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Philosophical introduction

o QM, lecture # 1: superposition is
a property of the physical world.
QM, lecture # 2: by superposing
product states one obtains entan-
glement.

These two fundamental notions
seem to be related only by an ‘ac-
cident’ of the mathematical formal-
ism.

—> We are allowed to deduce the
existence of global entanglement
from that of local superpositions
only if we believe in the mathemat-
ical structure of quantum theory.
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@ However, quantum theory may not
be the ultimate theory of nature.

Quantum
theory
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@ However, quantum theory may not
be the ultimate theory of nature.

@ What happens to the relation be-
tween superposition and entangle-
ment for other, possibly post-
quantum theories?

Quantum

o We fill this gap, and prove that theory

(modulo some non-trivial assump-
tions)
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superposition and entanglement
logically imply one another.
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Beyond quantum: a quick intro to GPTs

@ How can we systematically construct more general theories?
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Beyond quantum: a quick intro to GPTs

@ How can we systematically construct more general theories?

@ Two fundamental notions:
State: a physical system together with a preparation procedure.
Effect: a measurement device together with one of its possible

outcomes.
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Beyond quantum: a quick intro to GPTs

@ How can we systematically construct more general theories?
@ Two fundamental notions:

State: a physical system together with a preparation procedure.
Effect: a measurement device together with one of its possible
outcomes.

@ A theory for us is a rule

States x Effects 5 (w, e) — probability p € [0, 1].
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Beyond quantum: a quick intro to GPTs

How can we systematically construct more general theories?

Two fundamental notions:
State: a physical system together with a preparation procedure.
Effect: a measurement device together with one of its possible
outcomes.

A theory for us is a rule
States x Effects 5 (w, e) — probability p € [0, 1].

For a systematic introduction see e.g. [LL, arXiv:1803.02902] or
[Miiller, arXiv:2011.01286].
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Quantum theory of an n-level system as a GPT

@ Un-normalised states: n x n positive semi-definite
matrices PSD,,.
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Quantum theory of an n-level system as a GPT

@ Un-normalised states: n x n positive semi-definite
matrices PSD,,.
@ Normalisation: trace Tr.
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. states
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Quantum theory of an n-level system as a GPT

@ Un-normalised states: n x n positive semi-definite
matrices PSD,,.
@ Normalisation: trace Tr.
o Effects: elements of POVMs — matrices E with 0 < E < 1.

States Effects
nxn lced
e normalise
Hermitian et nxn .
H states i
matrices B Hermitian

Tr=1

R ’ .
\ = ; matrices
AY N 7
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Quantum theory of an n-level system as a GPT

@ Un-normalised states: n x n positive semi-definite
matrices PSD,,.
@ Normalisation: trace Tr.
o Effects: elements of POVMs — matrices E with 0 < E < 1.
e Born rule: Pr(E|p) = Tr[pE] € [0, 1].

States Effects
nxn lced
e normalise
Hermitian et nxn .
. states H
matrices . Hermitian

. ’ .
\ = ; matrices
AY N 7
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General probabilistic theories

@ Un-normalised states: any (proper) convex cone
C C V, where V is any finite-dim real vector space.

\/e

0
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General probabilistic theories

@ Un-normalised states: any (proper) convex cone
C C V, where V is any finite-dim real vector space.
@ Normalisation: some strictly positive functional

ue V' :={p:V =R linear}
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General probabilistic theories

@ Un-normalised states: any (proper) convex cone
C C V, where V is any finite-dim real vector space.
@ Normalisation: some strictly positive functional

ue V' :={p:V =R linear}
o Effects: functionals e € C* N (u— C*) C V*, with C* dual cone:
Cr={pe V" p(x)>0Vxe C}.

\/e

0 0
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@ Un-normalised states: any (proper) convex cone
C C V, where V is any finite-dim real vector space.
@ Normalisation: some strictly positive functional

ue V' :={p:V =R linear}
o Effects: functionals e € C* N (u— C*) C V*, with C* dual cone:
Cr={pe V" p(x)>0Vxe C}.

o Generalised Born rule: Pr(e|lw) = e(w) € [0,1].
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General probabilistic theories

@ Un-normalised states: any (proper) convex cone
C C V, where V is any finite-dim real vector space.
@ Normalisation: some strictly positive functional

ue V' :={p:V =R linear}
o Effects: functionals e € C* N (u— C*) C V*, with C* dual cone:
Cr={pe V" p(x)>0Vxe C}.

o Generalised Born rule: Pr(e|lw) = e(w) € [0,1].
@ Assumption # 1 (no-restriction hypothesis): all mathematically
reasonable effects are physically implementable.

