Efficient classical simulation of random shallow 2D quantum circuits
John Napp, Rolando La Placa, Alexander Dalzell, Fernando Brandao, Aram Harrow

Overview. One of the most basic questions in quantum computing is whether a given class of quan-
tum computations admits an efficient classical simulation. Due to the exponential blowup in Hilbert
space dimension associated with an extensive quantum system, brute-force simulation quickly becomes
intractable. However, this does not preclude the existence of clever classical simulation algorithms
which exploit extra structure of the problem at hand to obtain efficiency: classic examples include 1D
quantum circuits with low entanglement (simulatable via MPS) and Clifford circuits (simulatable via
the Gottesman-Knill theorem).

In this work, we add another class of quantum circuits to this list: namely, random, sufficiently
shallow, 2D quantum circuits. Besides the fact that delineating the boundary between classically
simulatable and classically hard-to-simulate processes is a basic question in computational complexity
theory, random circuits are of use in physics due to their being models of chaotic quantum dynamics,
and in quantum computation due to (among other applications) the fact that Random Circuit Sampling
(RCS) — that is, sampling from the output distribution produced by a random circuit — is a leading
candidate for demonstrating so-called “quantum computational supremacy”, and in fact was the basis
for Google’s recent claim of achieving this [1]. In this context, it becomes crucial to understand the
asymptotic hardness of the RCS problem. Unfortunately, while there are some hardness results for RCS
under additional conjectures which have not received widespread scrutiny, strong theoretical evidence
remains sparse. A major advance was made by Bouland, Fefferman, Nirkhe, and Vazirani (QIP 2019)
[2], who proved that the alternative problem of computing output probabilities of random circuits admits
a certain worst-to-average case reduction; since computing output probabilities of generic instances is
intractable under widely believed assumptions, this work essentially showed that computing output
probabilities of random circuits is intractable. Subsequently, Movassagh made a technical improvement
to this result (QIP 2020) [3].

Despite these strong hardness results for computing output probabilities, we describe an efficient
classical algorithm for the RCS problem in the setting of sufficiently shallow 2D circuits. This algorithm
is only efficient for shallow circuits, and therefore does not refute Google’s quantum computational
supremacy claims which are based on deep circuits. Nonetheless, the existence of such an algorithm has
some bearing on the line of work attempting to establish the hardness of RCS. The conventional wisdom,
partially informed by [2, 3], has been that for a given architecture, random gates should be almost the
hardest possible. Our work challenges this intuition and cautions against making bold average-case
hardness conjectures by showing that there is a natural setting where simulation is exponentially easier
for typical instances than for the worst case.

As a more concrete implication, our work demonstrates limitations of the hardness results of [2, 3]
in providing evidence for the hardness of RCS. In particular, these hardness results do apply to the
shallow random circuit families we study, showing that near-exactly computing output probabilities is
average-case hard. Yet, we find that it is classically tractable to solve the RCS problem, and even to
compute typical output probabilities when some small additive error is allowed. While the hardness
results of [2, 3] apply to computing output probabilities, they have been widely cited as evidence for
the hardness of RCS; however, our work implies that there are natural settings in which classically
solving the RCS problem is far easier than precisely computing output probabilities in the average
case. Therefore, hardness results for the latter task should not in isolation be viewed as evidence for
hardness of the former.

Interestingly, we also find evidence that our algorithms experience computational phase transitions
from polynomial-time to exponential-time when the circuit depth or local dimension exceeds some
critical, constant value. As elaborated upon below, we relate these computational phase transitions
to (1) measurement-driven entanglement phase transitions in 1D chaotic quantum dynamics, and (2)
phase transitions in classical statistical mechanical models.
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Simulation algorithms. We propose two classical simulation algorithms for (noiseless) random shal-
low 2D quantum circuits. To the best of our knowledge, these algorithms represent the first simulation
algorithms for 2D random circuits which go beyond (exponential-time) methods based on tensor network
contraction. The first algorithm, which is also the algorithm we study in greatest depth, is based on a
reduction of the 2D simulation problem to the problem of simulating a certain 1D dynamics evolving in
time. In turn, this effective 1D dynamics is simulated via Matrix Product State (MPS) methods. More
precisely, the effective 1D dynamics is simulated using the Time Evolving Block Decimation (TEBD)
algorithm of Vidal [4], which involves periodically truncating (i.e. compressing) the MPS; we therefore
refer to this algorithm as Space Evolving Block Decimation (SEBD). While MPS are used to simulate
the effective 1D dynamics, we note that SEBD is not merely a tensor network contraction scheme, but
crucially exploits the unitarity of the circuit for its effectiveness. This differentiates it from simulation
proposals for random circuits based on truncated tensor network contractions (e.g. [5]). Also unlike
such truncated tensor network contraction approaches, the algorithm is self-certifying in the sense that
it can bound the sampling error it’s making as a function of the Schmidt coefficients discarded in the
MPS compression steps, even though exact simulation is hard and therefore the exact solution is un-
known. This self-certification feature allows us to numerically study the performance of the algorithm.
Our second proposed algorithm, which we call Patching, is based on first exactly sampling from the
marginal distributions of small causally disconnected regions, before “stitching” these patches together
via recovery maps to obtain a global sample. The efficiency of the first algorithm hinges on the effec-
tive 1D process having low entanglement, while the second hinges on the classical output distribution
being approximately Markovian in the sense that the conditional mutual information (CMI) decays
exponentially quickly with respect to shielded regions.

