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Philosophical introduction

QM, lecture # 1: superposition is
a property of the physical world.

QM, lecture # 2: by superposing
product states one obtains entan-
glement.

These two fundamental notions
seem to be related only by an ‘ac-
cident’ of the mathematical formal-
ism.

=⇒ We are allowed to deduce the
existence of global entanglement
from that of local superpositions
only if we believe in the mathemat-
ical structure of quantum theory.
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However, quantum theory may not
be the ultimate theory of nature.

What happens to the relation be-
tween superposition and entangle-
ment for other, possibly post-
quantum theories?

We fill this gap, and prove that
(modulo some non-trivial assump-
tions)

superposition and entanglement
logically imply one another.
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Beyond quantum: a quick intro to GPTs

How can we systematically construct more general theories?

Two fundamental notions:

1 State: a physical system together with a preparation procedure.
2 Effect: a measurement device together with one of its possible

outcomes.

A theory for us is a rule

States× Effects 3 (ω, e) 7−→ probability p ∈ [0, 1].

For a systematic introduction see e.g. [LL, arXiv:1803.02902] or
[Müller, arXiv:2011.01286].
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Quantum theory of an n-level system as a GPT

Un-normalised states: n × n positive semi-definite
matrices PSDn.

Normalisation: trace Tr.
Effects: elements of POVMs −→ matrices E with 0 ≤ E ≤ 1.
Born rule: Pr(E |ρ) = Tr[ρE ] ∈ [0, 1].

States

n × n
Hermitian
matrices

0

normalised

states

PSDn

Tr = 1

Effects

0

1

effects

PSDn

n × n
Hermitian
matrices
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General probabilistic theories

Un-normalised states: any (proper) convex cone
C ⊆ V , where V is any finite-dim real vector space.

Normalisation: some strictly positive functional

u ∈ V ∗ ..= {ϕ : V → R linear}

Effects: functionals e ∈ C∗ ∩ (u − C∗) ⊆ V ∗, with C∗ dual cone:

C∗ ..= {ϕ ∈ V ∗ : ϕ(x) ≥ 0 ∀ x ∈ C} .

Generalised Born rule: Pr(e|ω) = e(ω) ∈ [0, 1].
Assumption # 1 (no-restriction hypothesis): all mathematically
reasonable effects are physically implementable.

0
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C

u = 1

V

0

u

effects

C∗

V ∗
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Example: classical theories

Real vector space V with basis {v1, . . . , vd}. Then

Ccl = cone{v1, . . . , vd} =
{∑

i
λivi : λi ≥ 0 ∀ i

}
and any u ∈ V ∗ such that u(vi ) > 0 ∀ i define a classical GPT (V ,Ccl, u)
−→ its state space is a simplex!

0

v1

v2

v3

Ω

Ccl

V

u = 1 v∗
1

v∗
2

v∗
3

0

u

C∗
cl

V ∗

Classical cone ⇐⇒ cone generated by a basis of its vector space.

Note: a cone C is classical if and only if its dual C∗ is classical.
(In this case the two are generated by dual bases.)

A cone that is not classical, in some sense, describes a GPT with
some notion of superposition.
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Bipartite systems in GPTs

We have two GPTs A = (VA,CA, uA) and B = (VB ,CB , uB). How
do we describe the bipartite system AB?

With a GPT of course! Set AB = (VAB ,CAB , uAB).

Assumption # 2 (local tomography principle): global states are
uniquely determined by their statistics under local measurements.

Good news:

VAB = VA ⊗ VB , uAB = uA ⊗ uB .

What can we say about CAB?

1 Separable states should be in it:

CAB ⊇ CA � CB
..= conv {x ⊗ y : xA ∈ CA , yB ∈ CB} .

2 Separable effects should yield probabilities when measured on CAB :

C∗
AB ⊇ C∗

A � C∗
B =.. (CA � CB)∗ .
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This is about all we can say. We are left with the two relations

CA � CB ⊆ CAB ,

C∗
A � C∗

B = (CA � CB)∗ ⊆ C∗
AB .

(1)

(2)

CA � CB and CA � CB are called the minimal tensor product and
the maximal tensor product.

Taking the dual to (2) one obtains an upper bound for CAB . Together
with (1):

CA � CA ⊆ CAB ⊆ CA � CB .

Note

If CA � CB 6= CA � CB , then

. either CA � CB ( CAB , that is, there are entangled states; or

. or C∗
A � C∗

B ( C∗
AB , that is, there are entangled measurements.
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Main problem

Problem

When are CA,CB entangleable, i.e. satisfy CA � CB 6= CA � CB?

Simple observation:

either CA or CB is classical =⇒ CA,CB are not entangleable.

(Classical GPT + any other GPT −→ no entanglement.)

Less trivial:1

CA is classical ⇐⇒ CA,CB are not entangleable for all cones CB .

Barker’s conjecture:2

CA,CB are entangleable ⇐⇒ neither CA nor CB is classical.

1I. Namioka and R. R. Phelps, Pacific J. Math. 31, 469–480 (1969)
2G. P. Barker, Linear Multilinear Algebra 4, 191–199 (1976). G. P. Barker, Linear

Algebra Appl. 39, 263–291 (1981).
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Main result

Theorem A (Solution of Barker’s conjecture)

CA,CB are entangleable ⇐⇒ neither CA nor CB is classical.

Classicality (or the absence of superpo-
sition) is a local property. Entangleabil-
ity is a global property.

The fact that they are so intimately con-
nected is somewhat surprising and aes-
thetically pleasing (to me, at least).