\/e

0 0
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Example: classical theories

Real vector space V with basis {vi,...,vg}. Then

Cc| = cone{vl,...,vd} = {Z,’/\ivi o )\,‘ Z 0 VI}

and any u € V* such that u(v;) > 0 Vi define a classical GPT (V, Cy, u)
— its state space is a simplex!
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and any u € V* such that u(v;) > 0 Vi define a classical GPT (V, Cy, u)
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Example: classical theories

Real vector space V with basis {vi,...,v4}. Then

Cc| = cone{vl,...,vd} = {Z,’/\ivi o )\,‘ Z 0 VI}

and any u € V* such that u(v;) > 0 Vi define a classical GPT (V, Cy, u)

— its state space is a simplex!
u
*

g \
%

@ Classical cone <= cone generated by a basis of its vector space.
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Example: classical theories

Real vector space V with basis {vi,...,v4}. Then

Cc| = cone{vl,...,vd} = {Z,'/\ivi o )\,‘ Z 0 VI}

and any u € V* such that u(v;) > 0 Vi define a classical GPT (V, Cy, u)

— its state space is a simplex!
u
*

g \
%

@ Classical cone <= cone generated by a basis of its vector space.

@ Note: a cone C is classical if and only if its dual C* is classical.
(In this case the two are generated by dual bases.)
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Example: classical theories

Real vector space V with basis {vi,...,v4}. Then

Cc| = cone{vl,...,vd} = {Z,'/\ivi o )\,‘ Z 0 VI}

and any u € V* such that u(v;) > 0 Vi define a classical GPT (V, Cy, u)
— its state space is a simplex!

g \

u
L]
! \V:;)k

@ Classical cone <= cone generated by a basis of its vector space.
@ Note: a cone C is classical if and only if its dual C* is classical.
(In this case the two are generated by dual bases.)

@ A cone that is not classical, in some sense, describes a GPT with

some notion of superposition.
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Bipartite systems in GPTs

e We have two GPTs A = (Va, Ca,ua) and B = (Vp, Cg,ug). How
do we describe the bipartite system AB?
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Bipartite systems in GPTs
e We have two GPTs A = (Va, Ca,ua) and B = (Vp, Cg,ug). How

do we describe the bipartite system AB?
e With a GPT of course! Set AB = (Vag, Cag, uag).
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Bipartite systems in GPTs

e We have two GPTs A = (Va, Ca,ua) and B = (Vp, Cg,ug). How
do we describe the bipartite system AB?

e With a GPT of course! Set AB = (Vag, Cag, uag).

@ Assumption # 2 (local tomography principle): global states are
uniquely determined by their statistics under local measurements.
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Bipartite systems in GPTs

e We have two GPTs A = (Va, Ca,ua) and B = (Vp, Cg,ug). How
do we describe the bipartite system AB?

e With a GPT of course! Set AB = (Vag, Cag, uag).

@ Assumption # 2 (local tomography principle): global states are
uniquely determined by their statistics under local measurements.

@ Good news:

Vag = Va® Vg, Uag = Ua @ ug .
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Bipartite systems in GPTs

e We have two GPTs A = (Va, Ca,ua) and B = (Vp, Cg,ug). How
do we describe the bipartite system AB?

e With a GPT of course! Set AB = (Vag, Cag, uag).

@ Assumption # 2 (local tomography principle): global states are
uniquely determined by their statistics under local measurements.

@ Good news:

Vag = Va® Vg, Uag = Ua @ ug .

@ What can we say about Cap?
Separable states should be in it:

Cae2Ca0Cp=conv{x®y: xa€ Ca, yg € Cg}.
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Bipartite systems in GPTs

e We have two GPTs A = (Va, Ca,ua) and B = (Vp, Cg,ug). How
do we describe the bipartite system AB?

e With a GPT of course! Set AB = (Vag, Cag, uag).

@ Assumption # 2 (local tomography principle): global states are
uniquely determined by their statistics under local measurements.

@ Good news:

Vag = Va® Vg, Uag = Ua @ ug .

