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MOTIVATION

“Nature isn’t classical… and if you 
want to make a simulation of 
nature, you'd better make it 
quantum mechanical…” (1981)

When does this 
sentiment not hold?

Is random circuit 
sampling truly classically 

intractable?



RANDOM CIRCUIT SAMPLING

▸ Start with array of n qudits 

▸ Apply circuit C: d layers of 2-local Haar-random gates, followed 
by computational basis measurements on all sites 

▸ RCS task: approximately (1/poly(n) additive error) sample from 
output distribution DC  with high probability over C

Example: depth-3 “brickwork architecture”
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HOW HARD IS RCS?

▸ Assuming non-collapse of PH, for algorithms that make 
exponentially small error… 

▸ Sampling is hard in the worst case [Terhal-DiVincenzo `02] 

▸ Computing output probabilities is hard in the average case 
[Bouland-Fefferman-Nirkhe-Vazirani `18] 

▸ Is this evidence that RCS is hard?



▸ Propose two classical algorithms for RCS for constant-depth 2D circuits. 

▸ Provable 

▸ There exists a specific 2D depth-3 random circuit architecture for 
which the previous hardness results apply, but RCS is classically 
tractable. 

▸ Conjectured with evidence 

▸ RCS is classically tractable for sufficiently shallow 2D circuits more 
generally. 

▸ Our algorithms transition from poly-time to exponential-time 
discontinuously when the circuit depth or qudit dimension exceeds 
some (architecture-dependent) critical value.

RESULTS SUMMARY



SIMULATION VIA A 2D-TO-1D REDUCTION

| 1i ! | 2i ! · · · ! | L2i
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‣ Need only simulate an “effective 1D dynamics”: 

L1

L2

‣ If effective 1D process is only lightly entangled, it may 
be approximately simulated via MPS [Vidal `03] 

‣ Provably works for some architectures; conjectured to 
work more generally for sufficiently shallow circuits



INTUITION: AVERAGE-CASE EFFICIENCY FROM RANDOM-
UNITARY-AND-MEASUREMENT CIRCUITS

‣ Entanglement phase transition from area-law to volume-law phase as measurement 
strength is decreased or local dimension is increased. Existence of phase transition 
appears to be robust w.r.t. details of the model. 

‣ Indicates a potential complexity phase transition for classical simulation 

‣ Heuristically, increasing circuit depth is associated with reducing measurement 
strength in the associated effective 1D dynamics

time

= random unitary

= weak measurement

‣ Effective 1D dynamics involves alternating rounds of random gates and measurements 
on subsets of qudits. 

‣ Similar to ``random-unitary-and-measurement’’ processes studied in an explosion of 
recent works (beginning with [Skinner et al., Li et al., Chan et al. 2018])



NUMERICAL IMPLEMENTATION

‣ Can easily simulate typical instances of the 400 x 400 (ordinary) brickwork 
architecture with small error on a laptop 
‣ Algorithm is self-certifying: can measure its own sampling error 

‣ Scaling of entanglement spectrum indicates algorithm remains efficient 
asymptotically for architectures we considered 
‣ Empirical entanglement spectrum consistent with toy model we analyze

Half-chain Rényi entanglement entropies observed in effective 1D dynamics associated with brickwork 
architecture, as a function of grid side-length



UNDERSTANDING THE ALGORITHM VIA STAT. MECH.

Entanglement properties of the output state of the circuit may be associated with physical properties of an 
associated classical stat mech model [Hayden et al. `16], [Nahum, Vijay, Haah `17]

U

two-local Haar-random unitary classical spin variables

Haar integration formulas

‣ Disordered (ordered) phase of model corresponds to area law (volume law) 
for a proxy for entanglement entropy in effective 1D dynamics 
‣ Brickwork architecture’s associated stat mech model is disordered 
‣ Increasing qudit dimension or depth increases effective interaction strength

mapping applied to a shallow 2D circuit yields quasi-2D Ising-like model



SOME OPEN QUESTIONS

‣ Can deep 2D random circuits be simulated in poly time?  

‣ Can more general efficiency and phase transition be rigorously proven? 

‣ Can Monte Carlo studies of the associated stat mech model be used to 
predict the runtime of the algorithm?  

‣ How much easier are noisy circuits? 

‣ For “volume-law” circuit instances, is this algorithm still better than 
other known exponential-time algorithms? 

‣ Continuous-time versions of results?

Thank you!



EXTENDED BRICKWORK ARCHITECTURE

‣ Modify the ordinary depth-3 brickwork architecture such that vertical gates are “sparse”.

