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Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Used in practice.
» Cheap Gradient Principle [GW ‘08]
Compute f(x), Vf(x) in time linear in computing f(x).
 Finding parameters that decrease the loss function.
* Abstracting out Gradient Descent:
» Function value oracle
» Function gradient oracle
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Can quantum “do gradient descent” faster?

 Can find gradient with 1 query to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?

» Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.
Use First-Order Convex Optimization as a proxy for Gradient Descent.
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The Task

Given: a convex region B, first-order oracle access to a convex
function f: R” — R.

Find x’ € Bs.t. f(x’) < minf(x) + €.
xeB
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g e Vi(x) & f(x+v) > f(x)+ (v,g) forall v
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Theorem (Garg-Kothari-Netrapalli-S. ‘20)

For any ¢ > 0, there is a family of 1-Lipschitz functions {f : R" — R}
with n = ©(1/€*) such that any quantum algorithm solving first-order
convex optimization on these requires Q(1/€%) queries.
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« Find functions that encode information.
* e-minimizing f = Learning the encoded information.

« Each query should access the information in a controlled
manner.
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f:R" =R
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Minimum = — 1 at x = (_W""’_%)'

If x; is @ maximum, then g; is a subgradient.
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f(x) = max{z1 X1, ZoXz, . . ., ZnXn}.
Minimum = — -, at x = (7%7.'.’7%)_
Sete = \%'

The behaviour of f
Z4 Zo Z3 Z4 Z
+ = + AL _

X1 X2 X3 Xa Xn

Finding e-optimal point = learning z.



Function Class

ze{+1,-1}"
fz(x) = max{z1 X1, ZoX2, ..., ZnXn}.
Minimum = —%, at x = (—%,...,—%).
Sete = \‘—/95.

Requires Q(n) = Q(1/¢€2) queries.
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Quantum Speedup

A quantum algorithm can e-optimize the previous function class in
O(v/n) queries.

For any S C [n], can find x such that

f(x)=1iff \/ z =+

i€S

Can then use Belovs’ algorithm to learn z from such OR queries.



Lower Bounds

Quantum Lower Bound



The Query Model

We are provided with an oracle Oy to access the unknown function f.



The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern



The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R")



The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R")
* Oracle O ‘answers’ function value and subgradient queries.



The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R")

* Oracle O ‘answers’ function value and subgradient queries.
Usually

Or|x) nput|b) output = |X) npuT|b @ “f(X), V(X)) outPUT



The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R")

* Oracle O ‘answers’ function value and subgradient queries.
Usually

Or|x) nput|b) output = |X) npuT|b @ “f(X), V(X)) outPUT

» For f,f" s.t. f(x) = f'(x) and Vf(x) = Vf'(x):

Os|x) nput|d) REST = OF |X) INPUT |®) REST



The Base Function

“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford



The Base Function

f:R" >R

f(X):maX{X17X2_77X3_2’Ya"'axk_(k_1)7}'

~ is small.



The Base Function

f:R" >R

f(X) = maX{X17X2 -7, X3 _275"%)(/( - (k_ 1)7}
~ is small.

Minimumz—ﬁ,atxz (—if,...,—— 0,0,---).
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The behaviour of f

Let x € R" with ||x|| = 1.

Let vq,..., v be orthonormal vectors sampled uniformly at random.
Y
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The Function Class

VZ(V1,V2,...

fu(x) = max{(vq, X}, (Va, X) — 7, (v3,X) — 2,..

Minimum ~ —

\/E’

1

at x ~ —

vk

V4

vk
Sete= -2,

Vo

, Vi) is a set of k orthonormal vectors in R".

- (Vi X) — (K= 1)}

Vk

The behaviour of f
Let x € R" with ||x|| = 1.

Let vq,..., v, be orthonormal vectors sampled uniformly at random.
Y
0 1/vn
———1/vn
-

vk still nearly at random from n — k dimensional space.

Can’t output e-optimal point.
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First Corrupted
query answer
X1)[¢1) 1X1)|91)
+|X2>M)2> pass through oracle for f,)(x)=(v1,x) +|X2> 2>
+|x3)|¢3) +[X3) [13)
+1Xa)|pa) +|Xa)|¥4)
+[X5)|¢s5) +|x5)[s)

» Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

» The actual, corrupted states at the end are also close.

* Actual, corrupted algorithm nearly the same.
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The Hybrid Argument: Second query

Second
c?jgfynd answer
twice
(corrupted) (
corrupted)
[X1)|71)
+|X >|7_ > pass through oracle for fy, v,)(X)=max{(v1,x),(v2,x)—~7} |X1>‘X1>
2 2
)7} +|X2) [x2)
X3)|73
1) 72} +[X3)[x3)
X4)|T4
6 7s) +[Xa)xa)
Xs)| T
o +1X)|x5)
+..

» Changing oracle #2 barely changes the resulting state after 2
queries. (with high probability)
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The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

» The k — 1-times corrupted algorithm fails.
Success probability of the actual algorithm is also small.
Actual function used is slightly modified to account for queries outside B.
n can be as small as 1/¢® for the above argument.

Modifications taken from Bubeck et al. can bring n down to 1/¢*.
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Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.
Quantum can’t do better here either.

Similar proof to the one shown, but the function requires smoothing.
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Quantum computers can’t speed up gradient descent in general.
Yet...

» What is the quantum complexity of convex optimization in small
dimensions?

» What other classes of convex optimization problems get quantum
speedups?
» What is the quantum complexity of optimizing the function class

fv(x) = max{{vy, x), (vo, X), ..., (v, X)}?
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