
(Sub)Exponential advantage of
adiabatic quantum computation

with no sign problem
Matthew Hastings András Gilyén Umesh Vazirani

Microsoft Caltech UC Berkeley

arXiv:2005.03791 arXiv:2011.09495

QIP, Munich, 5th February 2021

Adiabatic quantum computation – background
I A model of quantum computation utilizing a slowly changing Hamiltonian H(s):

The adiabatic evolution stays in the ground state ψ(s) and maps ψ(0) to ψ(1).

I The ground state is accurately mapped if the evolution time is t = Θ(1/poly(∆))

1 / 11

Adiabatic quantum computation – background
I A model of quantum computation utilizing a slowly changing Hamiltonian H(s):

The adiabatic evolution stays in the ground state ψ(s) and maps ψ(0) to ψ(1).

I The ground state is accurately mapped if the evolution time is t = Θ(1/poly(∆))

1 / 11

Adiabatic quantum computation – background
I A model of quantum computation utilizing a slowly changing Hamiltonian H(s):

The adiabatic evolution stays in the ground state ψ(s) and maps ψ(0) to ψ(1).

I The ground state is accurately mapped if the evolution time is t = Θ(1/poly(∆))
1 / 11

Adiabatic quantum computation
I Is an equivalent universal model of quantum computation [Aharonov et al. 2004]

I A popular heuristics for combinatorial optimization

H(s) = (s − 1)
n∑

i=1

Xi + s · Hz ,

where Hz is the diagonal Hamiltonian describing the classical objective function

I Unfortunately, for hard problems the gap ∆ tends to become small

I An interesting special case is when the Hamiltonians have “no sign problem”,

i.e., all off-diagonal matrix elements of H(s) are non-positive for every s ∈ [0, 1]

(note that this is a basis-dependent property)

2 / 11

Adiabatic quantum computation
I Is an equivalent universal model of quantum computation [Aharonov et al. 2004]

I A popular heuristics for combinatorial optimization

H(s) = (s − 1)
n∑

i=1

Xi + s · Hz ,

where Hz is the diagonal Hamiltonian describing the classical objective function

I Unfortunately, for hard problems the gap ∆ tends to become small

I An interesting special case is when the Hamiltonians have “no sign problem”,

i.e., all off-diagonal matrix elements of H(s) are non-positive for every s ∈ [0, 1]

(note that this is a basis-dependent property)

2 / 11

Adiabatic quantum computation
I Is an equivalent universal model of quantum computation [Aharonov et al. 2004]

I A popular heuristics for combinatorial optimization

H(s) = (s − 1)
n∑

i=1

Xi + s · Hz ,

where Hz is the diagonal Hamiltonian describing the classical objective function

I Unfortunately, for hard problems the gap ∆ tends to become small

I An interesting special case is when the Hamiltonians have “no sign problem”,

i.e., all off-diagonal matrix elements of H(s) are non-positive for every s ∈ [0, 1]

(note that this is a basis-dependent property)

2 / 11

Adiabatic quantum computation
I Is an equivalent universal model of quantum computation [Aharonov et al. 2004]

I A popular heuristics for combinatorial optimization

H(s) = (s − 1)
n∑

i=1

Xi + s · Hz ,

where Hz is the diagonal Hamiltonian describing the classical objective function

I Unfortunately, for hard problems the gap ∆ tends to become small

I An interesting special case is when the Hamiltonians have “no sign problem”,

i.e., all off-diagonal matrix elements of H(s) are non-positive for every s ∈ [0, 1]

(note that this is a basis-dependent property)
2 / 11

No sign problem (stoquastic) – classically tractable?
I The lack of signs prevents destructive interference in the ground state

Perron-Frobenius theorem: all amplitudes in the ground state have the same sign

I If the Hamiltonians are also frustration-free, then the adiabatic evolution can be
classically efficiently simulated [Bravyi & Terhal, 2008]

I Monte Carlo methods tend to work remarkably well in practice

I However, there are topological obstruction to path integral Monte Carlo
[Hastings & Freedman, 2013]

I Diffusion Monte Carlo is sensitive to `1 vs. `2 differences in the ground state
[Jarret, Jordan, & Lackey, 2016]

3 / 11

No sign problem (stoquastic) – classically tractable?
I The lack of signs prevents destructive interference in the ground state

Perron-Frobenius theorem: all amplitudes in the ground state have the same sign

I If the Hamiltonians are also frustration-free, then the adiabatic evolution can be
classically efficiently simulated [Bravyi & Terhal, 2008]

I Monte Carlo methods tend to work remarkably well in practice

I However, there are topological obstruction to path integral Monte Carlo
[Hastings & Freedman, 2013]

I Diffusion Monte Carlo is sensitive to `1 vs. `2 differences in the ground state
[Jarret, Jordan, & Lackey, 2016]