@ What can we say about Cap?
Separable states should be in it:

Cae2Ca0Cp=conv{x®y: xa€ Ca, yg € Cg}.

Separable effects should yield probabilities when measured on Cag:

Cas 2 CaOCg=:(Ca® Cp)".
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This is about all we can say. We are left with the two relations

Ca® Cg C Cpp, (1)
CaioCh=(Ca®Cs)" C Chg. (2)

@ C4 ® Cg and C4 ® Cg are called the minimal tensor product and
the maximal tensor product.
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This is about all we can say. We are left with the two relations

Ca® Cg C Cpp, (1)
CaioCh=(Ca®Cs)" C Chg. (2)

@ C4 ® Cg and C4 ® Cg are called the minimal tensor product and
the maximal tensor product.
@ Taking the dual to (2) one obtains an upper bound for Cag. Together
with (1):
CAOCC e
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This is about all we can say. We are left with the two relations

Ca® Cg C Cpp, (1)
CaioCh=(Ca®Cs)" C Chg. (2)

@ C4 ® Cg and C4 ® Cg are called the minimal tensor product and
the maximal tensor product.
@ Taking the dual to (2) one obtains an upper bound for Cag. Together

with (1):
CAOCC g CCa®dCp.

If Ca® Cg # Ca® Cg, then
> either C4 ® Cg © Cag, that is, there are entangled states; or
> or C; © C5 € Cap, that is, there are entangled measurements.
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Main problem

When are C,, Cg entangleable, i.e. satisfy C4 ® Cg # C4 ® Cg?

1|. Namioka and R. R. Phelps, Pacific J. Math. 31, 469-480 (1969)
2G. P. Barker, Linear Multilinear Algebra 4, 191-199 (1976). G. P. Barker, Linear
Algebra Appl. 39, 263-291 (1981).
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Main problem

When are C,, Cg entangleable, i.e. satisfy C4 ® Cg # C4 ® Cg?

@ Simple observation:
either Cp or Cg is classical = Cp, Cg are not entangleable.
(Classical GPT + any other GRT — no entanglement.)

11, Namioka and R. R. Phelps, Pacific J. Math. 31, 469-480 (1969)
2G. P. Barker, Linear Multilinear Algebra 4, 191-199 (1976). G. P. Barker, Linear
Algebra Appl. 39, 263-291 (1981).
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Main problem

When are C,, Cg entangleable, i.e. satisfy C4 ® Cg # C4 ® Cg?

@ Simple observation:
either Cp or Cg is classical = Cp, Cg are not entangleable.
(Classical GPT + any other GRT — no entanglement.)
o Less trivial:!

Ca is classical <= Cy, Cg are not entangleable for all cones Cg.

11, Namioka and R. R. Phelps, Pacific J. Math. 31, 469-480 (1969)
2G. P. Barker, Linear Multilinear Algebra 4, 191-199 (1976). G. P. Barker, Linear
Algebra Appl. 39, 263-291 (1981).
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Main problem

When are C,, Cg entangleable, i.e. satisfy C4 ® Cg # C4 ® Cg?

@ Simple observation:

either Cp or Cg is classical = Cp, Cg are not entangleable.
(Classical GPT + any other GRT — no entanglement.)
o Less trivial:!
Ca is classical <= Ca, Cg are not entangleable for all cones Cg.

@ Barker’s conjecture:?

Ca, Cg are entangleable <= neither C4 nor Cg is classical.

11, Namioka and R. R. Phelps, Pacific J. Math. 31, 469-480 (1969)
2G. P. Barker, Linear Multilinear Algebra 4, 191-199 (1976). G. P. Barker, Linear
Algebra Appl. 39, 263-291 (1981).
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Main result

Theorem A (Solution of Barker's conjecture)

Ca, Cg are entangleable <= neither C4 nor Cg is classical.

3T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556-574 (2017). B. Passer et al.,
J. Funct. Anal. 274, 3197-3253 (2018).
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Main result

Theorem A (Solution of Barker's conjecture)

Ca, Cg are entangleable <= neither C4 nor Cg is classical.

a

o Classicality (or the absence of superpo- Superposition / 3
sition) is a local property. Entangleabil- N
ity is a global property.

