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“Nature isn’t classical... and if you
want to make a simulation of
nature, you'd better make it
qguantum mechanical...” (1981)

, Is random circuit
When does this

sentiment not hold? sampling truly classically

intractable?



RANDOM CIRCUIT SAMPLING

» Start with array of n qudits

» Apply circuit C: d layers of 2-local Haar-random gates, followed
by computational basis measurements on all sites

» RCS task: approximately (1/poly(n) additive error) sample from
output distribution D¢ with high probability over C
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Example: depth-3 “brickwork architecture”



HOW HARD IS RCS?

» Assuming non-collapse of PH, for algorithms that make
exponentially small error...

» Sampling is hard in the worst case [Terhal-DiVincenzo "02]

» Computing is hard in the average case
[Bouland-Fefferman-Nirkhe-Vazirani “18]

» Is this evidence that RCS is hard?



RESULTS SUMMARY

» Propose two classical algorithms for RCS for constant-depth 2D circuits.

4

» There exists a specific 2D depth-3 random circuit architecture for
which the previous hardness results apply, but RCS is classically
tractable.

» Conjectured with evidence

» RCS is classically tractable for sufficiently shallow 2D circuits more

generally.

» Our algorithms transition from poly-time to exponential-time
discontinuously when the circuit depth or qudit dimension exceeds

some (architecture-dependent) critical value.



SIMULATION VIA A 2D-TO-1D REDUCTION

Lo

eSO Y ool 1 _ _ _
D el e
vb®oe 1 _1_ _ _ . _
D D D
i eeed 00 e
D el D
voo®veoe . . .1 _1_ _ _ _ _

L1

» Need only simulate an “effective 1D dynamics”:

SoEne ) o ) o oy
m > If effective 1D process is only , it may
m be approximately simulated via MPS [Vidal 03]

> Provably works for some architectures; conjectured to

work more generally for sufficiently shallow circuits



INTUITION: AVERAGE-CASE EFFICIENCY FROM RANDOM-
UNITARY-AND-MEASUREMENT CIRCUITS

» Effective 1D dynamics involves alternating rounds of random gates and measurements
on subsets of qudits.

» Similar to “random-unitary-and-measurement” processes studied in an explosion of
recent works (beginning with [Skinner et al., Li et al., Chan et al. 2018])

time
>

I = random unitary

g from area-law to volume-law phase as measurement
strength is decreased or local dimension is increased. Existence of phase transition
appears to be robust w.r.t. details of the model.

> Indicates a potential complexity phase transition for classical simulation

» Heuristically, increasing circuit depth is associated with reducing measurement
strength in the associated effective 1D dynamics



Half-chain Rényi entanglement entropies observed in effective 1D dynamics associated with brickwork
architecture, as a function of grid side-length




UNDERSTANDING THE ALGORITHM VIA STAT. MECH.

l—laar integration formulas : :

two-local Haar-random unitary classical spin variables

Entanglement properties of the output state of the circuit may be associated with physical properties of an
associated classical stat mech model [Hayden et al.*16], [Nahum, Vijay, Haah “17]

mapping applied to a shallow 2D circuit yields quasi-2D Ising-like model

» Disordered ( ) phase of model corresponds to area law ( )
for a proxy for entanglement entropy in effective 1D dynamics

» Brickwork architecture’s associated stat mech model is disordered

» Increasing qudit dimension or depth increases effective interaction strength




SOME OPEN QUESTIONS

» Can deep 2D random circuits be simulated in poly time?
» Can more general efficiency and phase transition be rigorously proven?

» Can Monte Carlo studies of the associated stat mech model be used to
predict the runtime of the algorithm?

How much easier are noisy circuits?

For “volume-law” circuit instances, is this algorithm still better than
other known exponential-time algorithms?

Continuous-time versions of results?

Thank you!



EXTENDED BRICKWORK ARCHITECTURE

» Modify the ordinary depth-3 brickwork architecture such that vertical gates are “sparse”.

