
(Sub)Exponential advantage of

adiabatic quantum computation with no sign problem*

Matthew B. Hastings András Gilyén Umesh Vazirani

We demonstrate the possibility of (sub)exponential quantum speedup via a quantum algo-
rithm that follows an adiabatic path of a gapped sparse Hamiltonian with no sign problem. This
is in sharp contrast with frustration-free stoquastic Hamiltonians, where no such speedup is pos-
sible as shown by Bravyi and Terhal [BT10]. The Hamiltonian that exhibits this speed-up comes
from the adjacency matrix of an undirected graph, and we can view the adiabatic evolution as an
e�cient O(poly(n))-time quantum algorithm for �nding a speci�c "EXIT" vertex in the graph
given the "ENTRANCE" vertex. On the other hand we show that if the graph is given via
an adjacency-list oracle, there is no classical algorithm that �nds the "EXIT" with probability
greater than exp(−nδ) using at most exp(nδ) queries for δ = 1

5 − o(1). Our construction of the
graph is somewhat similar to the �welded-trees� construction of Childs et al. [CCD+03], but uses
additional ideas for simultaneously achieving a spectral gap and a short adiabatic path.

Adiabatic quantum computing [FGGS00] is an interesting model of computation that is for-
mulated directly in terms of Hamiltonians, the quantum analog of constraint satisfaction problems
(CSPs). The computation starts in the known ground state of an initial Hamiltonian, and slowly
(adiabatically) transforms the acting Hamiltonian into a �nal Hamiltonian whose ground state en-
capsulates the answer to the computational problem in question. The �nal state of the computation
is guaranteed, by the quantum adiabatic theorem, to have high overlap with the desired ground
state, as long as the running time of the adiabatic evolution is polynomially large in the inverse of
the smallest spectral gap of any Hamiltonian along the adiabatic path [AR04]. This model has been
intensely studied, not only because of its inherent interest, but also because it is the zero-temperature
limit of quantum annealing.

In full generality, adiabatic quantum computing is known to be equivalent to standard circuit-
based quantum computing [AvDK+07]. A very interesting question is what is the power of adiabatic
quantum computing where all Hamiltonians were "stoquastic," i.e., restricted to not having a sign
problem. What this means is that in some basis all o�-diagonal terms of H are non-positive.
Adiabatic quantum computing with no sign problem includes the most natural case where the �nal
Hamiltonian is diagonal, and represents the objective function to be optimized, and the initial
Hamiltonian consists of Pauli X operators acting on each qubit, with ground state the uniform
superposition on all the n-bit strings. This question was also motivated by understanding the
computational limits of the quantum annealers implemented by the company D-Wave, where all the
Hamiltonians were stoquastic.

Bravyi and Terhal [BT10] showed that for frustration-free Hamiltonians without a sign problem,
computing the ground state is classically tractable, thereby raising the question of whether this
was true for general Hamiltonians without a sign problem. Indeed, a stronger conjecture was that
quantum Monte-Carlo, a widely used heuristic in computational condensed matter physics, already
provided a technique for an e�cient classical simulation. This latter possibility was ruled out by a
result of Hastings and Freedman [HF13], who showed the existence of topological obstructions to
the convergence of quantum Monte Carlo on such problems.

The question of classical tractability for general Hamiltonians with no sign problem was still
open. In this submission, we show that there is a (sub)exponential oracle separation, of the form 2n

δ

between classical algorithms and adiabatic quantum computation with no sign problem. Moreover,
our construction of the Hamiltonian is fairly transparent � it consists of a graph with an ENTRANCE
and an EXIT vertex, and the challenge is: given the ENTRANCE vertex and oracle access to the
adjacency matrix of the graph, �nd the EXIT vertex. A simple quantum walk �nds the EXIT vertex
in polynomial time, and likewise so does a simple adiabatic algorithm which carries out a straight
line interpolation between the initial and �nal Hamiltonian.

