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The classical Gibbs paradox
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The classical Gibbs paradox

Historically, seen as a problem with making entropy extensive

Gibbs + Boltzmann introduced a correction factor into microstate counting
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Removing particle labels means phase space volume is divided by N!!

Simon Saunders, "The Gibbs Paradox,” Entropy 20, 552 (2018)
3 Dennis Dieks, "The Gibbs Paradox and Particle Individuality,” Entropy 20, 466 (2018)



What is an observer?
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“observer” = designation of which degrees of freedom can be operated upon

The amount of useful work that we can extract from any system depends — obviously and
necessarily — on how much “subjective” information we have about its microstate, because that tells
EdwinT Jaynes, “The Gibbs paradox,” us which interactions will extract energy and which will not; this is not a paradox, but a platitude.
in Maximum entropy and Bayesian If the entropy we ascribe to a macrostate did not represent some kind of human information about
methods (Springer, 1992) the underlying microstates, it could not perform its thermodynamic function of determining the
amount of work that can be extracted reproducibly from that macrostate.




Why might quantum be different?

Recall the Hong-Ou-Mandel effect in quantum optics:

‘ F SRy Non-polarising beam-splitter and
| number counting are able to tell if the
polarisations are equal or opposite

These operations are polarisation-
independent, so accessible to the
ignorant observer

______________

Recent / related works on thermodynamics with identical particles:

* Holmesetal.,, PRL 124, 210601 (2020); also NPJ 22, 113015 (2020)
* Watanabe et al., PRL 124, 210604 (2020)

* Myers and Deffner, PRE 101, 012110 (2020)

« Allahverdyan and Nieuwenhuizen, PRE 73, 066119 (2006)



Overview

We analyse the thought experiment in a fully quantum manner using bosons / fermions

Want to find the fundamental limits on work extractable by different observers

Toy model

Classical analysis: state-counting

Hilbert space structure and the observers’ operations

Entropy changes and interesting limits



The model



A very simple model:

| _d &
» 2sides of a box, each with > “cells” ‘
» Start with n particles on each side ‘

 Distinguish the gases by a “spin” —just a degree of freedom either Torl
* H = 0 (all cells are degenerate in energy)

* Both sides initially thermalised

Difference between the observers:
* Informed observer can interact with the spin

* Ignorant observer cannot — dynamics must be spin-independent



Is the model too naive?

* How can you extract work if H = 0? ‘

Couple the system to a heat bath B at temperature T and ‘
a work battery W.
Total energy is conserved

Extracted work is proportional to entropy change: o
_ ! _ (o e ©®
AW =kgT [S(p") - S(p)] | ]

S(p) = -Tr(plnp) ﬁ

* Does this really model an ideal gas?

Yes —recovers the correct classical entropy changes

Simon Saunders, “"The Gibbs Paradox,” Entropy 20, 552 (2018)
Dennis Dieks, "The Gibbs Paradox and Particle Individuality,” Entropy 20, 466 (2018)



Classical case



Classical case

Initial state: on each side, we have a uniform distribution of n identical particles over d/2 cells

Final state: uniform distribution over all configurations of 2n particles over d cells
Entropy calculation boils down to a simple counting of microstates

Informed observer: counting depends on whether the spins are the same or different
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Ignorant observer: different spin configurations are counted as the same
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Classical case

AS from microstate counting

Informed Ignorant

-1 -1 1 1
Identical gases 1n(2n+d )—21n(n+d/2 ) 1n(2n+d )_21n(n+d/2 )
2n n n n

d-1 d/2 -1 M +d-1 d/2 -1
Different gases 21][1(7/“r )—2111(?“r / ) 1n( n )—21n(n+ / )
n n 2n n
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Classical case — macroscopic limit

AS from microstate counting Take the limitn > 1, thend —» o

Large particle number and low density

Informed Ignorant
Identical gases
g ~ 0 0
Different gases 2 10 2 ~ 0

/ ~ 0 means O(Inn)

Recovers the ideal gas results Only this changes in quantum case
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The quantum
ignorant observer



Quantum case: Hilbert space structure

Our task is to describe the effective state space seen by the ignorant observer

Single-particle Hilbert space: Y, =N
1 — z @ %S
/ \
“position” (cell) “spin”
iy, i=1,...,d 1), 1)
Single-particle basis change u®N
reps. of U(d), U(2)
N-particle Hilbert space for bosons / fermions:
P P ’ Hy = P (HEY @ HEY)

