

Entangleability of cones

Guillaume Aubrun, Ludovico Lami*, Carlos Palazuelos, and Martin Plávala

arXiv:1911.09663 and arXiv:1910.04745

* Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11,
D-89069 Ulm, Germany

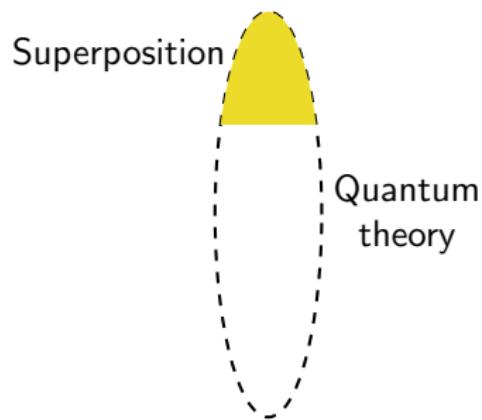
5 February 2021

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung / Foundation

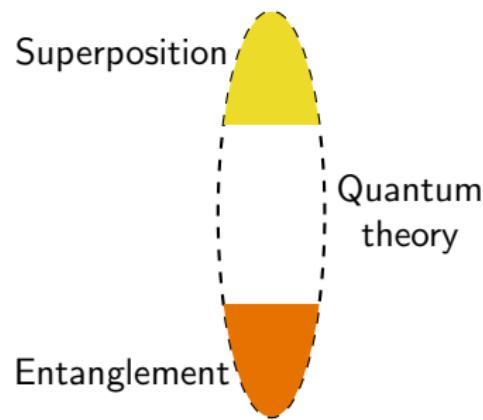
Philosophical introduction

- QM, lecture # 1: **superposition** is a property of the physical world.



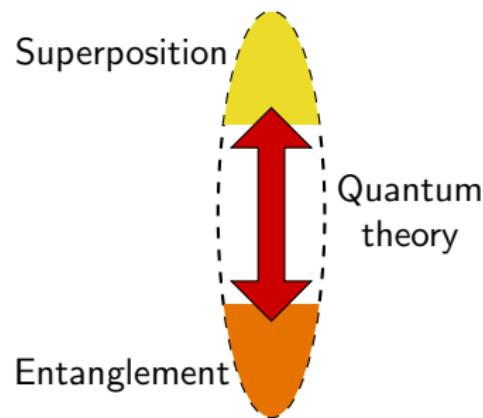
Philosophical introduction

- QM, lecture # 1: **superposition** is a property of the physical world.
- QM, lecture # 2: by superposing product states one obtains **entanglement**.

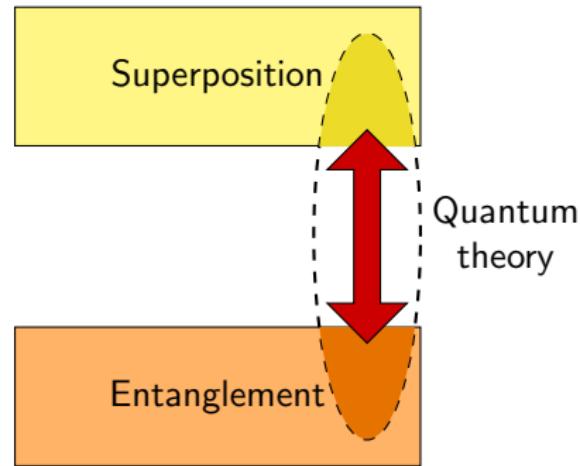


Philosophical introduction

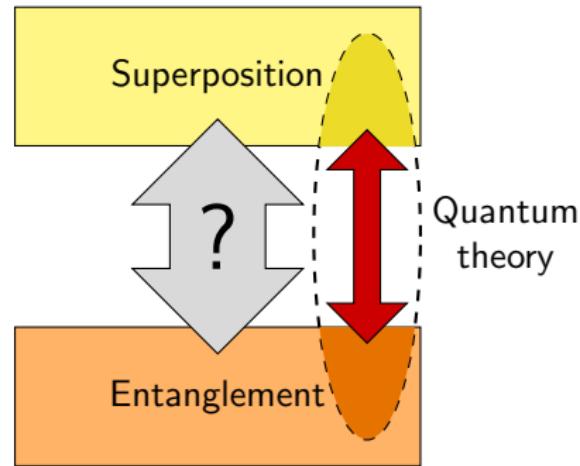
- QM, lecture # 1: **superposition** is a property of the physical world.
- QM, lecture # 2: by superposing product states one obtains **entanglement**.
- These two fundamental notions seem to be related only by an 'accident' of the mathematical formalism.
⇒ We are allowed to deduce the existence of global entanglement from that of local superpositions *only* if we believe in the mathematical structure of quantum theory.



- However, quantum theory may not be the ultimate theory of nature.

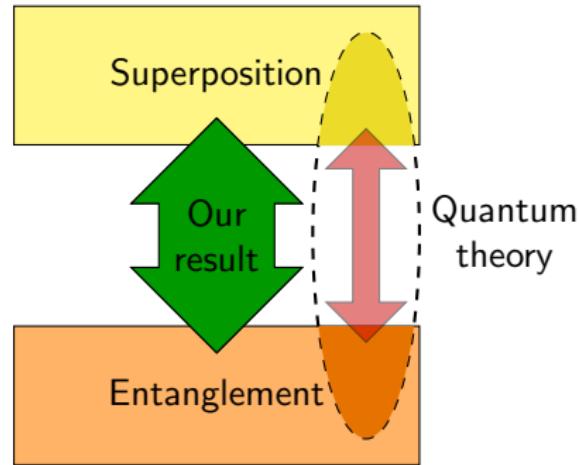


- However, quantum theory may not be the ultimate theory of nature.
- What happens to the relation between superposition and entanglement for other, possibly post-quantum theories?



- However, quantum theory may not be the ultimate theory of nature.
- What happens to the relation between superposition and entanglement for other, possibly post-quantum theories?
- We fill this gap, and prove that (modulo some non-trivial assumptions)

superposition and entanglement logically imply one another.



Beyond quantum: a quick intro to GPTs

- How can we systematically construct more general theories?

Beyond quantum: a quick intro to GPTs

- How can we systematically construct more general theories?
- Two fundamental notions:
 - 1 **State:** a physical system together with a preparation procedure.
 - 2 **Effect:** a measurement device together with one of its possible outcomes.