*This submission is based on two recent papers: [Has20, GV20].
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Our simple construction highlights the similarities and di�erences with the well known �welded-
trees" graph (see Fig. 1 of the paper) which is the basis of the �rst known example of exponential
speedup by quantum walks [CCD+03]. The welded-trees graph is not suitable for adiabatic com-
putation, since the ground state has exponentially small support on the roots of the two trees (the
ENTRANCE and EXIT vertices). To see this, notice that a quantum walk on the welded trees may
be viewed as walking on the symmetric subspace of each level of the trees � i.e. it is just a path
of length 2depth + 1. This path has uniform edge weights, except at the middle edge, which has√

2-times bigger weight. This makes the largest eigenvector of the path graph decay exponentially
from the middle towards the two ends. We start by the simple observation that equalizing the edge
weights in the level graph on symmetric subspaces has the e�ect of �xing the exponential decay
problem. On the other hand, this necessarily makes the underlying graph non-regular. In turn, this
enables classical algorithms to detect the structure of the graph [CW20, BDCG+20] and ultimately
destroys the lower bound of [CCD+03] that heavily build on the regularity of the graph. In order
to restore the classical hardness result we �decorate� the graph by means of attaching a carefully
shaped forest to every vertex. Another feature that can be seen very concretely in our simpli�ed
construction is the role of the `2 versus `1 normalization di�erence in the behavior of the quantum
vs. classical walk.

Main results. The main idea is to start with a graph that the adiabatic algorithm can traverse
e�ciently, and to hide that graph within a larger graph as follows: attach a number of trees to
each vertex of the original graph, so that the attached trees form the bulk of the new graph. Now,
the intuition is that the behavior of a quantum walk versus classical walk on the attached trees
would be governed by their `2 → `2 (i.e., spectral) norm versus `1 → `1 norm respectively, and
the latter is quadratically larger. As a result the attached trees only negligibly a�ect the `2-weight
distribution of the ground state (and so quantum algorithms only su�er from a minor perturbation),
while they dramatically shift the `1-weight distribution of the ground state away from the original
graph. Intuitively speaking this enables the trees to lure away classical random walks from the
original graph, so that they get lost in the attached �camou�age trees�. Furthermore, by choosing
the trees to have a confusing enough shape, one can ensure that there is no classical algorithm that
can avoid getting drawn into the �camou�age trees.� Therefore, classical algorithms fail to quickly
explore the original graph, and in our case this ultimately leads to their inability of e�ciently �nding
the EXIT vertex.

The classical hardness is achieved by constructing hard-to-navigate trees with a fractal-like struc-
ture that are built in a recursive manner, via a sequence of so-called �decorations�. In order to achieve
(sub)exponential hardness, we apply polynomially many rounds of decoration. Intuitively speaking
each round of decoration doubles the time that a classical algorithm needs for �nding the EXIT.

The basic adiabatic path at the core of our quantum algorithm. We begin with a simple
underlying problem of starting at one endpoint of a path on ` vertices, and �nding the other endpoint
of the path. A simple adiabatic algorithm for this problem is speci�ed as follows: Let A` denote the
adjacency matrix of the path 〈k|A`|k+1〉 = 〈k+1|A`|k〉 = 1, and let the corresponding Hamiltonian
be H` := −A`, while H(i) := −|1〉〈1| and H(f) := −|`〉〈`|.

1 2 3 `−2 `−1 `
H`· · ·H(i) H(f)

Consider the simple adiabatic path H`(s) that �rst interpolates between Hi and H`, then between
H` and Hf , so that H`(s) := (1 + s)H` − sH(i) for s ∈ [−1, 0] and H`(s) := (1 − s)H` + sH(f) for
s ∈ [0, 1].

If one moves slowly enough along this adiabatic path [FGGS00, AR04], the quantum evolution
maps �ENTRANCE�:= |1〉 � the initial ground state of H(i) to �EXIT�:= |`〉 � the �nal ground state
of H(f), since H(s) has a gap of size Ω( 1

`2
) for all s ∈ [−1, 1]. Note that if one wishes to use only
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a simple �straight� adiabatic path, and stops at s = 0, a measurement in the computational basis
still reveals the state |`〉 with probability at least Ω(`−3) since the ground state of H` has Ω(`−

3
2 )

overlap with |`〉.

