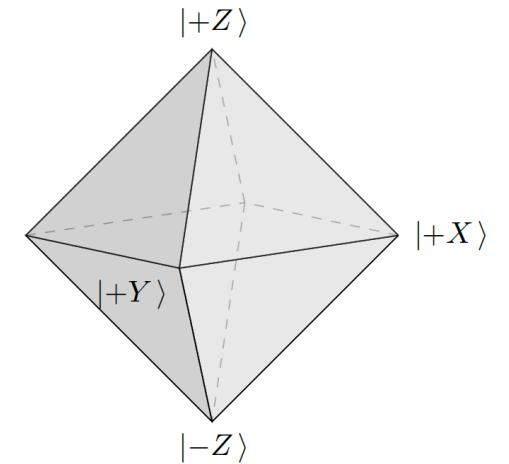
Fact: This is exactly the convex hull of all **stabiliser states**, i.e.

$$\text{SP} := \text{conv} \left\{ U |0\rangle \mid U \text{ is a Clifford unitary} \right\}$$

Free operations:

Operational: *stabiliser operations* (SO)

Axiomatic: *(compl.) stabiliser-preserving channels* (CSP):
all channels which map SP to itself



Spoiler alert

Not much is known about the SO and CSP classes ... We show by explicit example:

$$\text{SO} \subsetneq \text{CSP}$$

... and develop a characterization of CSP on the way

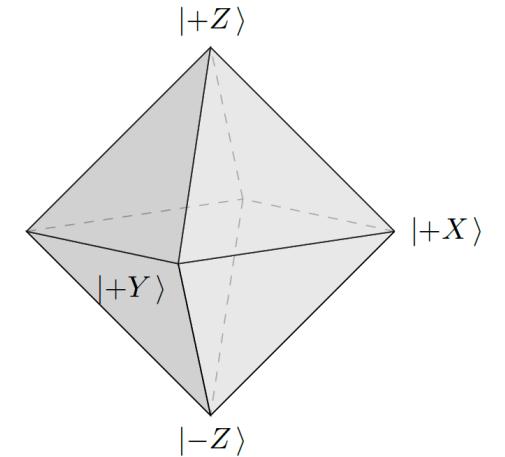
Completely stabiliser-preserving channels

characterisation, interpretation, and differentiation
from stabiliser operations

CSP channels

A superoperator \mathcal{E} is *completely stabiliser-preserving* iff it maps the stabiliser polytope to itself (even when applied to subsystems).

Lemma 1. *Any CSP map is completely positive and trace-preserving.*



e.g. $|\Phi^+\rangle = 2^{-n/2} \sum_x |xx\rangle$ is stabiliser state \Rightarrow Choi state $\mathcal{J}(\mathcal{E}) := \mathcal{E} \otimes \text{id} |\Phi^+\rangle \geq 0$

Lemma 2 (Lem. 4.2 in [13]). *A linear map $\mathcal{E} : L((\mathbb{C}^2)^{\otimes n}) \rightarrow L((\mathbb{C}^2)^{\otimes m})$ is CSP if and only if its Choi representation lies in the intersection of the stabiliser polytope with the affine space $\text{TP}_{n,m}$:*

$$\mathcal{J}(\text{CSP}_{n,m}) = \text{SP}_{n,m} \cap \text{TP}_{n,m}. \quad (11)$$

\Rightarrow Write $\mathcal{J}(\mathcal{E})$ as convex combination of stabiliser states and impose TP

CSP channels

Any bipartite $2n$ -qubit stabiliser state is of the form [Thm. 1, HHG]

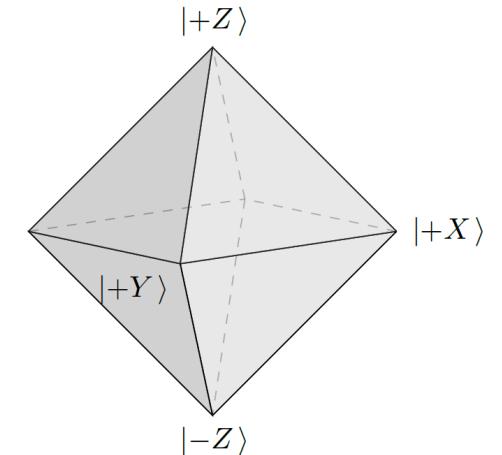
$$|s\rangle = 2^{k/2} UP \otimes \mathbb{1} |\Phi^+\rangle$$

Where

- U is a **Clifford unitary**
 - P projects onto a subspace spanned by orthonormal stabiliser states (**stabiliser code**)

$$\Rightarrow \text{Write } \mathcal{E}(\rho) = \sum_i \lambda_i 2^{k_i} U_i P_i \rho P_i U_i^\dagger \quad \text{s.t.} \quad \mathbb{1} = \mathcal{E}^\dagger(\mathbb{1}) = \sum_i \lambda_i 2^{k_i} P_i$$

Interpretation: Perform POVM $E_i := \lambda_i 2^{k_i} P_i$ followed by U_i conditioned on outcome i