Beyond quantum: a quick intro to GPTs

- How can we systematically construct more general theories?
- Two fundamental notions:
 - 1 **State:** a physical system together with a preparation procedure.
 - 2 **Effect:** a measurement device together with one of its possible outcomes.
- A theory for us is a rule

$$\text{States} \times \text{Effects} \ni (\omega, e) \longmapsto \text{probability } p \in [0, 1].$$

Beyond quantum: a quick intro to GPTs

- How can we systematically construct more general theories?
- Two fundamental notions:
 - 1 **State**: a physical system together with a preparation procedure.
 - 2 **Effect**: a measurement device together with one of its possible outcomes.
- A theory for us is a rule

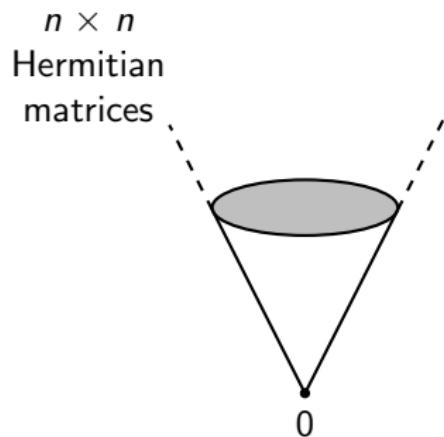
$$\text{States} \times \text{Effects} \ni (\omega, e) \longmapsto \text{probability } p \in [0, 1].$$

- For a systematic introduction see e.g. [LL, arXiv:1803.02902] or [Müller, arXiv:2011.01286].

Quantum theory of an n -level system as a GPT

- Un-normalised states: $n \times n$ positive semi-definite matrices PSD_n .

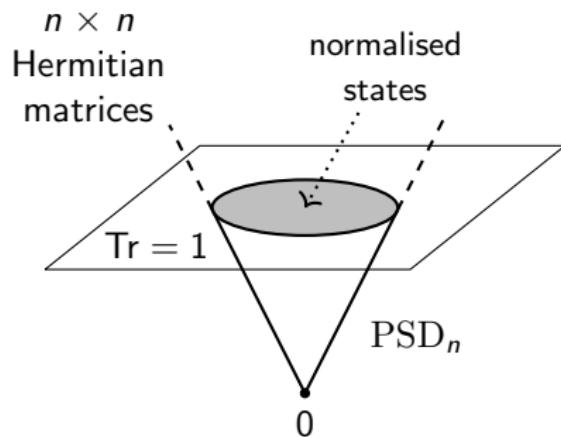
States



Quantum theory of an n -level system as a GPT

- Un-normalised states: $n \times n$ positive semi-definite matrices PSD_n .
- Normalisation: trace Tr .

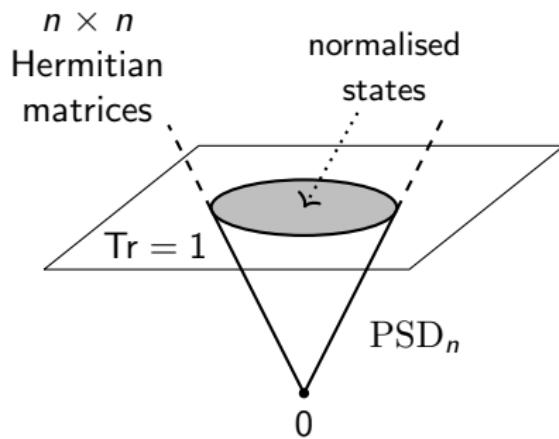
States



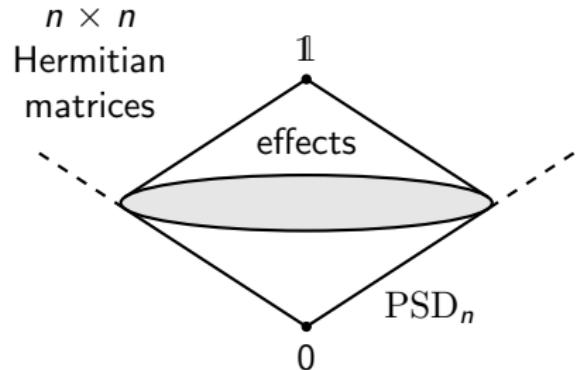
Quantum theory of an n -level system as a GPT

- Un-normalised states: $n \times n$ positive semi-definite matrices PSD_n .
- Normalisation: trace Tr .
- Effects: elements of POVMs \longrightarrow matrices E with $0 \leq E \leq \mathbb{1}$.

States



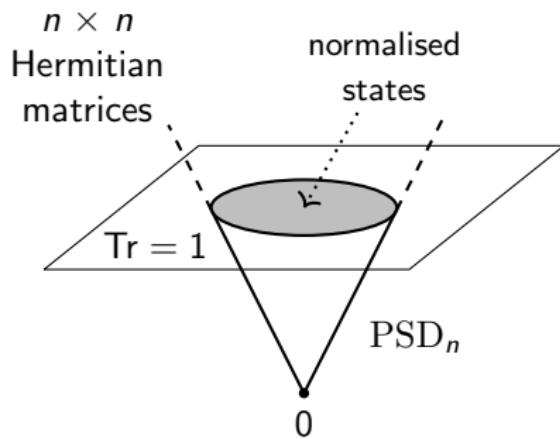
Effects



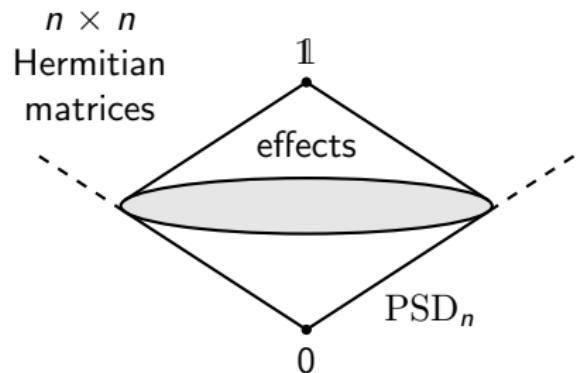
Quantum theory of an n -level system as a GPT

- Un-normalised states: $n \times n$ positive semi-definite matrices PSD_n .
- Normalisation: trace Tr .
- Effects: elements of POVMs \rightarrow matrices E with $0 \leq E \leq \mathbb{1}$.
- **Born rule:** $\Pr(E|\rho) = \text{Tr}[\rho E] \in [0, 1]$.