Making the task of �nding EXIT classically hard. In order to prove classical hardness we
will hide the EXIT vertex in a larger graph � the new graph will be chosen to allow the quantum
adiabatic algorithm to still be e�cient, while making the task of any classical algorithm very di�cult.
The id's of the vertices will be chosen randomly in order to remove any non-structural hints about
the whereabouts of the EXIT vertex, and the graph will be speci�ed by oracle access to its adjacency
list, together with the ENTRANCE vertex � one of the two vertices with a self-loop. The task is to
�nd the EXIT vertex � the other vertex with a self-loop attached. The graph will have polynomially
bounded maximal vertex degree, so the adiabatic evolution can be e�ciently performed by a quantum
computer using (time-dependent) sparse Hamiltonian simulation techniques [BCS+20].

In order to make the task of �nding EXIT classically hard we �blow-up� the path graph of length
` via two main modi�cations, that we call obfuscation and decoration.

De�nition 1 (Obfuscation of a path of length `). We replace every vertex that has distance d ∈ [k]
from terminal vertices {ENTRANCE, EXIT} by a cluster C of m2d vertices and call these the funnel
vertices, and replace the other middle vertices (that have distance d > k) by a cluster of m2k vertices,

and call those the tunnel vertices. Then we add edges between clusters Cj and Cj+1 corresponding

to neighbor vertices j and j + 1 in P`, so that we build an m2-ary tree (with the terminal vertices

as roots) on the funnel vertices. Between clusters that correspond to vertices with distance d ≥ k
we add edges along m random matchings. Additionally, in order to preserve spectral properties we

add 2m self-loops to the ENTRANCE and the EXIT vertices, and an independently chosen random

uniform degree-(4 ·m) expander graph on each cluster Cj : j ∈ [`] \ {1, `}, as in Appendix C.

Note that the graph on the tunnel vertices is 4m-regular. The decoration construction, described
next, will hang m trees from each vertex of the obfuscated graph, each of them being a complete
(5m − 1)-ary tree (by a complete tree we mean a tree for which every node has the same number
of children except at the bottom layer, which is at a �xed depth) on its �rst poly(m) layers, and
then having gradually less children at later layers. The construction is motivated by its e�ect on
the tunnel � it will increase the degree of each tunnel vertices to 5m. Thus, the resulting graph
will still be 5m-regular on the original tunnel vertices, as well as on the surrounding vertices in the
�rst poly(m) layers of the added trees. This will make it very di�cult for any classical algorithm to
distinguishing edges between the tunnel vertices from edges that lead away from the tunnel, thereby
making the traversal of the tunnel very slow.

If we would everywhere add a complete (5m− 1)-ary tree of depth d, then the decoration trees
would be easy to detect: after traversing an edge perform a non-backtracking walk of length d, if one
arrives at a leaf it means that the traversed edge is hanging a decoration tree. Since we cannot add
more than exp(poly(m)) new vertices, the trees must have a bounded depth. Therefore, in order to
circumvent such detection algorithms we should construct trees where the distribution of the lengths
before a non-backtracking random walk hits the bottom of a tree looks approximately self-similar,
i.e., after going one level deeper in the tree the expected distribution should not change by more
than a (sub)exponentially small amount. In order to achieve this, the decoration is carried out in
r = mδ rounds, giving the attached trees a complex fractal-like structure.

De�nition 2 (Decoration). Let G = (V,E) be a graph. A level-j decoration graph Gj is obtained
from G by �decorating� every vertex v ∈ V by attaching m(1−δ) new trees via an edge to their root.

The attached trees are complete (5m− (j−1)m(1−δ)−1)-ary trees with depth jm(3δ+o(1)). We de�ne

G(r) as the r-round decoration of G, which is obtained from G by applying a level-r decoration, then
subsequently level-(r − 1), level-(r − 2), . . ., level-1 decorations.
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