3 / 11

No sign problem (stoquastic) – classically tractable?
I The lack of signs prevents destructive interference in the ground state

Perron-Frobenius theorem: all amplitudes in the ground state have the same sign

I If the Hamiltonians are also frustration-free, then the adiabatic evolution can be
classically efficiently simulated [Bravyi & Terhal, 2008]

I Monte Carlo methods tend to work remarkably well in practice

I However, there are topological obstruction to path integral Monte Carlo
[Hastings & Freedman, 2013]

I Diffusion Monte Carlo is sensitive to `1 vs. `2 differences in the ground state
[Jarret, Jordan, & Lackey, 2016]

3 / 11

No sign problem (stoquastic) – classically tractable?
I The lack of signs prevents destructive interference in the ground state

Perron-Frobenius theorem: all amplitudes in the ground state have the same sign

I If the Hamiltonians are also frustration-free, then the adiabatic evolution can be
classically efficiently simulated [Bravyi & Terhal, 2008]

I Monte Carlo methods tend to work remarkably well in practice

I However, there are topological obstruction to path integral Monte Carlo
[Hastings & Freedman, 2013]

I Diffusion Monte Carlo is sensitive to `1 vs. `2 differences in the ground state
[Jarret, Jordan, & Lackey, 2016]

3 / 11

No sign problem (stoquastic) – classically tractable?
I The lack of signs prevents destructive interference in the ground state

Perron-Frobenius theorem: all amplitudes in the ground state have the same sign

I If the Hamiltonians are also frustration-free, then the adiabatic evolution can be
classically efficiently simulated [Bravyi & Terhal, 2008]

I Monte Carlo methods tend to work remarkably well in practice

I However, there are topological obstruction to path integral Monte Carlo
[Hastings & Freedman, 2013]

I Diffusion Monte Carlo is sensitive to `1 vs. `2 differences in the ground state
[Jarret, Jordan, & Lackey, 2016]

3 / 11

Topological obstructions
I Plain Monte Carlo algorithms perform a random walk on the state space

I Path integral Monte Carlo is a random walk among paths on the state space

Obstructions to path integral Monte Carlo

I Local moves gradually grow / shrink the paths between the moves

I Long cycles that cannot be approximated by shorter cycles are problematic
(especially if the long cycles make important contribution, e.g., particle on a torus)

I In practice this issue can be often fixed by adding appropriate non-local moves

4 / 11

Topological obstructions
I Plain Monte Carlo algorithms perform a random walk on the state space

I Path integral Monte Carlo is a random walk among paths on the state space

Obstructions to path integral Monte Carlo

I Local moves gradually grow / shrink the paths between the moves

I Long cycles that cannot be approximated by shorter cycles are problematic
(especially if the long cycles make important contribution, e.g., particle on a torus)

I In practice this issue can be often fixed by adding appropriate non-local moves

4 / 11

Topological obstructions
I Plain Monte Carlo algorithms perform a random walk on the state space

I Path integral Monte Carlo is a random walk among paths on the state space

Obstructions to path integral Monte Carlo

I Local moves gradually grow / shrink the paths between the moves

I Long cycles that cannot be approximated by shorter cycles are problematic
(especially if the long cycles make important contribution, e.g., particle on a torus)

I In practice this issue can be often fixed by adding appropriate non-local moves

4 / 11

Topological obstructions
I Plain Monte Carlo algorithms perform a random walk on the state space

I Path integral Monte Carlo is a random walk among paths on the state space

Obstructions to path integral Monte Carlo

I Local moves gradually grow / shrink the paths between the moves

I Long cycles that cannot be approximated by shorter cycles are problematic
(especially if the long cycles make important contribution, e.g., particle on a torus)

I In practice this issue can be often fixed by adding appropriate non-local moves

4 / 11

Topological obstructions
I Plain Monte Carlo algorithms perform a random walk on the state space

I Path integral Monte Carlo is a random walk among paths on the state space

Obstructions to path integral Monte Carlo

I Local moves gradually grow / shrink the paths between the moves

I Long cycles that cannot be approximated by shorter cycles are problematic
(especially if the long cycles make important contribution, e.g., particle on a torus)

I In practice this issue can be often fixed by adding appropriate non-local moves

4 / 11

Exponential quantum advantage with no sign problem
Main result (informal)

There is a family of sparse sign-problem-free Hamiltonians on n qubits with a straight
adiabatic path featuring a spectral gap ∆ = Ω(1/poly(n)), whose evolution requires
2

5√n queries to the Hamiltonian entries to simulate classically.