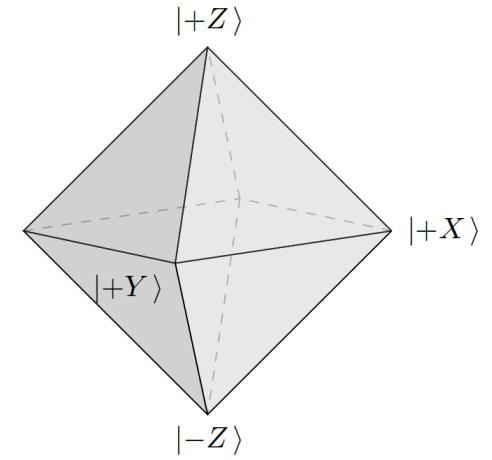
CSP examples

$$\mathcal{E}(\rho) = \sum_i \lambda_i U_i \rho U_i^\dagger$$

$$\mathcal{E}(\rho) = \sum_x U_x |x\rangle\langle x| \rho |x\rangle\langle x| U_x^\dagger$$

$$\mathcal{E}(\rho) = \sum_i U_i |s_i\rangle\langle s_i| \rho |s_i\rangle\langle s_i| U_i^\dagger$$

Where $|s_i\rangle$ is an orthonormal stabiliser basis



These are all stabiliser operations! We need non-orthogonal projectors!

CSP \neq SO

Central theorem: The following is CSP and not SO for $n \geq 2$

$$\Lambda(\rho) = \rho_{00} |+\rangle\langle+| + \sum_{x \neq 0} \rho_{xx} |x\rangle\langle x| + \frac{1}{2} \sum_{x \neq y \neq 0} \rho_{xy} |x\rangle\langle y|$$

1. Projective measurement of $\{|0\rangle\langle 0|, \mathbb{1} - |0\rangle\langle 0|\}$
2. Dephasing in the computational basis with probability 1/2
3. Conditioned on “0” perform global Hadamard

not CSP by itself

Moreover: CSP = SO for $n = 1$

“possible measurements become orthogonal”

CSP \neq SO

Central theorem: The following is CSP and not SO for $n \geq 2$

$$\Lambda(\rho) = \rho_{00} |+\rangle\langle+| + \sum_{x \neq 0} \rho_{xx} |x\rangle\langle x| + \frac{1}{2} \sum_{x \neq y \neq 0} \rho_{xy} |x\rangle\langle y|$$

Proof strategy: Show that Λ is ...

1. a CSP channel (okay ✓)
2. extremal within the CSP set (totally not obvious)
3. not a stabiliser operation (not obvious, extremality needed)

Technical sneak peak

extremality, convex geometry and all that

Invariance property of SO

How do you **separate** SO from CSP ?

$$\mathcal{E} = -\text{[z]} \Rightarrow \mathcal{E}(2s2) - \mathcal{E}(s)$$

Claim: **extremal** stabiliser operations have a **Pauli invariance** (except for **Clifford dilations**)

Careful argumentation shows that such a SO **cannot be extremal**

Lambda is not SO

Separate SO from CSP using:

Theorem 3 (Pauli invariance of extremal stabiliser operations). *Let $\mathcal{O} \in \mathrm{SO}_{n,m}$ be an extremal stabiliser operation. Then, at least one of the following is true:*

- (i) *There is a $x \in \mathbb{F}_2^{2n} \setminus 0$ such that $\mathcal{O} = \mathcal{O} \circ \mathrm{Ad}(w(x))$.*
- (ii) *\mathcal{O} has a Clifford dilation.*

non-trivial Pauli operator

Claim follows from the observation that Λ

1. is extremal
2. is not a Clifford dilation
3. does not have a Pauli invariance

The Lambda channel

Credits to Arne

How do you come up with ... ?