1
:Quantum
! theory

Entanglement

3T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556-574 (2017). B. Passer et al.,
J. Funct. Anal. 274, 3197-3253 (2018).
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Main result

Theorem A (Solution of Barker's conjecture)

Ca, Cg are entangleable <= neither C4 nor Cg is classical.

a

o Classicality (or the absence of superpo- Superposition / 3
sition) is a local property. Entangleabil- N
ity is a global property.

1

:Quantum
@ The fact that they are so intimately con- ! theory
nected is somewhat surprising and aes-

thetically pleasing (to me, at least). Entanglement

3T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556-574 (2017). B. Passer et al.,
J. Funct. Anal. 274, 3197-3253 (2018).
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Main result

Theorem A (Solution of Barker's conjecture)

Ca, Cg are entangleable <= neither C4 nor Cg is classical.

a

o Classicality (or the absence of superpo- Superposition / 3
sition) is a local property. Entangleabil- N
ity is a global property.

1

:Quantum
@ The fact that they are so intimately con- ! theory
nected is somewhat surprising and aes-

thetically pleasing (to me, at least).

Entanglement

@ Immediate reformulation: all linear positive maps Ca — Cg are measure-
and-prepare <= either Ca or Cg is classical.

3T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556-574 (2017). B. Passer et al.,
J. Funct. Anal. 274, 3197-3253 (2018).
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Main result

Theorem A (Solution of Barker's conjecture)

Ca, Cg are entangleable <= neither C4 nor Cg is classical.

a

o Classicality (or the absence of superpo- Superposition b
sition) is a local property. Entangleabil- ‘
ity is a global property.

@ The fact that they are so intimately con-
nected is somewhat surprising and aes-
thetically pleasing (to me, at least).

1
:Quantum
! theory

Entanglement

@ Immediate reformulation: all linear positive maps Ca — Cg are measure-
and-prepare <= either Ca or Cg is classical.

@ A conjecture in the theory of abstract operator systems>asked whether C ®
PSD, = C ® PSD,, where PSD,, is the cone of n x n positive semi-definite
matrices (n > 2), happened only when C is classical — YES!

3T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556-574 (2017). B. Passer et al.,
J. Funct. Anal. 274, 3197-3253 (2018).
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Overview of the proof

We already saw that C4, Cg entangleable = neither of them is classical.
We prove the opposite implication.

Kite-square sandwiching: we reduce the problem to a (modified)
entangleability problem for two special 3-dimensional cones.
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Overview of the proof

We already saw that C4, Cg entangleable = neither of them is classical.
We prove the opposite implication.

Kite-square sandwiching: we reduce the problem to a (modified)
entangleability problem for two special 3-dimensional cones.

Brute force construction of an entangled state for this
3-dimensional problem.
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Consider the following 2-dimensional shapes:
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Consider the following 2-dimensional shapes:
o A “kite” parametrised by o € (—1,1)*:

To = conv{(1, 1), (a2,1), (-1, a3), (g, —1)}.
@ The “blunt square”

Sp=[-L 1P\ {-1,1)}%.
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Consider the following 2-dimensional shapes:
o A “kite” parametrised by o € (—1,1)*:

To = conv{(1, 1), (a2,1), (-1, a3), (g, —1)}.
@ The “blunt square”

Sp=[-L 1P\ {-1,1)}%.

Sp

e Construct the 3-dimensional cones €(T,) and €(Sp), where
E(K) =cone{x®1: xeK}.
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Definition (kite-square sandwiching)

A cone C C V admits a kite-square sandwiching if and only if there are
linear maps &, : R® — V (lift) and ¢, : V — R3 (compress) such that:

$. 0 Py = idys;
¢ (€(Ta)) € C and O(C) € E(Sp).
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A cone C C V admits a kite-square sandwiching if and only if there are
linear maps &, : R® — V (lift) and ¢, : V — R3 (compress) such that:

$. 0 Py = idys;
¢ (€(Ta)) € C and O(C) € E(Sp).

Theorem B

A cone C is non-classical if and only if it admits a kite-square sandwiching.
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Definition (kite-square sandwiching)

A cone C C V admits a kite-square sandwiching if and only if there are
linear maps &, : R® — V (lift) and ¢, : V — R3 (compress) such that:

$. 0 Py = idys;
¢ (€(Ta)) € C and O(C) € E(Sp).

Theorem B

A cone C is non-classical if and only if it admits a kite-square sandwiching.