I This is an oracle separation

I If we want a provable advantage we need to rely on oracles

The corresponding graph problem (informal)

Given (via black-box access) a sparse graph on 2n vertices and a specific
“ENTRANCE” vertex, we can find the “EXIT” vertex in poly(n) time via adiabatic
evolution of a corresponding Hamiltonian which has 1/poly(n) spectral gap and no
sign problem. At the same time any classical randomized algorithm must make
at least 2

5√n queries to the graph (i.e., to the black-box) for finding the “EXIT”.

5 / 11

Exponential quantum advantage with no sign problem
Main result (informal)

There is a family of sparse sign-problem-free Hamiltonians on n qubits with a straight
adiabatic path featuring a spectral gap ∆ = Ω(1/poly(n)), whose evolution requires
2

5√n queries to the Hamiltonian entries to simulate classically.

I This is an oracle separation

I If we want a provable advantage we need to rely on oracles

The corresponding graph problem (informal)

Given (via black-box access) a sparse graph on 2n vertices and a specific
“ENTRANCE” vertex, we can find the “EXIT” vertex in poly(n) time via adiabatic
evolution of a corresponding Hamiltonian which has 1/poly(n) spectral gap and no
sign problem. At the same time any classical randomized algorithm must make
at least 2

5√n queries to the graph (i.e., to the black-box) for finding the “EXIT”.

5 / 11

Exponential quantum advantage with no sign problem
Main result (informal)

There is a family of sparse sign-problem-free Hamiltonians on n qubits with a straight
adiabatic path featuring a spectral gap ∆ = Ω(1/poly(n)), whose evolution requires
2

5√n queries to the Hamiltonian entries to simulate classically.

I This is an oracle separation

I If we want a provable advantage we need to rely on oracles

The corresponding graph problem (informal)

Given (via black-box access) a sparse graph on 2n vertices and a specific
“ENTRANCE” vertex, we can find the “EXIT” vertex in poly(n) time via adiabatic
evolution of a corresponding Hamiltonian which has 1/poly(n) spectral gap and no
sign problem. At the same time any classical randomized algorithm must make
at least 2

5√n queries to the graph (i.e., to the black-box) for finding the “EXIT”.

5 / 11

Exponential quantum advantage with no sign problem
Main result (informal)

There is a family of sparse sign-problem-free Hamiltonians on n qubits with a straight
adiabatic path featuring a spectral gap ∆ = Ω(1/poly(n)), whose evolution requires
2

5√n queries to the Hamiltonian entries to simulate classically.

I This is an oracle separation

I If we want a provable advantage we need to rely on oracles

The corresponding graph problem (informal)

Given (via black-box access) a sparse graph on 2n vertices and a specific
“ENTRANCE” vertex, we can find the “EXIT” vertex in poly(n) time via adiabatic
evolution of a corresponding Hamiltonian which has 1/poly(n) spectral gap and no
sign problem. At the same time any classical randomized algorithm must make
at least 2

5√n queries to the graph (i.e., to the black-box) for finding the “EXIT”.
5 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `

ENT. EXIT

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `

ENT. EXITA =
∑`−1

i=1 |i〉〈i+1|+ |i+1〉〈i|

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `−|1〉〈1| = H(i)

ENT. EXITA =
∑`−1

i=1 |i〉〈i+1|+ |i+1〉〈i|

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `−|1〉〈1| = H(i)

ENT. EXITA =
∑`−1

i=1 |i〉〈i+1|+ |i+1〉〈i|

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `−|1〉〈1| = H(i)

ENT. EXITA =
∑`−1

i=1 |i〉〈i+1|+ |i+1〉〈i|

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `−|1〉〈1| = H(i)

ENT. EXITA =
∑`−1

i=1 |i〉〈i+1|+ |i+1〉〈i|

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

The underlying adiabatic path (` = poly(n))

H` = −A

1 2 3 `−2 `−1 `−|1〉〈1| = H(i)

ENT. EXITA =
∑`−1

i=1 |i〉〈i+1|+ |i+1〉〈i|

We use a simple adiabatic path H`(s)
interpolating between H(i) and H`:

H`(s) = (1 − s)H(i) + sH`

∆ = Θ(1/`2) = Θ(1/poly(n))

H(i)

H`

s
0 1

H`(s)

6 / 11

Step 1: obfuscation (tricking path integral Monte Carlo)
ENTRANCE EXIT

C1 C2 C3 C4 · · · C`−3 C`−2 C`−1 C`

Funnel Tunnel Funnel

7 / 11

Step 1: obfuscation (tricking path integral Monte Carlo)

1 2 3 4 `−3 `−2 `−1 `
m m m m m m m

ENTRANCE EXIT

C1 C2 C3 C4 · · · C`−3 C`−2 C`−1 C`

Funnel Tunnel Funnel

7 / 11

Step 1: obfuscation (tricking path integral Monte Carlo)

1 2 3 4 `−3 `−2 `−1 `
m m m m m m m

ENTRANCE EXIT

C1 C2 C3 C4 · · · C`−3 C`−2 C`−1 C`

Funnel Tunnel Funnel

7 / 11

Step 1: obfuscation (tricking path integral Monte Carlo)