States

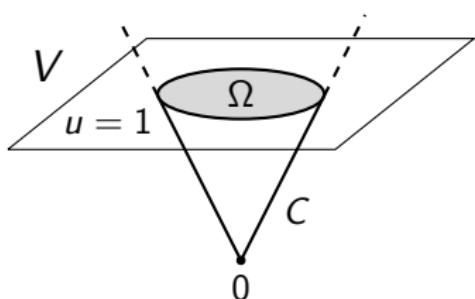


Effects



General probabilistic theories

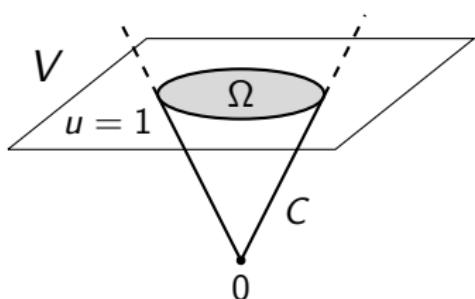
- Un-normalised states: any (proper) convex cone $C \subseteq V$, where V is any finite-dim real vector space.



General probabilistic theories

- Un-normalised states: any (proper) convex cone $C \subseteq V$, where V is any finite-dim real vector space.
- Normalisation: some strictly positive functional

$$u \in V^* := \{\varphi : V \rightarrow \mathbb{R} \text{ linear}\}$$



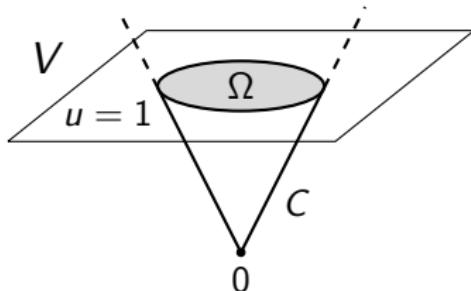
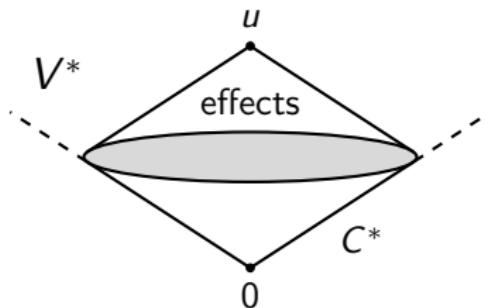
General probabilistic theories

- Un-normalised states: any (proper) convex cone $C \subseteq V$, where V is any finite-dim real vector space.
- Normalisation: some strictly positive functional

$$u \in V^* := \{\varphi : V \rightarrow \mathbb{R} \text{ linear}\}$$

- Effects: functionals $e \in C^* \cap (u - C^*) \subseteq V^*$, with C^* dual cone:

$$C^* := \{\varphi \in V^* : \varphi(x) \geq 0 \ \forall x \in C\}.$$



General probabilistic theories

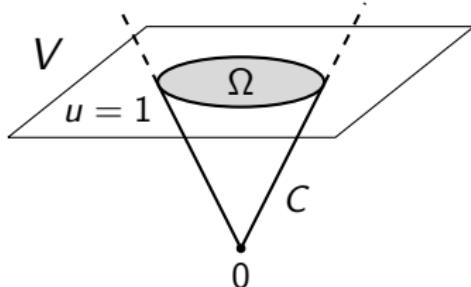
- Un-normalised states: any (proper) convex cone $C \subseteq V$, where V is any finite-dim real vector space.
- Normalisation: some strictly positive functional

$$u \in V^* := \{\varphi : V \rightarrow \mathbb{R} \text{ linear}\}$$

- Effects: functionals $e \in C^* \cap (u - C^*) \subseteq V^*$, with C^* dual cone:

$$C^* := \{\varphi \in V^* : \varphi(x) \geq 0 \ \forall x \in C\}.$$

- **Generalised Born rule:** $\Pr(e|\omega) = e(\omega) \in [0, 1]$.



General probabilistic theories

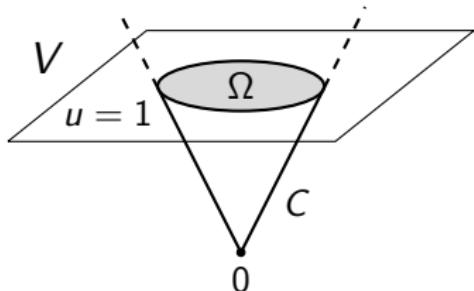
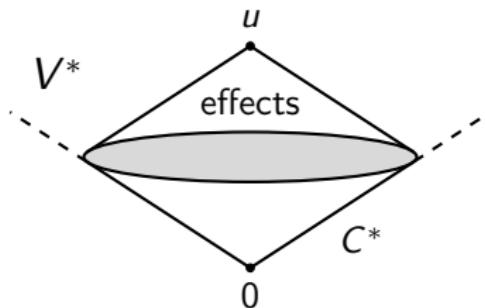
- Un-normalised states: any (proper) convex cone $C \subseteq V$, where V is any finite-dim real vector space.
- Normalisation: some strictly positive functional

$$u \in V^* := \{\varphi : V \rightarrow \mathbb{R} \text{ linear}\}$$

- Effects: functionals $e \in C^* \cap (u - C^*) \subseteq V^*$, with C^* dual cone:

$$C^* := \{\varphi \in V^* : \varphi(x) \geq 0 \ \forall x \in C\}.$$

- **Generalised Born rule:** $\Pr(e|\omega) = e(\omega) \in [0, 1]$.
- Assumption # 1 (**no-restriction hypothesis**): *all mathematically reasonable effects are physically implementable.*



Example: classical theories

Real vector space V with *basis* $\{v_1, \dots, v_d\}$. Then

$$C_{\text{cl}} = \text{cone}\{v_1, \dots, v_d\} = \left\{ \sum_i \lambda_i v_i : \lambda_i \geq 0 \ \forall i \right\}$$

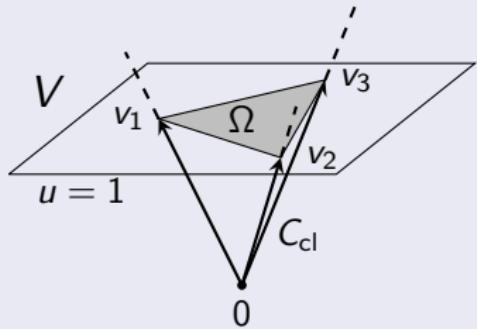
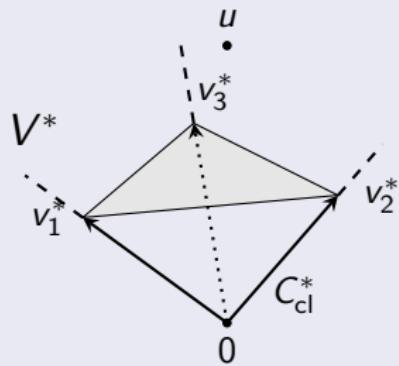
and any $u \in V^*$ such that $u(v_i) > 0 \ \forall i$ define a **classical GPT** (V, C_{cl}, u)
→ its state space is a *simplex*!

