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Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.
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Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Used in practice.

• Cheap Gradient Principle [GW ‘08]
Compute f (x),∇f (x) in time linear in computing f (x).

• Finding parameters that decrease the loss function.

• Abstracting out Gradient Descent:

• Function value oracle
• Function gradient oracle
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Can quantum “do gradient descent” faster?

• Can find gradient with 1 query to function oracle. [Jordan ‘05]

• Hope: Use less than k queries to get the result of k gradient
descent steps?

• Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.
Use First-Order Convex Optimization as a proxy for Gradient Descent.
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First-Order Convex
Optimization



The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

On input x , oracle Of returns f (x),∇f (x).
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The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x∗ = arg min
x∈B

f (x).
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The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x ′ ∈ B s.t. f (x ′) ≤ min
x∈B

f (x) + ε.

ε-optimal for G-Lipschitz function in ball of radius R
⇐⇒

ε/GR-optimal for 1-Lipschitz function in ball of radius 1
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The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x ′ ∈ B s.t. f (x ′) ≤ min
x∈B

f (x) + ε.

g ∈ ∇f (x)⇔ f (x + v) ≥ f (x) + 〈v ,g〉 for all v
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Known Algorithms

Center of Gravity Method
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Projected Subgradient Descent: 1/ε2 steps.

Fix ε

Dimension n→

1 1/ε2 1/ε4

[NY ‘83]
Ω(1/ε2) queries

Classical: Deterministic
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Projected Subgradient Descent: 1/ε2 steps.

Fix ε

Dimension n→

1 1/ε2 1/ε4

[BJLLS ‘19]
Ω(1/ε2) queries

Classical: Randomized

Theorem (Garg-Kothari-Netrapalli-S. ‘20)
For any ε > 0, there is a family of 1-Lipschitz functions {f : Rn → R}
with n = Θ(1/ε2) such that any randomized algorithm solving
first-order convex optimization on these requires Ω(1/ε2) queries.
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Fix ε

Dimension n→
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Fix ε

Dimension n→

1 1/ε2 1/ε4

[CCLW ‘18]
Ω(1/ε) queries

Quantum

Theorem (Garg-Kothari-Netrapalli-S. ‘20)
For any ε > 0, there is a family of 1-Lipschitz functions {f : Rn → R}
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Lower Bounds



Theme for Lower Bounds

• Find functions that encode information.

• ε-minimizing f =⇒ Learning the encoded information.

• Each query should access the information in a controlled
manner.
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Lower Bounds

Randomized Lower Bound



The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n , at x =

(
− 1√

n , . . . ,−
1√
n

)
.

If xi is a maximum, then ei is a subgradient.
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Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

(
− z1√

n , . . . ,−
zn√

n

)
.

Set ε = .9√
n .
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.

Set ε = .9√
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The behaviour of f
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x1 x2 x3 x4 xn

++

≈ 2 bits of z revealed per query.
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The behaviour of f
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Finding ε-optimal point =⇒ learning z.
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Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

(
− z1√

n , . . . ,−
zn√

n

)
.

Set ε = .9√
n .

Requires Ω(n) = Ω(1/ε2) queries.
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Quantum Speedup

A quantum algorithm can ε-optimize the previous function class in
O(
√

n) queries.

For any S ⊆ [n], can find x such that

fz(x) = 1 iff
∨
i∈S

zi = +

Can then use Belovs’ algorithm to learn z from such OR queries.

8



Quantum Speedup

A quantum algorithm can ε-optimize the previous function class in
O(
√

n) queries.

For any S ⊆ [n], can find x such that

fz(x) = 1 iff
∨
i∈S

zi = +

Can then use Belovs’ algorithm to learn z from such OR queries.

8



Quantum Speedup

A quantum algorithm can ε-optimize the previous function class in
O(
√

n) queries.

For any S ⊆ [n], can find x such that

fz(x) = 1 iff
∨
i∈S

zi = +

Can then use Belovs’ algorithm to learn z from such OR queries.

8



Lower Bounds

Quantum Lower Bound



The Query Model

We are provided with an oracle Of to access the unknown function f .

• Input register INPUT with orthogonal states {|x〉}x∈Rn

(rather for a discretization of Rn)

• Oracle Of ‘answers’ function value and subgradient queries.

Usually

Of |x〉INPUT |b〉OUTPUT = |x〉INPUT |b ⊕ “f (x),∇f (x)”〉OUTPUT

• For f , f ′ s.t. f (x) = f ′(x) and ∇f (x) = ∇f ′(x):

Of |x〉INPUT |φ〉REST = Of ′ |x〉INPUT |φ〉REST
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The Base Function

“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford

f : Rn → R

f (x) = max{x1, x2 − γ, x3 − 2γ, . . . , xk − (k − 1)γ}.

γ is small.

Minimum ≈ − 1√
k
, at x ≈

(
− 1√

k
, . . . ,− 1√

k
,0,0, · · ·

)
.
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The Function Class

V = (v1, v2, . . . , vk ) is a set of k orthonormal vectors in Rn.

fV (x) = max{〈v1, x〉, 〈v2, x〉 − γ, 〈v3, x〉 − 2γ, . . . , 〈vk , x〉 − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · · − vk√

k
.

Set ε = .9√
k
.
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The Hybrid Argument

First
query

|x1〉|φ1〉
+|x2〉|φ2〉
+|x3〉|φ3〉
+|x4〉|φ4〉
+|x5〉|φ5〉
+ · · ·

pass through oracle for fV (x)−−−−−−−−−−−−−−−−→

• Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

• The actual, corrupted states at the end are also close.

• Actual, corrupted algorithm nearly the same.
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The Hybrid Argument: Second query

Second
query
(corrupted)

|x1〉|τ1〉
+|x2〉|τ2〉
+|x3〉|τ3〉
+|x4〉|τ4〉
+|x5〉|τ5〉
+ · · ·

pass through oracle for fV (x)−−−−−−−−−−−−−−−−→

• Changing oracle #2 barely changes the resulting state after 2
queries. (with high probability)
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The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

Actual function used is slightly modified to account for queries outside B.

n can be as small as 1/ε6 for the above argument.

Modifications taken from Bubeck et al. can bring n down to 1/ε4.
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Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

Quantum can’t do better here either.

Similar proof to the one shown, but the function requires smoothing.

15
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Open Problems



Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

• What other classes of convex optimization problems get quantum
speedups?

• What is the quantum complexity of optimizing the function class

fV (x) = max{〈v1, x〉, 〈v2, x〉, . . . , 〈vk , x〉}?
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