Proving this requires some pretty sophisticated convex geometry. The
proof takes up roughly ~ 45% of our paper.
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Definition (kite-square sandwiching)

A cone C C V admits a kite-square sandwiching if and only if there are
linear maps &, : R® — V (lift) and ¢, : V — R3 (compress) such that:

$. 0 Py = idys;
¢ (€(Ta)) € C and O(C) € E(Sp).

Theorem B
A cone C is non-classical if and only if it admits a kite-square sandwiching.

Proving this requires some pretty sophisticated convex geometry. The
proof takes up roughly ~ 45% of our paper.

We are going to take this for granted. Instead, let us focus on the next
question:

How does this help?
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Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix a, 8 € (—=1,1)*. Then there is w € €(T,) ® €(Ts) such that
w & B(S5) © B(Sh).
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Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix a, 8 € (—=1,1)*. Then there is w € €(T,) ® €(Ts) such that
w & B(S5) © B(Sh).

@ Then we are done. Why?
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Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix a, 8 € (—=1,1)*. Then there is w € €(T,) ® €(Ts) such that
w & B(S5) © B(Sh).

@ Then we are done. Why?

@ Short answer: we use Theorem B and the lift-and-compress maps

it gives to transform w into an entangled state of the big cones.
Formally:
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Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix a, 8 € (—=1,1)*. Then there is w € €(T,) ® €(Ts) such that
w & B(S5) © B(Sh).

@ Then we are done. Why?

@ Short answer: we use Theorem B and the lift-and-compress maps

it gives to transform w into an entangled state of the big cones.
Formally:

@ Let Cu, Cg be non-classical cones. Consider the lift-and-compress
maps CD?, <Df,¢é‘,d>f from Theorem B. Then define

Q= (¢ @) (w) € (7 @ D7) (G(Ta) @ E(Ts)) C Ca® Cs.
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Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix a, 8 € (—=1,1)*. Then there is w € €(T,) ® €(Ts) such that
w & B(Sh) © B(Sh).

@ Then we are done. Why?

@ Short answer: we use Theorem B and the lift-and-compress maps
it gives to transform w into an entangled state of the big cones.
Formally:

@ Let Cu, Cg be non-classical cones. Consider the lift-and-compress
maps CD?, <Df,¢é‘,d>f from Theorem B. Then define

Q= (¢ @) (w) € (7 @ D7) (G(Ta) @ E(Ts)) C Ca® Cs.

0 If C4a® Cg = C4® Cg, and hence Q2 € C4 ® Cg, we arrive at a
contradiction:

w= (980 0f @ 0E 0 0f )(w) = (4 @ OF) (Q) € B(S)OF(SH)
—_—— —

idps idps
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Proposition (kites entangle strongly)

Fix o, B € (—1,1)*. Then there is w € €(T,) ® €(Tp) such that
w & B(S5) © B(Sh).

@ Note: in spite of the kites being significantly smaller than the blunt
squares, they give rise to enough entanglement to stick out of the
minimal tensor product of the blunt squares!
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Proposition (kites entangle strongly)

Fix o, B € (—1,1)*. Then there is w € €(T,) ® €(Tp) such that
w & B(S5) © B(Sh).

@ Note: in spite of the kites being significantly smaller than the blunt
squares, they give rise to enough entanglement to stick out of the
minimal tensor product of the blunt squares!

@ How to prove the above Proposition? With a brute force approach.
Four extreme point for each kite:

s1=(1,00; 1), o =(2,1; 1), ss=(—1,03; 1), ss = (o, —1; 1),
tt=(1,61;1), b=(62,1;1), s=(-1,63; 1), ta =(Bs,—1; 1).
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Proposition (kites entangle strongly)

Fix o, B € (—1,1)*. Then there is w € €(T,) ® €(Tp) such that
w & B(S5) © B(Sh).

@ Note: in spite of the kites being significantly smaller than the blunt
squares, they give rise to enough entanglement to stick out of the
minimal tensor product of the blunt squares!

@ How to prove the above Proposition? With a brute force approach.
Four extreme point for each kite:

s1=(1,00; 1), o =(2,1; 1), ss=(—1,03; 1), ss = (o, —1; 1),
t] = (17,61; 1)7 = (527 1; 1)7 t3 = (_1763; 1)7 ty = (ﬁ47 -1; 1)
o Rescale them to S;, T; so that

51+5=5+5,, Ti+T3=Tr+ Ty4.
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o Construct w:

W=50Th-50T+$%0Ti+50T; ¢ €(Ta) ®&(Ts).
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o Construct w:
W=50Th- S0 T+ 58 Ti+S50Ts ¢ €(Ta) ®E(Ts).