> Idea for rigorous efficiency proof: amount of entanglement generated in effective 1D
dynamics is exponentially suppressed in r
» But, this architecture is



ALG. CAN EFFICIENTLY APPROXIMATELY SIMULATE THE E.B.
ARCHITECTURE IN THE AVERAGE CASE

» Key ingredient: exponential decay of post-measurement entanglement
entropy for 1D random circuits

A ; B ; C
Measurement outcome: b
Conditional post-measurement state on AC: wacp

ﬂU,bS(A)iPACw < C|B|, c <1

» As algorithm simulates the 1D dynamics, long stretches without any

vertical gates destroy most entanglement in the 1D state with high
probability.

» With high probability over circuit realization, algorithm can sample from
Dc with small additive error



TOY MODEL FOR AREA LAW PHASE

» To understand the scaling of entanglement spectrum across some cut
for area-law dynamics, study simple toy model:

<< >
t=1 | — 4 — Bell pair
For this model, ,
l ), oc 2-©log(0)
t=3
', — :
V‘ Suggests runtime
pl+o(1) . 9O(\/10g(1/=0))

- l

failure probability



<
—
(@)
e
o)
o

A, o 2—©og”()

2.00 2.25 2.50 2.75 3.00 3.25 3.50
loglog(i)

Toy model suggests runtime

L1+0(1) | 90(\/log(1/=9))

sampling error

. —O(log* (1))
)‘Z X 2 failure probability



RANDOM CIRCUITS AND STATISTICAL MECHANICS

[Nahum, Vijay, Haah "17]:

1. Perform this integration over all
random gates.

2. Interpret s and t as classical spin
variables.

3. The expected purity of some
subregion A, averaged over
random gates, may be expressed
as the partition function of an
Ising-like model

se{l,—1} te{1,—-1}
m m Previously, mapping from random
tensor networks to stat mech models

was used to study holographic

“Weingarten function” duality [Hayden et al *16]
[Collins "03]




SELF-CERTIFICATION

» Fix a circuit realization
» Fix a truncation error per iteration = and bond dimension cutoff

» In each iteration, for each bond, discard Schmidt coefficients up to a max
error of €. If a bond dimension > Do, declare failure

» What is the relation between the true output distribution D¢ and the
output distribution sampled?

1
§HD’C — Dl < TL€—|—p‘f\,C

failure probability

» Algorithm is self-certifying: run it many times to construct a confidence
interval for psc and therefore the sampling error



ASYMPTOTIC HARDNESS OF 2D RANDOM CIRCUIT SAMPLING

sufficiently shallow sufficiently deep
O(1)-depth O(1)-depth

v

[this work]

Q(log n)-depth

?
conjectured hard
[Boixo et al. " 16]

noiseless

noisy /
(e.g. single-qubit

depolarizing noise [this work] [Gao-Duan "18]
occurring at constant rate)

> \/ = approximate poly-time classical simulation exists. Not
necessarily efficient in practice!



LIGHTCONE ARGUMENT

pPA = pa
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MATRIX PRODUCT STATE (MPS) REVIEW

AEEE SN

MPS representation of a 6-qudit state “physical bond”

» Bond dimension D: maximal dimension of a virtual bond

» MPS described by a number of parameters polynomial in number of qudits,
qudit local dimension, and D

» Can be compressed and manipulated efficiently

» Can only efficiently represent low entanglement states



MATRIX PRODUCT STATE (MPS) REVIEW

> If D is maximum Schmidt rank of a 1D state across any cut, can
classically represent with MPS with parameters.

» Can simulate gate applications & measurements in time

AR

compression

SEERE

» Compression: reduce D by truncating smallest Schmidt coefficients across

cuts.
» Error incurred is related to total weight of discarded coefficients

» Efficient approximation by MPS often possible when entanglement entropy
obeys (bounded by constant across all cuts)



PATCHING ALGORITHM




