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The classical Gibbs paradox

Ideal gas in a box, 
expanding 
isothermally to 
twice its original 
volume

contradiction?

Entropy change 
depends on 
whether the gases 
are identical
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The classical Gibbs paradox

Historically, seen as a problem with making entropy extensive

Gibbs + Boltzmann introduced a correction factor into microstate counting

Simon Saunders, “The Gibbs Paradox,” Entropy 20, 552 (2018)
Dennis Dieks, “The Gibbs Paradox and Particle Individuality,” Entropy 20, 466 (2018)

1
2
3

4

5

Removing particle labels means phase space volume is divided by 𝑁!
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What is an observer?

Edwin T Jaynes, “The Gibbs paradox,” 
in Maximum entropy and Bayesian 
methods (Springer, 1992)

Informed observer

Ignorant observer

Can extract work from each 
gas independently

(semi-permeable membrane)

Can’t extract work –
apparatus couples identically 

to both gases

“observer” = designation of which degrees of freedom can be operated upon
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Why might quantum be different?

Recall the Hong-Ou-Mandel effect in quantum optics:

Non-polarising beam-splitter and 
number counting are able to tell if the 

polarisations are equal or opposite

These operations are polarisation-
independent, so accessible to the 

ignorant observer

+

0 or 2

0 or 2

+ +

0,1,2

0,1,2

Recent / related works on thermodynamics with identical particles:

• Holmes et al., PRL 124, 210601 (2020); also NPJ 22, 113015 (2020)
• Watanabe et al., PRL 124, 210604 (2020)
• Myers and Deffner, PRE 101, 012110 (2020)
• Allahverdyan and Nieuwenhuizen, PRE 73, 066119 (2006)
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Overview

We analyse the thought experiment in a fully quantum manner using bosons / fermions

Want to find the fundamental limits on work extractable by different observers

• Toy model

• Classical analysis: state-counting

• Hilbert space structure and the observers’ operations

• Entropy changes and interesting limits
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The model
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Our model

A very simple model:

• 2 sides of a box, each with 
𝑑

2
“cells”

• Start with 𝑛 particles on each side

• Distinguish the gases by a “spin” – just a degree of freedom either ↑ or ↓

• 𝐻 = 0 (all cells are degenerate in energy)

• Both sides initially thermalised

Difference between the observers:

• Informed observer can interact with the spin

• Ignorant observer cannot – dynamics must be spin-independent

8



Our model

Simon Saunders, “The Gibbs Paradox,” Entropy 20, 552 (2018)
Dennis Dieks, “The Gibbs Paradox and Particle Individuality,” Entropy 20, 466 (2018)

Is the model too naïve?

• How can you extract work if 𝑯 = 𝟎?

Couple the system to a heat bath 𝐵 at temperature 𝑇 and 
a work battery 𝑊.
Total energy is conserved

Extracted work is proportional to entropy change: 𝐵

𝑊

• Does this really model an ideal gas?

Yes – recovers the correct classical entropy changes
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Classical case
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Classical case

Initial state: on each side, we have a uniform distribution of 𝑛 identical particles over 𝑑/2 cells

Final state: uniform distribution over all configurations of 2𝑛 particles over 𝑑 cells

Entropy calculation boils down to a simple counting of microstates

Informed observer: counting depends on whether the spins are the same or different

Ignorant observer: different spin configurations are counted as the same

≠

=
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Classical case

ΔS from microstate counting

IgnorantInformed

Identical gases

Different gases
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Classical case – macroscopic limit

Take the limit 𝑛 ≫ 1, then 𝑑 → ∞

Large particle number and low density

IgnorantInformed

Identical gases

Different gases

means

Recovers the ideal gas results

ΔS from microstate counting

Only this changes in quantum case
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The quantum 
ignorant observer
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Quantum case: Hilbert space structure

Single-particle Hilbert space:

𝑁-particle Hilbert space for bosons / fermions:

𝑃± is projector onto (anti-)symmetric subspace

Permutations of particle labels act simultaneously on space and spin:

“position” (cell) “spin”

Our task is to describe the effective state space seen by the ignorant observer

Single-particle basis change 
reps. of

rep. of
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Coupling spin and spatial symmetry

Spin and spatial permutation symmetries must combine to give overall (anti-)symmetry

Familiar example from atomic physics:
(2 particles, each in its own cell) bosons

fermions

A particular symmetry of the spatial wavefunction comes with each 𝑱

1 2

= eigenvalue of
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Spatial and spin representations are linked via 𝑱

In general:

State space of ignorant observer

Ignorant observer acts on this part only; 𝐽 is conserved

(Schur-Weyl duality for groups              and        , 
used twice)

Adamson et al., PRA 78, 033832 (2008)

Tracing out the spin part, the ignorant observer works with the state

Each component         in the ensemble evolves independently in the space           of dimension

irrep irrep

Conditions on the global unitary 𝑈 (coupling system, heat bath, work battery):

• 𝑈 acts only on          factors

• Must preserve exchange symmetry: 
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Thermalisation by the quantum ignorant observer:

Entropy changes

Never larger than the informed observer:

But can be above the classical ignorant observer!

Translates into an average extracted work (achievable with thermal operations) 

not maximally mixed! (due to conservation law)

≡

𝑝𝐽 from Clebsch-Gordan coefficients (two large spins);

𝑑𝐽 from rep. theory formulas

Horodecki & Oppenheim., Nat. Comm. 4, 2059 (2013)
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Interesting limits

2𝑛 ln 2

informed (classical 
or quantum)

ignorant, quantum

ignorant, classical

Low density limit: 𝒅 → ∞ *

* *

for large 𝑛

Also taking large 𝒏: macro limit ≠ classical!

(and negligible fluctuations)
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Why does it work?

Rotation between “classical” basis and the Schur-Weyl basis can be accomplished to error 𝜖 by a circuit 
polynomial in 𝑁, 𝑑, ln(𝜖−1)

Variant of the quantum Fourier transform

Bacon et al., PRL 97, 170502 (2006)

Classically, for a given cell configuration, different spin configurations are 
indistinguishable by the ignorant observer

But certain superpositions of spin configurations are distinguishable:

Schur-Weyl basis states                for

In the macro limit with orthogonal spins, 
with prob. → 1

?

?
?

?
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Conclusions

• With quantum particles, relational spin information imprinted upon observable degrees of freedom

• Superpositions of classically indistinguishable configurations are distinguishable

• In a macroscopic limit, the lack of knowledge is no barrier – as much work can be extracted as if the particles 
were fully distinguishable

• Allowing fully quantum control, classical thermodynamics does not emerge in the macroscopic limit

Open questions:

• More realistic models, 𝐻 ≠ 0

• Understanding / approximating optimal operations

• Experimental proposals
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Thank you

• Quantum correlations are thermodynamically 

useful!

• The distillation of “Quantum” correlations 

might be physically limited!

• The resource theory formalism is powerful! 

arXiv:2006.12482
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Thermalisation by ignorant observer - example

Ignorant observer wants to maximise entropy change for

Therefore wants to make each          maximally mixed

Example: 𝒏 = 𝟏, 𝒅 = 𝟐

mixture of

(unchanged)

initially
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Bosons versus Fermions

2𝑛 ln 2

informed (classical 
or quantum)

ignorant, quantum

ignorant, classical

For 𝑑 = 2𝑛 ≫ 1

(twice classical)
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Work fluctuations

Work isn’t extracted deterministically

Each 𝐽 occurs with probability 𝑝𝐽 and results in entropy change

with average value

Look at variance:

Large number, low density limit:

Mean is 

Variance is negligible compared with mean
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Partial distinguishability

2𝑛 ln 2

informed (classical 
or quantum)

ignorant, quantum

Spin states: | ↑⟩ on left, cos
𝜃

2
↑ + sin

𝜃

2
| ↓⟩ on right

Informed observer can perform any
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