Example: classical theories

Real vector space V with basis $\{v_1, \dots, v_d\}$. Then

$$C_{\text{cl}} = \text{cone}\{v_1, \dots, v_d\} = \left\{ \sum_i \lambda_i v_i : \lambda_i \geq 0 \forall i \right\}$$

and any $u \in V^*$ such that $u(v_i) > 0 \forall i$ define a **classical GPT** (V, C_{cl}, u)
→ its state space is a *simplex*!

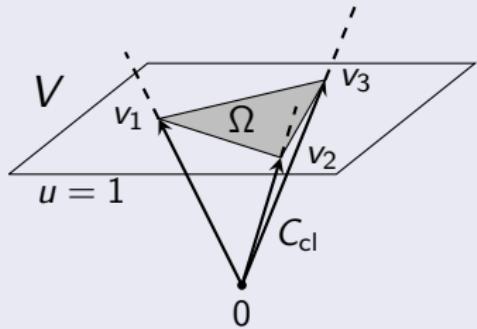
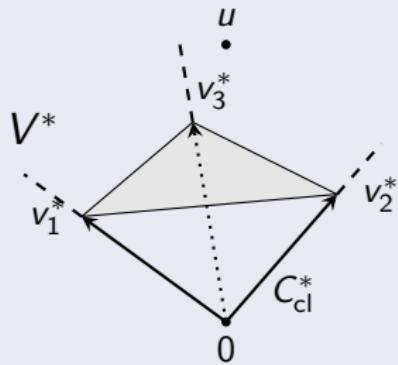


Example: classical theories

Real vector space V with basis $\{v_1, \dots, v_d\}$. Then

$$C_{\text{cl}} = \text{cone}\{v_1, \dots, v_d\} = \left\{ \sum_i \lambda_i v_i : \lambda_i \geq 0 \forall i \right\}$$

and any $u \in V^*$ such that $u(v_i) > 0 \forall i$ define a **classical GPT** (V, C_{cl}, u)
→ its state space is a *simplex*!



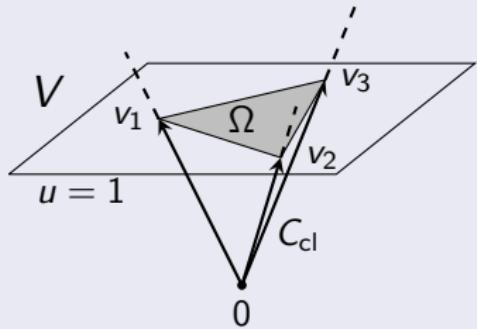
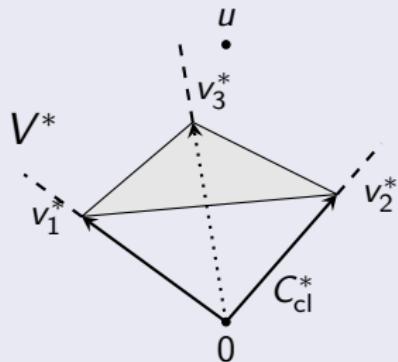
- Classical cone \iff cone generated by a basis of its vector space.

Example: classical theories

Real vector space V with basis $\{v_1, \dots, v_d\}$. Then

$$C_{\text{cl}} = \text{cone}\{v_1, \dots, v_d\} = \left\{ \sum_i \lambda_i v_i : \lambda_i \geq 0 \forall i \right\}$$

and any $u \in V^*$ such that $u(v_i) > 0 \forall i$ define a **classical GPT** (V, C_{cl}, u)
→ its state space is a *simplex*!



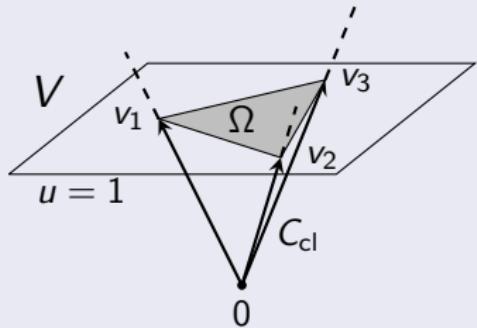
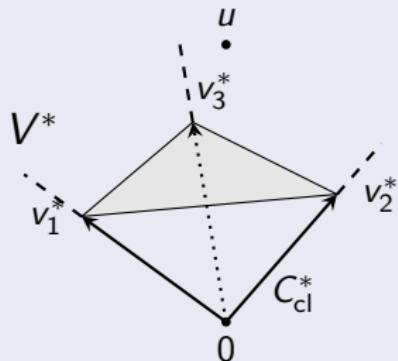
- Classical cone \iff cone generated by a basis of its vector space.
- **Note:** a cone C is classical if and only if its dual C^* is classical.
(In this case the two are generated by dual bases.)

Example: classical theories

Real vector space V with basis $\{v_1, \dots, v_d\}$. Then

$$C_{\text{cl}} = \text{cone}\{v_1, \dots, v_d\} = \left\{ \sum_i \lambda_i v_i : \lambda_i \geq 0 \forall i \right\}$$

and any $u \in V^*$ such that $u(v_i) > 0 \forall i$ define a **classical GPT** (V, C_{cl}, u)
→ its state space is a *simplex*!



- Classical cone \iff cone generated by a basis of its vector space.
- **Note:** a cone C is classical if and only if its dual C^* is classical.
(In this case the two are generated by dual bases.)
- A cone that is not classical, in some sense, describes a GPT with some notion of superposition.

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?
- With a GPT of course! Set $AB = (V_{AB}, C_{AB}, u_{AB})$.

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?
- With a GPT of course! Set $AB = (V_{AB}, C_{AB}, u_{AB})$.
- Assumption # 2 (**local tomography principle**): *global states are uniquely determined by their statistics under local measurements.*

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?
- With a GPT of course! Set $AB = (V_{AB}, C_{AB}, u_{AB})$.
- Assumption # 2 (**local tomography principle**): *global states are uniquely determined by their statistics under local measurements.*
- Good news:

$$V_{AB} = V_A \otimes V_B, \quad u_{AB} = u_A \otimes u_B.$$

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?
- With a GPT of course! Set $AB = (V_{AB}, C_{AB}, u_{AB})$.
- Assumption # 2 (**local tomography principle**): *global states are uniquely determined by their statistics under local measurements.*
- Good news:

$$V_{AB} = V_A \otimes V_B, \quad u_{AB} = u_A \otimes u_B.$$

- What can we say about C_{AB} ?