@ How do we prove that w ¢ €(Sp) © €(Sp)? We introduce a witness.
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o Construct w:
W=50Th- S0 T+ 58 Ti+S50Ts ¢ €(Ta) ®E(Ts).

@ How do we prove that w ¢ €(Sp) © €(Sp)? We introduce a witness.
o For m e R®® R3, define

F(m):=2ms3 —(m+mpo+my—myn).
normalisation CHSH-like
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o Construct w:

W=50Th-50T+$%0Ti+50T; ¢ €(Ta) ®&(Ts).

@ How do we prove that w ¢ €(Sp) © €(Sp)? We introduce a witness.
o For m e R®® R3, define
F(m):= 2ms3 —(mu+mo+ma—my).
——
normalisation CHSH-like

e It is not difficult to show that F(m) > 0 for all m € €(S,) © €(Sp).
Note the strict inequality, because we cut off the corners.
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o Construct w:

W=50Th-50T+$%0Ti+50T; ¢ €(Ta) ®&(Ts).

@ How do we prove that w ¢ €(Sp) © €(Sp)? We introduce a witness.
o For m e R®® R3, define
F(m):= 2ms3 —(mu+mo+ma—my).
——
normalisation CHSH-like

e It is not difficult to show that F(m) > 0 for all m € €(S,) © €(Sp).
Note the strict inequality, because we cut off the corners.

However, a daunting 37-line computation shows that we can make

Flw)<o0 = wé B(Sp) ©FC(Sh)-
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Conclusions and outlook

Local non-classicality (~ existence of superpositions) and global
entangleability, either at the level of states or at that of
measurements, are intimately linked.
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entangleability, either at the level of states or at that of
measurements, are intimately linked.

This connection is not an ‘accidental’ feature of the quantum
formalism, but rather it has a somewhat universal nature.
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entangleability, either at the level of states or at that of
measurements, are intimately linked.

This connection is not an ‘accidental’ feature of the quantum
formalism, but rather it has a somewhat universal nature.

The mathematical problem stemming from this was 50 years old
(works of Namioka/Phelps and Barker). Their motivation was
coming from the theory of ordered vector spaces.
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Conclusions and outlook

Local non-classicality (~ existence of superpositions) and global
entangleability, either at the level of states or at that of
measurements, are intimately linked.

This connection is not an ‘accidental’ feature of the quantum
formalism, but rather it has a somewhat universal nature.

The mathematical problem stemming from this was 50 years old
(works of Namioka/Phelps and Barker). Their motivation was
coming from the theory of ordered vector spaces.

Can one give a quantitative statement, i.e. find measures of
non-classicality /" and of entangleability & such that

#(Ca, C) = N (Ca) H(Ca)

Ludovico Lami Entangleability of cones (arXiv:1911.09663 and arXiv:1910.04745) 18 / 18



Conclusions and outlook

Local non-classicality (~ existence of superpositions) and global
entangleability, either at the level of states or at that of
measurements, are intimately linked.

This connection is not an ‘accidental’ feature of the quantum
formalism, but rather it has a somewhat universal nature.

The mathematical problem stemming from this was 50 years old
(works of Namioka/Phelps and Barker). Their motivation was
coming from the theory of ordered vector spaces.

Can one give a quantitative statement, i.e. find measures of
non-classicality /" and of entangleability & such that

#(Ca, C) = N (Ca) H(Ca)

What about other phenomena such as non-locality? Are they also
‘universal’ in this sense? Vaste programme...
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Conclusions and outlook

Local non-classicality (~ existence of superpositions) and global
entangleability, either at the level of states or at that of
measurements, are intimately linked.

This connection is not an ‘accidental’ feature of the quantum
formalism, but rather it has a somewhat universal nature.

The mathematical problem stemming from this was 50 years old
(works of Namioka/Phelps and Barker). Their motivation was
coming from the theory of ordered vector spaces.

Can one give a quantitative statement, i.e. find measures of
non-classicality /" and of entangleability & such that

#(Ca, C) = N (Ca) H(Ca)

What about other phenomena such as non-locality? Are they also
‘universal’ in this sense? Vaste programme...

Thank you!
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