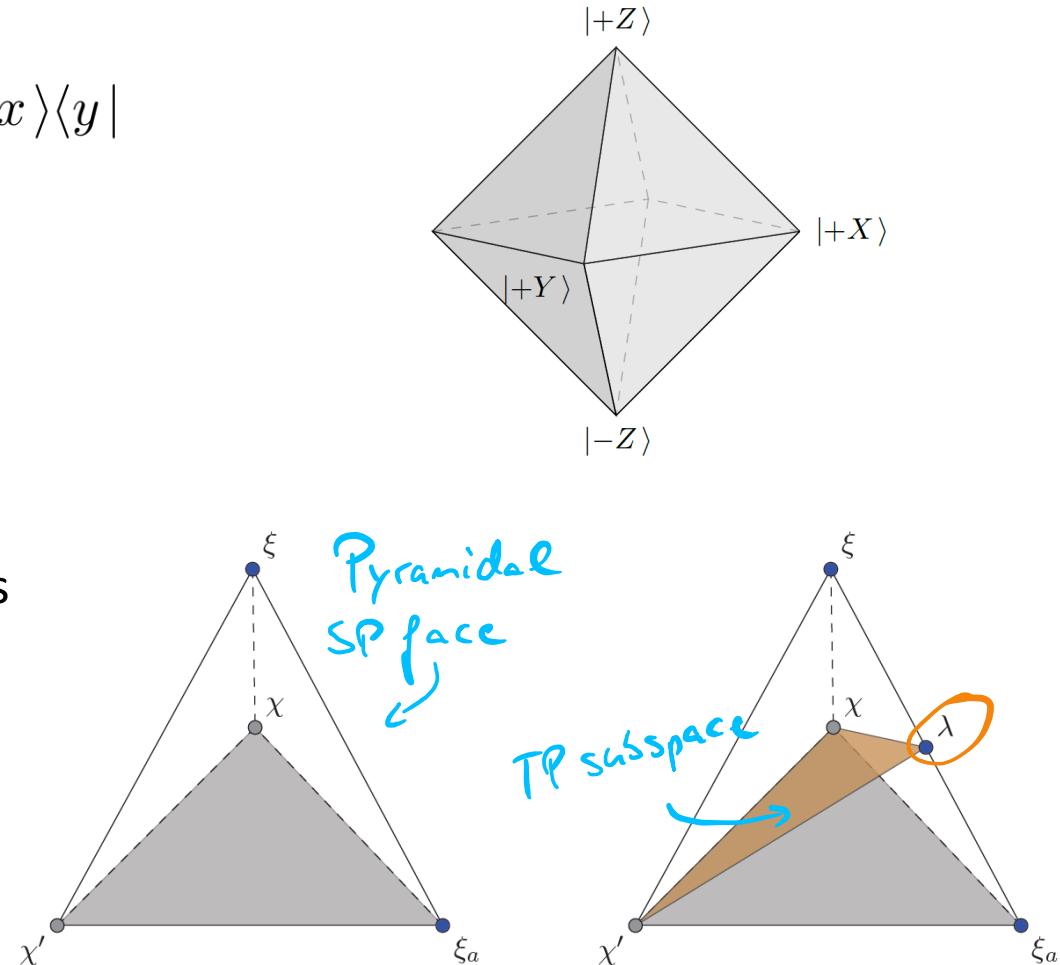
$$\Lambda(\rho) = \rho_{00} |+\rangle\langle+| + \sum_{x \neq 0} \rho_{xx} |x\rangle\langle x| + \frac{1}{2} \sum_{x \neq y \neq 0} \rho_{xy} |x\rangle\langle y|$$

... we were looking for **extremal CSP channels**

1. “likely” to not be SO
2. needed to use Pauli invariance of SO
3. Interesting by themselves, e.g. for simulation questions
4. Because we like math :)

Our channel is the result of a **vertex construction**

[Heimendahl, MH, and Gross 2020]



Summary

Resource-theoretic perspective on quantum computing is still in its **infancy**

Our contribution:

- Studying the **CSP** class of operations
- Showing that **CSP** is strictly larger than **SO**
- Initiating the study of **extremal CSP channels**

Outlook:

- Implications on **magic state distillation / resource conversion** ? **Gaps**?
- **Simulation of CSP** seems **possible** (“*beyond Gottesman-Knill*”) [Seddon et al. 2020]

However, details have to be filled in ...

HOW TO PROPERLY GREET SOMEONE DURING THE CORONAVIRUS OUTBREAK

Thank you for
your attention!

Live long and prosper!

Lambda channel with stabiliser codes

Central theorem: The following is CSP and not SO for $n \geq 2$

$$\Lambda(\rho) = \rho_{00} |+\rangle\langle+| + \sum_{x \neq 0} \rho_{xx} |x\rangle\langle x| + \frac{1}{2} \sum_{x \neq y \neq 0} \rho_{xy} |x\rangle\langle y|$$

This can be written using the stabiliser codes $P_z := \frac{1}{2} (\mathbb{1} - Z(z))$

$$\Lambda(\rho) = H^{\otimes n} |0\rangle\langle 0| \rho |0\rangle\langle 0| H^{\otimes n} + \frac{1}{2^{n-1}} \sum_{z \in \mathbb{F}_2^n \setminus 0} P_z \rho P_z$$

One can check that

$$|0\rangle\langle 0| + \frac{1}{2^{n-1}} \sum_{z \in \mathbb{F}_2^n \setminus 0} P_z = \mathbb{1}$$

Magic state distillation

If single-qubit conversion $\rho^{\otimes k} \rightarrow \sigma^{\otimes m}$ is possible via CSP:

$$GR(\rho^{\otimes k}) \geq GR(\sigma^{\otimes m}) \quad \Rightarrow \quad \frac{m}{k} \leq \frac{\log GR(\rho)}{\log GR(\sigma)}$$

Upper bound is achievable if conversion is *reversible*

[Liu-Winter 2020]: Resource theory of magic is *asymptotically reversible* (w.r.t CSP channels)

→ Gap is possible! (maybe along the lines of [Chitambar et al. 2012])

Magic monotones

There are a number of **magic monotones** w.r.t. to CSP

- (Free) robustness of magic
- Generalised robustness
- dyadic negativity
- mixed-state extent

mixed state extensions of **stabiliser extent** for pure states

(Some of) these monotones can be tied to **runtimes of appropriate simulation algorithms**