Results and techniques. We give two classes of results: first, a rigorous proof that SEBD is efficient
in a specific situation that is hard in the worst case (Theorem 1), and second, numerical and analytical
evidence that the runtime of our algorithms is efficient more generally when the circuits are sufficiently
shallow, transitioning to inefficient when the qudit local dimension or circuit depth becomes too large.

SEBD involves a reduction of the 2D simulation problem to a 1D simulation problem evolving over
time. We find that, after performing this reduction, the effective 1D dynamics are highly similar to
those of “unitary-and-measurement” processes, which have seen an explosion in interest within the
condensed matter physics community in the past few years [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. This
line of work has found strong evidence that, when random unitary dynamics are interspersed with
weak measurements, the 1D dynamics experiences an entanglement phase transition from an area-law
to volume-law phase as measurement strength is tuned. We find that, roughly, increasing the depth
or the local dimension corresponds to decreasing the measurement strength in this picture, hence the
phase transition from an efficient to inefficient regime.

Unfortunately, the aforementioned measurement-driven entanglement phase transition has so far
eluded formal proof, and it is similarly hard to formally prove that SEBD is generally efficient for
random shallow 2D circuits, as the efficiency of SEBD hinges on its associated effective 1D dynamics
lying in an entanglement area-law phase. Nonetheless, we are able to formally prove that SEBD runs
in polynomial time for some special-case 2D architectures for which exact simulation is known (from
prior works) to be hard.

Theorem 1 (Informal). There exists a 2D circuit architecture A defined on n qubits such that, if Ca
is the Haar-random circuit family associated with A, under standard hardness conjectures there does
not exist a polynomial-time classical algorithm for sampling from the output distribution of arbitrary
instances of Ca, or for near-exactly (i.e. up to e~ Un%) precision) computing output probabilities of
typical instances of C4. However, SEBD runs in time O(n) and, with probability 1 — 27" over choice
of circuit instance, samples from the output distribution of Ca up to error at most 277" in total
variation distance, and estimates a fized output probability of Cy with additive error 2_"/2”0'99.



While the architecture used to prove this result is contrived, it suffices to demonstrate a formal
separation between the hardness of approximately simulating average-case circuits and worst-case sim-
ulation. The proof of the above theorem lies partly on a technical lemma on the typical behavior of
entanglement after measurement; namely, we show that if a contiguous block of m qubits are measured
after applying a random shallow 1D circuit, the expected entanglement entropy of the induced bipartite
pure state is exponentially small in m. While this theorem applies for a contrived architecture for which
a formal proof is feasible, it is desirable to understand the performance of these simulation algorithms
for more general and more natural 2D circuit architectures. To this end, we make conjectures on the
general performance of the algorithms, which are summarized informally below.

Conjecture 1 (Informal). SEBD and Patching are asymptotically efficient for any family of 2D quan-
tum circuits with Haar-random gates of sufficiently low depth, but experience a computational phase
transition to an inefficient (exponential runtime) regime when the depth or local Hilbert space dimension
exceeds some (constant) critical value. The critical values are architecture-dependent.

We collect numerical and heuristic, analytical evidence for these conjectures. Numerically, we
implement SEBD for two natural 2D circuit architectures for which worst-case simulation is known to
be hard. For the so-called “brickwork” architecture of depth three, we find that SEBD running on
a laptop with non-optimized code can sample from the output distribution of typical instances on a
400 x 400 grid of qubits with total variation distance error less than 0.01, requiring approximately
one minute per sample. In contrast, we estimate that for previously best-known algorithms based
on tensor network contraction, simulating such instances would be roughly as hard as simulating a
depth-40 circuit on a 20 x 20 grid, which is highly intractable. Numerical investigation of the typical
entanglement spectrum in the effective 1D dynamics indicates that the algorithm remains efficient
asymptotically. Moreover, to further understand the entanglement spectrum we analytically study a
toy model for a unitary-and-measurement dynamic in an area-law phase, and find that its entanglement
spectrum is consistent with that observed numerically. The entanglement spectrum derived for this toy
model leads us to conjecture that, when SEBD is in the efficient regime, its runtime scales asymptotically

like n!toM exp (@( log(1 /56))) to simulate a 1 — § fraction of n-qubit random circuit instances up

to total variation distance error €. This toy model could be useful in other scenarios where “unitary-
and-measurement” processes have been studied. Indeed, in that context, our work might be regarded
as a new and distinct reason to study these processes, which previously have been studied primarily
from the condensed matter and quantum chaos angles.

We also give analytical evidence for both algorithms’ efficiency using methods from statistical me-
chanics. We map 2D shallow circuits with Haar-random gates to classical statistical mechanical models,
utilizing techniques developed in [17, 18, 19, 20, 13, 14], such that the free energy cost incurred by twist-
ing boundary conditions of the stat mech model corresponds to entanglement-entropy-like quantities in
the quantum circuit we call the “quasi-entropy”. Increasing the qudit dimension ¢ of the random circuit
model corresponds to strengthening the interactions in the associated stat mech model. For depth-3
circuits with brickwork architecture, we show that this drives a phase transition from a disordered to
an ordered phase at some constant critical value of q. We also argue that there should be a similar
phase transition driven by the circuit depth d that occurs at a constant critical value of d. These phase
transitions are accompanied by phase transitions in the quasi-entropy from an area-law to a volume-law
phase. While an area law for the quasi-entropy does not prove that our algorithms are efficient (this
is implied by an area law for different entropic quantities), we take this as evidence in favor of that
conjecture, and the phase transition in quasi-entropy supports our conjecture of a computational phase
transition in our algorithms.
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