P, is projector onto (anti-)symmetric subspace

Permutations of particle labels act simultaneously on space and spin: I =
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Coupling spin and spatial symmetry

Spin and spatial permutation symmetries must combine to give overall (anti-)symmetry

Familiar example from atomic physics:
(2 particles, each in its own cell) 112)+21)

T4+ 1)

72 MITT);INLT J=1
‘ ‘ 12)—121) erions 1) = [1)
o[7][7]e R R

A particular symmetry of the spatial wavefunction comes with each J

2

N N N
J(J +1) =eigenvalue of (Z Ja(f)) + (Z J@S’?)) + (z ngi))
i=1 i=1 :
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State space of ignorant observer

Spatial and spin representations are linked via J

U(d) irrep U(2) irrep
»/ / (Schur-Weyl duality for groups U(d) and Sk,
N/2 gi J used twice)
In general: HN = @ H:U X Hs Adamson et al., PRA 78, 033832 (2008)
J=0

Ignorant observer acts on this part only; J is conserved
Conditions on the global unitary U (coupling system, heat bath, work battery):
 Uactsonlyon H factors

* Must preserve exchange symmetry: [U, I1] = 0 VII

Tracing out the spin part, the ignorant observer works with the state  p, = Irgsp = @p,]pg
2
Each component pi in the ensemble evolves independently in the space %i of dimension d ;
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Entropy changes

Thermalisation by the quantum ignorant observer:

IJ
Pr = Tr, p = @pjpi — @ pjd—w not maximally mixed! (due to conservation law)
J
J J
6“
2 -1 ¢ ¢ B
ASignO:ZlendJ—an(n+ / )
¥ n

p; from Clebsch-Gordan coefficients (two large spins);
d; from rep. theory formulas

Never larger than the informed observer: A Si;,, < ASinf, = 21n (n +d - 1) _921n (n +d/2 — 1)
n n

But can be above the classical ignorant observer!

Translates into an average extracted work Z psWy; = kgTAS (achievable with thermal operations)

. J Horodecki & Oppenheim., Nat. Comm. 4, 2059 (2013)
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Interesting limits

a b
AS n=4 (bosons) AS n=24 (bosons)
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macro limit # classical!

Also taking large n: ASinto ® ASigno ~ 2n1n 2

19 (and negligible fluctuations)

2nln?2
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Why does it work?

20

e

Classically, for a given cell configuration, different spin configurations are o )

indistinguishable by the ignorant observer e

But certain superpositions of spin configurations are distinguishable: ‘ + ‘

Schur-Weyl basis states |/, q), for @ H!
J

In the macro limit with orthogonal spins, Indim X ~ N Ind

with prob. = 1
> J
n
Rotation between “classical” basis and the Schur-Weyl basis can be accomplished to error € by a circuit
. . _1
p0|yn0mla| in N, d, ln(E ) Bacon et al., PRL 97, 170502 (2006)

Variant of the quantum Fourier transform



Conclusions

* With quantum particles, relational spininformation imprinted upon observable degrees of freedom
» Superpositions of classically indistinguishable configurations are distinguishable

* Inamacroscopic limit, the lack of knowledge is no barrier —as much work can be extracted as if the particles
were fully distinguishable

* Allowing fully quantum control, classical thermodynamics does not emerge in the macroscopic limit

Open questions:
* More realistic models, H # 0
* Understanding / approximating optimal operations

* Experimental proposals
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Thermalisation by ignorant observer - example

Ignorant observer wants to maximise entropy change for @pﬂ)g — @pjp'mJ ASigno = ZpJASJ
J J J

J : :
Therefore wants to make each p.,” maximally mixed

Example:n =1,d = 2

J.Zl JIZO
1 A2)+21) Ot 1 [12)-21) [ - i)
initially |w)—\/§ 7 7 \f 3 72 ‘
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mixture of 1 )\/_|21> 11),]22)
1 1

ASigno = =In3+ =1In1l
2 2



n=24 (bosons)

Bosons versus Fermions
n=4 (bosons)
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Work fluctuations

Work isn't extracted deterministically

n+d/2—1)
n

Each J occurs with probability p; and results in entropy change  ASigno(J) =Ind; - 21In (

with average value  ASizno = > psASigno(J)
J

Look at variance: V' (ASigno) = ZJ:pJASignO(J)Q — ASngno

Large number, low density limit:

Meanis ASigno ~ 2n1n2

71_2

Varianceis V(ASigno) » o1 " 0.411 negligible compared with mean
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Partial distinguishability

d=50, n=15 (bosons)
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