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Introduction. Quantum entanglement is usually thought of as a genuine signature
of quantum mechanics, deeply rooted within its formalism and intimately connected
with the existence of superpositions. Such a connection between a local phenomenon
(superposition) and a global one (entanglement) seems however a mere consequence of
the peculiar mathematical form of quantum theory. In our work we show that this is
not the case, and that any pair of non-classical local theories satisfying some general
axioms has the potential to give rise to entanglement at the level of bipartite systems.
This entails that non-classicality and entangleability are profoundly connected notions.

To model physical systems subjected to only the most basic operational axioms
we employ the well-known mathematical machinery of general probabilistic theories
(GPTs) [5, 8]. As predicted by Ludwig’s embedding theorem [5–7], this broad frame-
work encompasses all physical theories whose operational power obeys minimal require-
ments, such as the capability of predicting the probabilities associated with measure-
ment outcomes. It contains classical probability and quantum mechanics as special
cases, but includes also a wealth of alternative theories that may or may not be rel-
evant for future physics. A few physical principles, such as the necessity to account
for states and measurements, lead to a clean mathematical representation of GPTs. A
GPT can be described by a triple (V,C, u), where V is a finite-dimensional1 real vector
space, C ⊂ V is a convex cone and the unit u is a linear form on V that is positive on
C \ {0}. As mentioned, the simplest examples of GPTs are classical theories, defined
by the fact that the cone C is simplex-based, i.e. it is of the form C = cone{v1, . . . , vd},
where {v1, . . . , vd} is a basis of the d-dimensional vector space V .

Besides simple nondegeneracy conditions on C, we also require our model to obey
the so-called no-restriction hypothesis [4], which implies that any functional taking on
values between 0 and 1 on all states corresponds to a physically observable effect. Our
main motivation for making this non-trivial assumption is twofold: on the one hand, it
is satisfied by both classical and quantum theory, while on the other it leads to a neat
and elegant mathematical model.

Entangleability. Entanglement arises when one tries to model multiple systems.
Namely, given two physical systems represented in the GPT formalism by triples
A = (V1, C1, u1) and B = (V2, C2, u2), how to represent also the joint system as a GPT
AB = (V12, C12, u12)? A natural assumption that is often made in this context is the
local tomography principle: bipartite states are uniquely determined by their statistics
under local measurements. Note that both classical probability theory and quantum
mechanics satisfy the local tomography principle. The naturalness of this assumption
in this context is bolstered by the fact that dropping it trivialises the problem from
the mathematical perspective [3].

Thanks to local tomography, one derives that the composite system is of tensor
product form: it must be that V12 = V1 ⊗ V2 and u12 = u1 ⊗ u2. However, there
appears to be no indisputable physical axiom that allows us to specify the cone C12,
beyond the inclusions

C1 � C2 ⊆ C12 ⊆ C1 � C2, (1)

1 This assumption is made for technical reasons.



where C1 � C2 and C1 � C2 are the minimal and maximal tensor products:

C1 � C2 := conv {x⊗ y : x ∈ C1, y ∈ C2} , (2)
C1 � C2 := {z ∈ V1 ⊗ V2 : (f ⊗ g)(z) > 0 ∀ f ∈ C∗

1 , g ∈ C∗
2} . (3)

Here, C∗ denotes the cone dual to a cone C.
Consider a pair of GPTs A = (V1, C1, u1) and B = (V2, C2, u2). Motivated by

the analogy with the quantum concept, we call the pair (A,B) or the pair (C1, C2)
entangleable if C1 � C2 6= C1 � C2. Indeed, such a pair must exhibit some kind of of
entanglement, either at the level of states or at the level of measurements. Our main
question is then to decide:

Which pairs of GPTs are entangleable?

Main result and discussion. While two copies of the quantum theory are obviously
entangleable, it can be shown that if either A or B is classical, the pair (A,B) is
not entangleable. Our main result states that classicality of local theories is not only
necessary but also sufficient to ensure the emergence of entanglement at the level of
bipartite systems.

Theorem. If neither C1 nor C2 is classical, then the pair (C1, C2) is entangleable.

The above result demonstrates that there is a profound connection between the
notion of non-classicality and that of entanglement, and that such a connection goes
well beyond the contingent mathematical details of quantum theory. This is remarkable
especially because the former concept is essentially local, while the latter has to do with
bipartite systems. The fact that the two are inextricably related — under the only
assumptions of no-restriction and local tomography — unifies them in a conceptually
pleasing way.

The proof of our main result rests on few clear and intuitive ideas, yet it is mathe-
matically quite involved. As it turns out, the question we answer was raised by Barker
already in the 1970s [1, 2], with an entirely different motivation that had nothing to
do with physics or information theory, but was on the contrary essentially algebraic.
Prior to our work, notable progress on the problem had been made by Namioka and
Phelps [9], who proved a weaker version of the above result: if C1 is not classical, then
there is a cone C2 such that (C1, C2) is entangleable. As far as we know, the problem
stood open for the past 40 years.

Although our contribution concerns the foundations of quantum physics more than
operational tasks or quantum computation, we believe it may be of strong interest to
the community of QIP. It revisits a crucial notion in quantum information theory such
as that of entanglement, promoting it to a universal feature of all non-classical theories
that obey a few operational assumptions, and in doing so it solves an outstanding
mathematical problem in the theory of ordered vector spaces.
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