1 2 3 4 `−3 `−2 `−1 `
m m m m m m m

m m m m m m m m

ENTRANCE EXIT

C1 C2 C3 C4 · · · C`−3 C`−2 C`−1 C`

Funnel Tunnel Funnel

7 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)

ENTRANCE EXIT

C1 C2 C3 C4 · · · C`−3 C`−2 C`−1 C`

Funnel Tunnel Funnel
8 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2a: decoration (tricking diffusion Monte Carlo)
I Attach disjoint “camouflage” or “decoration” trees to every vertex

I Each attached tree has a degree bound of O(m)

I The spectral norm of each tree, and thus the entire forest, is O
(√

m
)

I The spectral gap before decoration is ∆ = Θ(m/`2)

I If
√

m � `2, then the spectral gap cannot close under O
(√

m
)

perturbation

I Consequently, the ground state suffers only minor perturbation in `2-norm

I However, if the trees are poly(m) deep, then the `1 weight moves onto the trees!

9 / 11

Step 2b: fractal decoration (tricking every classical alg.)
I If all attached trees have the same depth d, we can effectively filter them out

I After traversing an edge perform a non-backtracking trial walk:
if a leaf is found we know that a camouflage tree was entered

I To prohibit such algorithms we attach trees that have a fractal shape:

I The trees are designed such that the expected “hitting time” of leafs barely
changes while moving deeper into a tree – making the “camouflage” trees very
hard to recognize

I Due to the random labeling of vertices no classical algorithm can navigate the
decorated graph, and any classical algorithm will “get lost” spending an
exponential amount of time in the “camouflage forest” before finding the EXIT.

10 / 11

Step 2b: fractal decoration (tricking every classical alg.)
I If all attached trees have the same depth d, we can effectively filter them out

I After traversing an edge perform a non-backtracking trial walk:
if a leaf is found we know that a camouflage tree was entered

I To prohibit such algorithms we attach trees that have a fractal shape:

I The trees are designed such that the expected “hitting time” of leafs barely
changes while moving deeper into a tree – making the “camouflage” trees very
hard to recognize

I Due to the random labeling of vertices no classical algorithm can navigate the
decorated graph, and any classical algorithm will “get lost” spending an
exponential amount of time in the “camouflage forest” before finding the EXIT.

10 / 11

Step 2b: fractal decoration (tricking every classical alg.)
I If all attached trees have the same depth d, we can effectively filter them out

I After traversing an edge perform a non-backtracking trial walk:
if a leaf is found we know that a camouflage tree was entered

I To prohibit such algorithms we attach trees that have a fractal shape:

I The trees are designed such that the expected “hitting time” of leafs barely
changes while moving deeper into a tree – making the “camouflage” trees very
hard to recognize

I Due to the random labeling of vertices no classical algorithm can navigate the
decorated graph, and any classical algorithm will “get lost” spending an
exponential amount of time in the “camouflage forest” before finding the EXIT.

10 / 11

Step 2b: fractal decoration (tricking every classical alg.)
I If all attached trees have the same depth d, we can effectively filter them out

I After traversing an edge perform a non-backtracking trial walk:
if a leaf is found we know that a camouflage tree was entered

I To prohibit such algorithms we attach trees that have a fractal shape:

I The trees are designed such that the expected “hitting time” of leafs barely
changes while moving deeper into a tree – making the “camouflage” trees very
hard to recognize

I Due to the random labeling of vertices no classical algorithm can navigate the
decorated graph, and any classical algorithm will “get lost” spending an
exponential amount of time in the “camouflage forest” before finding the EXIT.

10 / 11

Step 2b: fractal decoration (tricking every classical alg.)
I If all attached trees have the same depth d, we can effectively filter them out

I After traversing an edge perform a non-backtracking trial walk:
if a leaf is found we know that a camouflage tree was entered

I To prohibit such algorithms we attach trees that have a fractal shape:

I The trees are designed such that the expected “hitting time” of leafs barely
changes while moving deeper into a tree – making the “camouflage” trees very
hard to recognize

I Due to the random labeling of vertices no classical algorithm can navigate the
decorated graph, and any classical algorithm will “get lost” spending an
exponential amount of time in the “camouflage forest” before finding the EXIT.

10 / 11

Open questions
I Find a sign-problem-free Hamiltonian of practical interest providing a large

speed-up!

I Are sign-problem-free Hamiltonians at least marginally easier in general?
Is there a general simulation algorithm that works in time for example

√
2n?

I What is the classical complexity of simulating adiabatic evolution for frustrated
local Hamiltonians with no sign problem? (See, e.g., [Bringewatt & Jarret, 2020].)

11 / 11