Quantum

theory

Superposition

Entanglement

Our
result

Immediate reformulation: all linear positive maps CA → CB are measure-
and-prepare ⇐⇒ either CA or CB is classical.

A conjecture in the theory of abstract operator systems3asked whether C �
PSDn = C �PSDn, where PSDn is the cone of n×n positive semi-definite
matrices (n ≥ 2), happened only when C is classical −→ YES!

3T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556–574 (2017). B. Passer et al.,
J. Funct. Anal. 274, 3197–3253 (2018).
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Overview of the proof

We already saw that CA,CB entangleable =⇒ neither of them is classical.
We prove the opposite implication.

1 Kite-square sandwiching: we reduce the problem to a (modified)
entangleability problem for two special 3-dimensional cones.

2 Brute force construction of an entangled state for this
3-dimensional problem.
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Consider the following 2-dimensional shapes:

A “kite” parametrised by α ∈ (−1, 1)4:

Tα ..= conv{(1, α1), (α2, 1), (−1, α3), (α4,−1)}.

The “blunt square”

Sb ..= [−1, 1]2 \ {−1, 1}2 .

•

••

•

Tα

Sb

Construct the 3-dimensional cones C(Tα) and C(Sb), where

C(K ) ..= cone {x ⊕ 1 : x ∈ K} .
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Definition (kite-square sandwiching)

A cone C ⊂ V admits a kite-square sandwiching if and only if there are
linear maps Φ` : R3 → V (lift) and Φc : V → R3 (compress) such that:

1 Φc ◦ Φ` = idR3 ;

2 Φ` (C(Tα)) ⊆ C and Φc(C ) ⊆ C(Sb).

Theorem B

A cone C is non-classical if and only if it admits a kite-square sandwiching.

Proving this requires some pretty sophisticated convex geometry. The
proof takes up roughly ∼ 45% of our paper.

We are going to take this for granted. Instead, let us focus on the next
question:

How does this help?
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Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix α, β ∈ (−1, 1)4. Then there is ω ∈ C(Tα) � C(Tβ) such that
ω 6∈ C(Sb) � C(Sb).

Then we are done. Why?

Short answer: we use Theorem B and the lift-and-compress maps
it gives to transform ω into an entangled state of the big cones.
Formally:

Let CA,CB be non-classical cones. Consider the lift-and-compress
maps ΦA

` ,Φ
B
` ,Φ

A
c ,Φ

B
c from Theorem B. Then define

Ω ..=
(
ΦA
` ⊗ ΦB

`

)
(ω) ∈

(
ΦA
` ⊗ ΦB

`

)
(C(Tα) � C(Tβ)) ⊆ CA � CB .

If CA � CB = CA � CB , and hence Ω ∈ CA � CB , we arrive at a
contradiction:

ω =
(

ΦA
c ◦ ΦA

`︸ ︷︷ ︸
id
R3

⊗ΦB
c ◦ ΦB

`︸ ︷︷ ︸
id
R3

)
(ω) =

(
ΦA

c ⊗ ΦB
c

)
(Ω) ∈ C(Sb)�C(Sb) .
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Proposition (kites entangle strongly)

Fix α, β ∈ (−1, 1)4. Then there is ω ∈ C(Tα) � C(Tβ) such that
ω 6∈ C(Sb) � C(Sb).

Note: in spite of the kites being significantly smaller than the blunt
squares, they give rise to enough entanglement to stick out of the
minimal tensor product of the blunt squares!

How to prove the above Proposition? With a brute force approach.
Four extreme point for each kite:

s1 = (1, α1 ; 1), s2 = (α2, 1 ; 1), s3 = (−1, α3 ; 1), s4 = (α4,−1 ; 1),

t1 = (1, β1 ; 1), t2 = (β2, 1 ; 1), t3 = (−1, β3 ; 1), t4 = (β4,−1 ; 1).

Rescale them to Si ,Tj so that

S1 + S3 = S2 + S4 , T1 + T3 = T2 + T4 .
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Construct ω:

ω ..= S1 ⊗ T2 − S2 ⊗ T2 + S2 ⊗ T1 + S3 ⊗ T3

easy
∈ C(Tα) � C(Tβ) .

How do we prove that ω /∈ C(Sb) �C(Sb)? We introduce a witness.

For m ∈ R3 ⊗R3, define

F (m) ..= 2m33︸ ︷︷ ︸
normalisation

−
(
m11 + m12 + m21 −m22︸ ︷︷ ︸

CHSH-like

)
.

It is not difficult to show that F (m) > 0 for all m ∈ C(Sb) � C(Sb).
Note the strict inequality, because we cut off the corners.

However, a daunting 37-line computation shows that we can make

F (ω) ≤ 0 =⇒ ω /∈ C(Sb) � C(Sb) .
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Note the strict inequality, because we cut off the corners.

However, a daunting 37-line computation shows that we can make

F (ω) ≤ 0 =⇒ ω /∈ C(Sb) � C(Sb) .
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Conclusions and outlook

1 Local non-classicality (∼ existence of superpositions) and global
entangleability, either at the level of states or at that of
measurements, are intimately linked.

2 This connection is not an ‘accidental’ feature of the quantum
formalism, but rather it has a somewhat universal nature.

3 The mathematical problem stemming from this was 50 years old
(works of Namioka/Phelps and Barker). Their motivation was
coming from the theory of ordered vector spaces.

4 Can one give a quantitative statement, i.e. find measures of
non-classicality N and of entangleability E such that

E(CA,CB)
?
≥N(CA)N(CB)

5 What about other phenomena such as non-locality? Are they also
‘universal’ in this sense? Vaste programme...

Thank you!
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