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?
- With a GPT of course! Set $AB = (V_{AB}, C_{AB}, u_{AB})$.
- Assumption # 2 (**local tomography principle**): *global states are uniquely determined by their statistics under local measurements.*
- Good news:

$$V_{AB} = V_A \otimes V_B, \quad u_{AB} = u_A \otimes u_B.$$

- What can we say about C_{AB} ?
 - 1 Separable states should be in it:

$$C_{AB} \supseteq C_A \odot C_B := \text{conv} \{x \otimes y : x_A \in C_A, y_B \in C_B\}.$$

Bipartite systems in GPTs

- We have two GPTs $A = (V_A, C_A, u_A)$ and $B = (V_B, C_B, u_B)$. How do we describe the bipartite system AB ?
- With a GPT of course! Set $AB = (V_{AB}, C_{AB}, u_{AB})$.
- Assumption # 2 (**local tomography principle**): *global states are uniquely determined by their statistics under local measurements.*
- Good news:

$$V_{AB} = V_A \otimes V_B, \quad u_{AB} = u_A \otimes u_B.$$

- What can we say about C_{AB} ?

1 Separable states should be in it:

$$C_{AB} \supseteq C_A \odot C_B := \text{conv} \{x \otimes y : x_A \in C_A, y_B \in C_B\}.$$

2 Separable effects should yield probabilities when measured on C_{AB} :

$$C_{AB}^* \supseteq C_A^* \odot C_B^* =: (C_A \circledast C_B)^*.$$

This is about all we can say. We are left with the two relations

$$C_A \odot C_B \subseteq C_{AB}, \quad (1)$$

$$C_A^* \odot C_B^* = (C_A \circledast C_B)^* \subseteq C_{AB}^*. \quad (2)$$

- $C_A \odot C_B$ and $C_A \circledast C_B$ are called the **minimal tensor product** and the **maximal tensor product**.

This is about all we can say. We are left with the two relations

$$C_A \odot C_B \subseteq C_{AB}, \quad (1)$$

$$C_A^* \odot C_B^* = (C_A \circledast C_B)^* \subseteq C_{AB}^*. \quad (2)$$

- $C_A \odot C_B$ and $C_A \circledast C_B$ are called the **minimal tensor product** and the **maximal tensor product**.
- Taking the dual to (2) one obtains an upper bound for C_{AB} . Together with (1):

$$C_A \odot C_A \subseteq C_{AB} \subseteq C_A \circledast C_B.$$

This is about all we can say. We are left with the two relations

$$C_A \odot C_B \subseteq C_{AB}, \quad (1)$$

$$C_A^* \odot C_B^* = (C_A \circledast C_B)^* \subseteq C_{AB}^*. \quad (2)$$

- $C_A \odot C_B$ and $C_A \circledast C_B$ are called the **minimal tensor product** and the **maximal tensor product**.
- Taking the dual to (2) one obtains an upper bound for C_{AB} . Together with (1):

$$C_A \odot C_B \subseteq C_{AB} \subseteq C_A \circledast C_B.$$

Note

If $C_A \odot C_B \neq C_A \circledast C_B$, then

- ▷ either $C_A \odot C_B \subsetneq C_{AB}$, that is, there are entangled states; or
- ▷ or $C_A^* \odot C_B^* \subsetneq C_{AB}^*$, that is, there are entangled measurements.

Main problem

Problem

When are C_A, C_B **entangleable**, i.e. satisfy $C_A \odot C_B \neq C_A \circledast C_B$?

¹I. Namioka and R. R. Phelps, *Pacific J. Math.* **31**, 469–480 (1969)

²G. P. Barker, *Linear Multilinear Algebra* **4**, 191–199 (1976). G. P. Barker, *Linear Algebra Appl.* **39**, 263–291 (1981).

Main problem

Problem

When are C_A, C_B **entangleable**, i.e. satisfy $C_A \odot C_B \neq C_A \otimes C_B$?

- Simple observation:

either C_A or C_B is classical $\implies C_A, C_B$ are not entangleable.

(Classical GPT + any other GPT \longrightarrow no entanglement.)

¹I. Namioka and R. R. Phelps, Pacific J. Math. **31**, 469–480 (1969)

²G. P. Barker, Linear Multilinear Algebra **4**, 191–199 (1976). G. P. Barker, Linear Algebra Appl. **39**, 263–291 (1981).

Main problem

Problem

When are C_A, C_B **entangleable**, i.e. satisfy $C_A \odot C_B \neq C_A \circledast C_B$?

- Simple observation:

either C_A or C_B is classical $\implies C_A, C_B$ are not entangleable.

(Classical GPT + any other GPT \longrightarrow no entanglement.)

- Less trivial:¹

C_A is classical $\iff C_A, C_B$ are not entangleable for all cones C_B .

¹I. Namioka and R. R. Phelps, Pacific J. Math. **31**, 469–480 (1969)

²G. P. Barker, Linear Multilinear Algebra **4**, 191–199 (1976). G. P. Barker, Linear Algebra Appl. **39**, 263–291 (1981).

Main problem

Problem

When are C_A, C_B **entangleable**, i.e. satisfy $C_A \odot C_B \neq C_A \oplus C_B$?

- Simple observation:

either C_A or C_B is classical $\implies C_A, C_B$ are not entangleable.

(Classical GPT + any other GPT \longrightarrow no entanglement.)

- Less trivial:¹

C_A is classical $\iff C_A, C_B$ are not entangleable for all cones C_B .

- *Barker's conjecture:*²

C_A, C_B are entangleable \iff neither C_A nor C_B is classical.

¹I. Namioka and R. R. Phelps, Pacific J. Math. 31, 469–480 (1969)

²G. P. Barker, Linear Multilinear Algebra 4, 191–199 (1976). G. P. Barker, Linear Algebra Appl. 39, 263–291 (1981).

Main result

Theorem A (Solution of Barker's conjecture)

C_A, C_B are entangleable \iff neither C_A nor C_B is classical.

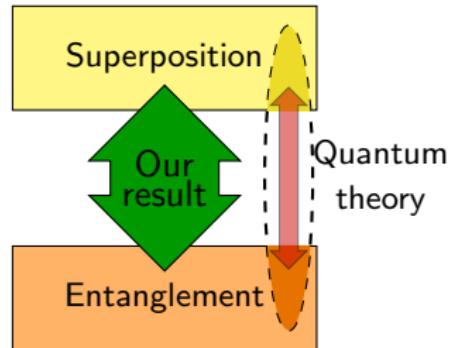
³T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556–574 (2017). B. Passer et al., J. Funct. Anal. 274, 3197–3253 (2018).