 

 

r = Ω(log(L))

L

‣ Idea for rigorous efficiency proof: amount of entanglement generated in effective 1D 
dynamics is exponentially suppressed in r 

‣ But, this architecture is non-uniform



ALG. CAN EFFICIENTLY APPROXIMATELY SIMULATE THE E.B. 
ARCHITECTURE IN THE AVERAGE CASE

‣ Key ingredient: exponential decay of post-measurement entanglement 
entropy for 1D random circuits

A B C

Measurement outcome: b 
Conditional post-measurement state on AC: 𝝍AC|b

‣ As algorithm simulates the 1D dynamics, long stretches without any 
vertical gates destroy most entanglement in the 1D state with high 
probability. 

‣ With high probability over circuit realization, algorithm can sample from 
DC with small additive error

EU,bS(A) AC|b  c|B|, c < 1
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TOY MODEL FOR AREA LAW PHASE
‣ To understand the scaling of entanglement spectrum across some cut 

for area-law dynamics, study simple toy model:

t=1

t=2

t=3

t=4

Bell pair

Weak measurement

�i / 2�⇥(log2(i))
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For this model,

n1+o(1) · 2O(
p

log(1/"�))
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Suggests runtime

sampling error

failure probability



RAPID DECAY OF SCHMIDT COEFFICIENTS

‣ Superpolynomial decay suggests 
efficient, low error MPS compression is 
possible. 

‣ We study a toy model for which

Typical entanglement spectrum observed in effective 1D dynamics 
(for the “cluster state with Haar-random measurements” model)

�i / 2�⇥(log2(i))
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Toy model suggests runtime

sampling error

failure probability



RANDOM CIRCUITS AND STATISTICAL MECHANICS

U*
U

U*
U

Z
dU
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[Nahum, Vijay, Haah `17]:  
1. Perform this integration over all 

random gates.  
2. Interpret s and t as classical spin 

variables. 
3. The expected purity of some 

subregion A, averaged over 
random gates, may be expressed 
as the partition function of an 
Ising-like model

=
X

s2{1,�1}

X

t2{1,�1}

Wg(q2; st)
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“Weingarten function” 
[Collins `03]

Previously, mapping from random 
tensor networks to stat mech models 
was used to study holographic 
duality [Hayden et al `16]



‣ Fix a circuit realization C 

‣ Fix a truncation error per iteration ε and bond dimension cutoff Dcutoff 

‣ In each iteration, for each bond, discard Schmidt coefficients up to a max 
error of ε. If a bond dimension > Dcutoff, declare failure 

‣ What is the relation between the true output distribution DC and the 
output distribution D’C sampled?

SELF-CERTIFICATION

‣ Algorithm is self-certifying: run it many times to construct a confidence 
interval for pf,C and therefore the sampling error

failure probability

1

2
kD0

C �DCk1  n✏+ pf,C
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ASYMPTOTIC HARDNESS OF 2D RANDOM CIRCUIT SAMPLING

sufficiently shallow 
O(1)-depth

sufficiently deep 
O(1)-depth Ω(log n)-depth

noiseless
[this work]

? ?

noisy 
(e.g. single-qubit 

depolarizing noise 
occurring at constant rate) [this work]

?
[Gao-Duan `18]

‣             = approximate poly-time classical simulation exists. Not 
necessarily efficient in practice!

conjectured hard 
[Boixo et al. `16]



LIGHTCONE ARGUMENT 

A

time

A’

time
|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

⇢A = ⇢A0
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MATRIX PRODUCT STATE (MPS) REVIEW

MPS representation of a 6-qudit state

“virtual bond”

“physical bond”

‣ Bond dimension D: maximal dimension of a virtual bond 
‣ MPS described by a number of parameters polynomial in number of qudits, 

qudit local dimension, and D 
‣ Can be compressed and manipulated efficiently 
‣ Can only efficiently represent low entanglement states



‣ If D is maximum Schmidt rank of a 1D state across any cut, can 
classically represent with MPS with poly(L, D) parameters. 

‣ Can simulate gate applications & measurements in poly(L, D) time

MATRIX PRODUCT STATE (MPS) REVIEW

compression

‣ Compression: reduce D by truncating smallest Schmidt coefficients across 
cuts. 

‣ Error incurred is related to total weight of discarded coefficients 

‣ Efficient approximation by MPS often possible when entanglement entropy 
obeys area law (bounded by constant across all cuts)



PATCHING ALGORITHM