Main result

Theorem A (Solution of Barker's conjecture)

C_A, C_B are entangleable \iff neither C_A nor C_B is classical.

- Classicality (or the absence of superposition) is a *local* property. Entanglability is a *global* property.



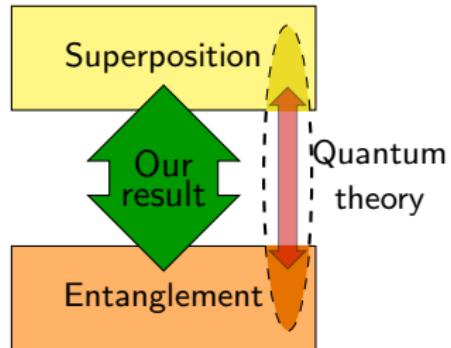
³T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556–574 (2017). B. Passer et al., J. Funct. Anal. 274, 3197–3253 (2018).

Main result

Theorem A (Solution of Barker's conjecture)

C_A, C_B are entangleable \iff neither C_A nor C_B is classical.

- Classicality (or the absence of superposition) is a *local* property. Entanglability is a *global* property.
- The fact that they are so intimately connected is somewhat surprising and aesthetically pleasing (to me, at least).



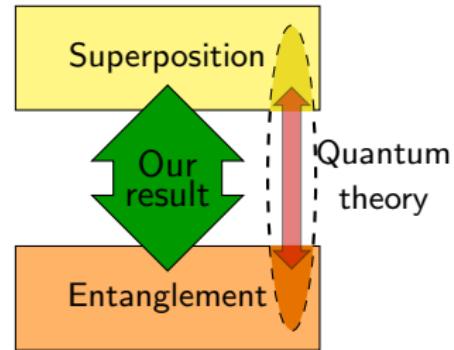
³T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556–574 (2017). B. Passer et al., J. Funct. Anal. 274, 3197–3253 (2018).

Main result

Theorem A (Solution of Barker's conjecture)

C_A, C_B are entangleable \iff neither C_A nor C_B is classical.

- Classicality (or the absence of superposition) is a *local* property. Entanglability is a *global* property.
- The fact that they are so intimately connected is somewhat surprising and aesthetically pleasing (to me, at least).



- Immediate reformulation: *all linear positive maps $C_A \rightarrow C_B$ are measure-and-prepare \iff either C_A or C_B is classical.*

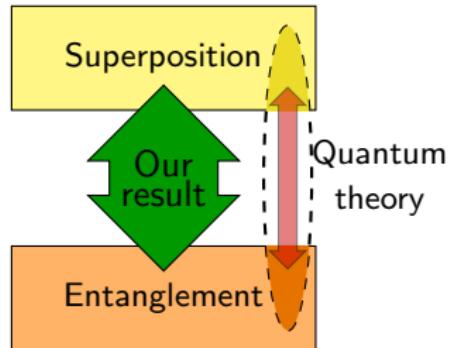
³T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556–574 (2017). B. Passer et al., J. Funct. Anal. 274, 3197–3253 (2018).

Main result

Theorem A (Solution of Barker's conjecture)

C_A, C_B are entangleable \iff neither C_A nor C_B is classical.

- Classicality (or the absence of superposition) is a *local* property. Entanglability is a *global* property.
- The fact that they are so intimately connected is somewhat surprising and aesthetically pleasing (to me, at least).



- Immediate reformulation: *all linear positive maps $C_A \rightarrow C_B$ are measure-and-prepare \iff either C_A or C_B is classical.*
- A conjecture in the theory of abstract operator systems³ asked whether $C \odot \text{PSD}_n = C \circledast \text{PSD}_n$, where PSD_n is the cone of $n \times n$ positive semi-definite matrices ($n \geq 2$), happened only when C is classical $\longrightarrow \text{YES!}$

³T. Fritz et al., SIAM J. Appl. Algebra Geom. 1, 556–574 (2017). B. Passer et al., J. Funct. Anal. 274, 3197–3253 (2018).

Overview of the proof

We already saw that C_A, C_B entangleable \implies neither of them is classical.
We prove the opposite implication.

- 1 **Kite-square sandwiching:** we reduce the problem to a (modified) entangleability problem for two special 3-dimensional cones.

Overview of the proof

We already saw that C_A, C_B entangleable \implies neither of them is classical.
We prove the opposite implication.

- 1 **Kite-square sandwiching**: we reduce the problem to a (modified) entangleability problem for two special 3-dimensional cones.
- 2 **Brute force construction** of an entangled state for this 3-dimensional problem.

Consider the following 2-dimensional shapes:

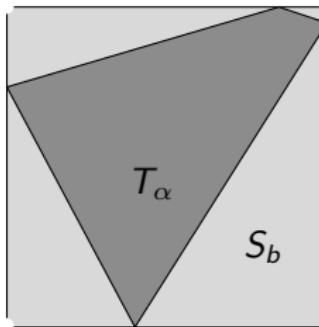
Consider the following 2-dimensional shapes:

- A “kite” parametrised by $\alpha \in (-1, 1)^4$:

$$T_\alpha := \text{conv}\{(1, \alpha_1), (\alpha_2, 1), (-1, \alpha_3), (\alpha_4, -1)\}.$$

- The “blunt square”

$$S_b := [-1, 1]^2 \setminus \{-1, 1\}^2.$$



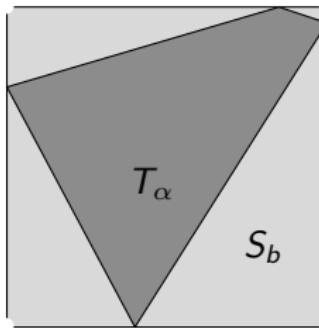
Consider the following 2-dimensional shapes:

- A “kite” parametrised by $\alpha \in (-1, 1)^4$:

$$T_\alpha := \text{conv}\{(1, \alpha_1), (\alpha_2, 1), (-1, \alpha_3), (\alpha_4, -1)\}.$$

- The “blunt square”

$$S_b := [-1, 1]^2 \setminus \{-1, 1\}^2.$$



- Construct the 3-dimensional cones $\mathcal{C}(T_\alpha)$ and $\mathcal{C}(S_b)$, where

$$\mathcal{C}(K) := \text{cone}\{x \oplus 1 : x \in K\}.$$

Definition (kite-square sandwiching)

A cone $C \subset V$ admits a kite-square sandwiching if and only if there are linear maps $\Phi_\ell : \mathbb{R}^3 \rightarrow V$ (lift) and $\Phi_c : V \rightarrow \mathbb{R}^3$ (compress) such that:

- 1 $\Phi_c \circ \Phi_\ell = \text{id}_{\mathbb{R}^3}$;
- 2 $\Phi_\ell(\mathcal{C}(T_\alpha)) \subseteq C$ and $\Phi_c(C) \subseteq \mathcal{C}(S_b)$.

Definition (kite-square sandwiching)

A cone $C \subset V$ admits a kite-square sandwiching if and only if there are linear maps $\Phi_\ell : \mathbb{R}^3 \rightarrow V$ (lift) and $\Phi_c : V \rightarrow \mathbb{R}^3$ (compress) such that:

- 1 $\Phi_c \circ \Phi_\ell = \text{id}_{\mathbb{R}^3}$;
- 2 $\Phi_\ell(\mathcal{C}(T_\alpha)) \subseteq C$ and $\Phi_c(C) \subseteq \mathcal{C}(S_b)$.

Theorem B

A cone C is non-classical if and only if it admits a kite-square sandwiching.

Definition (kite-square sandwiching)

A cone $C \subset V$ admits a kite-square sandwiching if and only if there are linear maps $\Phi_\ell : \mathbb{R}^3 \rightarrow V$ (lift) and $\Phi_c : V \rightarrow \mathbb{R}^3$ (compress) such that:

- 1 $\Phi_c \circ \Phi_\ell = \text{id}_{\mathbb{R}^3}$;
- 2 $\Phi_\ell(\mathcal{C}(T_\alpha)) \subseteq C$ and $\Phi_c(C) \subseteq \mathcal{C}(S_b)$.

Theorem B

A cone C is non-classical if and only if it admits a kite-square sandwiching.

Proving this requires some pretty sophisticated convex geometry. The proof takes up roughly $\sim 45\%$ of our paper.

Definition (kite-square sandwiching)

A cone $C \subset V$ admits a kite-square sandwiching if and only if there are linear maps $\Phi_\ell : \mathbb{R}^3 \rightarrow V$ (lift) and $\Phi_c : V \rightarrow \mathbb{R}^3$ (compress) such that:

- 1 $\Phi_c \circ \Phi_\ell = \text{id}_{\mathbb{R}^3}$;
- 2 $\Phi_\ell(\mathcal{C}(T_\alpha)) \subseteq C$ and $\Phi_c(C) \subseteq \mathcal{C}(S_b)$.

Theorem B

A cone C is non-classical if and only if it admits a kite-square sandwiching.

Proving this requires some pretty sophisticated convex geometry. The proof takes up roughly $\sim 45\%$ of our paper.

We are going to take this for granted. Instead, let us focus on the next question:

How does this help?

Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- Then we are done. Why?

Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- Then we are done. Why?
- Short answer: we use Theorem B and the lift-and-compress maps it gives to transform ω into an entangled state of the big cones. Formally:

Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- Then we are done. Why?
- Short answer: we use Theorem B and the lift-and-compress maps it gives to transform ω into an entangled state of the big cones. Formally:
- Let C_A, C_B be non-classical cones. Consider the lift-and-compress maps $\Phi_\ell^A, \Phi_\ell^B, \Phi_c^A, \Phi_c^B$ from Theorem B. Then define

$$\Omega := (\Phi_\ell^A \otimes \Phi_\ell^B)(\omega) \in (\Phi_\ell^A \otimes \Phi_\ell^B)(\mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)) \subseteq C_A \circledast C_B.$$

Suppose we prove the following crucial fact (intuition later):

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- Then we are done. Why?
- Short answer: we use Theorem B and the lift-and-compress maps it gives to transform ω into an entangled state of the big cones. Formally:
- Let C_A, C_B be non-classical cones. Consider the lift-and-compress maps $\Phi_\ell^A, \Phi_\ell^B, \Phi_c^A, \Phi_c^B$ from Theorem B. Then define

$$\Omega := (\Phi_\ell^A \otimes \Phi_\ell^B)(\omega) \in (\Phi_\ell^A \otimes \Phi_\ell^B)(\mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)) \subseteq C_A \circledast C_B.$$

- If $C_A \circledast C_B = C_A \odot C_B$, and hence $\Omega \in C_A \odot C_B$, we arrive at a contradiction:

$$\omega = \left(\underbrace{\Phi_c^A \circ \Phi_\ell^A}_{\text{id}_{\mathbb{R}^3}} \otimes \underbrace{\Phi_c^B \circ \Phi_\ell^B}_{\text{id}_{\mathbb{R}^3}} \right)(\omega) = (\Phi_c^A \otimes \Phi_c^B)(\Omega) \in \mathcal{C}(S_b) \odot \mathcal{C}(S_b).$$

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \circledast \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- **Note:** in spite of the kites being significantly smaller than the blunt squares, they give rise to enough entanglement to stick out of the minimal tensor product of the blunt squares!

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \otimes \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- **Note:** in spite of the kites being significantly smaller than the blunt squares, they give rise to enough entanglement to stick out of the minimal tensor product of the blunt squares!
- How to prove the above Proposition? With a brute force approach. Four extreme point for each kite:

$$\begin{aligned}s_1 &= (1, \alpha_1; 1), \quad s_2 = (\alpha_2, 1; 1), \quad s_3 = (-1, \alpha_3; 1), \quad s_4 = (\alpha_4, -1; 1), \\ t_1 &= (1, \beta_1; 1), \quad t_2 = (\beta_2, 1; 1), \quad t_3 = (-1, \beta_3; 1), \quad t_4 = (\beta_4, -1; 1).\end{aligned}$$

Proposition (kites entangle strongly)

Fix $\alpha, \beta \in (-1, 1)^4$. Then there is $\omega \in \mathcal{C}(T_\alpha) \otimes \mathcal{C}(T_\beta)$ such that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$.

- **Note:** in spite of the kites being significantly smaller than the blunt squares, they give rise to enough entanglement to stick out of the minimal tensor product of the blunt squares!
- How to prove the above Proposition? With a brute force approach. Four extreme point for each kite:

$$s_1 = (1, \alpha_1; 1), \quad s_2 = (\alpha_2, 1; 1), \quad s_3 = (-1, \alpha_3; 1), \quad s_4 = (\alpha_4, -1; 1), \\ t_1 = (1, \beta_1; 1), \quad t_2 = (\beta_2, 1; 1), \quad t_3 = (-1, \beta_3; 1), \quad t_4 = (\beta_4, -1; 1).$$

- Rescale them to S_i, T_j so that

$$S_1 + S_3 = S_2 + S_4, \quad T_1 + T_3 = T_2 + T_4.$$

- Construct ω :

$$\omega := S_1 \otimes T_2 - S_2 \otimes T_2 + S_2 \otimes T_1 + S_3 \otimes T_3 \stackrel{\text{easy}}{\in} \mathcal{C}(T_\alpha) \otimes \mathcal{C}(T_\beta).$$

- Construct ω :

$$\omega := S_1 \otimes T_2 - S_2 \otimes T_2 + S_2 \otimes T_1 + S_3 \otimes T_3 \stackrel{\text{easy}}{\in} \mathcal{C}(T_\alpha) \oplus \mathcal{C}(T_\beta).$$

- How do we prove that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$? We introduce a witness.

- Construct ω :

$$\omega := S_1 \otimes T_2 - S_2 \otimes T_2 + S_2 \otimes T_1 + S_3 \otimes T_3 \stackrel{\text{easy}}{\in} \mathcal{C}(T_\alpha) \oplus \mathcal{C}(T_\beta).$$

- How do we prove that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$? We introduce a witness.
- For $m \in \mathbb{R}^3 \otimes \mathbb{R}^3$, define

$$F(m) := \underbrace{2m_{33}}_{\text{normalisation}} - \underbrace{(m_{11} + m_{12} + m_{21} - m_{22})}_{\text{CHSH-like}}.$$

- Construct ω :

$$\omega := S_1 \otimes T_2 - S_2 \otimes T_2 + S_2 \otimes T_1 + S_3 \otimes T_3 \stackrel{\text{easy}}{\in} \mathcal{C}(T_\alpha) \oplus \mathcal{C}(T_\beta).$$

- How do we prove that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$? We introduce a witness.
- For $m \in \mathbb{R}^3 \otimes \mathbb{R}^3$, define

$$F(m) := \underbrace{2m_{33}}_{\text{normalisation}} - \underbrace{(m_{11} + m_{12} + m_{21} - m_{22})}_{\text{CHSH-like}}.$$

- It is not difficult to show that $F(m) > 0$ for all $m \in \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$. Note the strict inequality, because we cut off the corners.

- Construct ω :

$$\omega := S_1 \otimes T_2 - S_2 \otimes T_2 + S_2 \otimes T_1 + S_3 \otimes T_3 \stackrel{\text{easy}}{\in} \mathcal{C}(T_\alpha) \oplus \mathcal{C}(T_\beta).$$

- How do we prove that $\omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$? We introduce a witness.
- For $m \in \mathbb{R}^3 \otimes \mathbb{R}^3$, define

$$F(m) := \underbrace{2m_{33}}_{\text{normalisation}} - \underbrace{(m_{11} + m_{12} + m_{21} - m_{22})}_{\text{CHSH-like}}.$$

- It is not difficult to show that $F(m) > 0$ for all $m \in \mathcal{C}(S_b) \odot \mathcal{C}(S_b)$. Note the strict inequality, because we cut off the corners.
- However, a daunting 37-line computation shows that we can make

$$F(\omega) \leq 0 \quad \implies \quad \omega \notin \mathcal{C}(S_b) \odot \mathcal{C}(S_b).$$

Conclusions and outlook

- 1 Local non-classicality (\sim existence of superpositions) and global entangleability, either at the level of states or at that of measurements, are intimately linked.

Conclusions and outlook

- 1 Local non-classicality (\sim existence of superpositions) and global entangleability, either at the level of states or at that of measurements, are intimately linked.
- 2 This connection is not an ‘accidental’ feature of the quantum formalism, but rather it has a somewhat universal nature.

Conclusions and outlook

- 1 Local non-classicality (\sim existence of superpositions) and global entangleability, either at the level of states or at that of measurements, are intimately linked.
- 2 This connection is not an ‘accidental’ feature of the quantum formalism, but rather it has a somewhat universal nature.
- 3 The mathematical problem stemming from this was 50 years old (works of Namioka/Phelps and Barker). Their motivation was coming from the theory of ordered vector spaces.

Conclusions and outlook

- 1 Local non-classicality (\sim existence of superpositions) and global entangleability, either at the level of states or at that of measurements, are intimately linked.
- 2 This connection is not an ‘accidental’ feature of the quantum formalism, but rather it has a somewhat universal nature.
- 3 The mathematical problem stemming from this was 50 years old (works of Namioka/Phelps and Barker). Their motivation was coming from the theory of ordered vector spaces.
- 4 Can one give a quantitative statement, i.e. find measures of non-classicality \mathcal{N} and of entangleability \mathcal{E} such that

$$\mathcal{E}(C_A, C_B) \stackrel{?}{\geq} \mathcal{N}(C_A) \mathcal{N}(C_B)$$

Conclusions and outlook

- 1 Local non-classicality (\sim existence of superpositions) and global entangleability, either at the level of states or at that of measurements, are intimately linked.
- 2 This connection is not an ‘accidental’ feature of the quantum formalism, but rather it has a somewhat universal nature.
- 3 The mathematical problem stemming from this was 50 years old (works of Namioka/Phelps and Barker). Their motivation was coming from the theory of ordered vector spaces.
- 4 Can one give a quantitative statement, i.e. find measures of non-classicality \mathcal{N} and of entangleability \mathcal{E} such that

$$\mathcal{E}(C_A, C_B) \stackrel{?}{\geq} \mathcal{N}(C_A) \mathcal{N}(C_B)$$

- 5 What about other phenomena such as non-locality? Are they also ‘universal’ in this sense? *Vaste programme...*

Conclusions and outlook

- 1 Local non-classicality (\sim existence of superpositions) and global entangleability, either at the level of states or at that of measurements, are intimately linked.
- 2 This connection is not an ‘accidental’ feature of the quantum formalism, but rather it has a somewhat universal nature.
- 3 The mathematical problem stemming from this was 50 years old (works of Namioka/Phelps and Barker). Their motivation was coming from the theory of ordered vector spaces.
- 4 Can one give a quantitative statement, i.e. find measures of non-classicality \mathcal{N} and of entangleability \mathcal{E} such that

$$\mathcal{E}(C_A, C_B) \stackrel{?}{\geq} \mathcal{N}(C_A) \mathcal{N}(C_B)$$

- 5 What about other phenomena such as non-locality? Are they also ‘universal’ in this sense? *Vaste programme...*

Thank you!