
Extended Abstract

One fantastic implication of quantum mechanics is that measurements made on quantum mechanical
systems can produce correlated outcomes irreproducible by any classical system. This observation is
at the heart of Bell’s celebrated 1964 inequality [2] and has since found applications in cryptography [1,
14, 28, 10], delegated computing [24] and short depth circuits [4, 30, 16], among others. Recent
results have shown the sets of correlations producible by measuring quantum states are incredibly
difficult to characterize [21, 13, 19, 11, 26, 9].

In this work, we present a result in the opposite direction. We consider a natural question
concerning existence of quantum correlations which has been open for decades and is comparable
to the one shown to be undecidable in [26]. We show it can be answered in polynomial time.
Furthermore we show that when these correlations can be produced, they can be produced by
simple measurements of a finite dimensional quantum state. We begin by reviewing some necessary
background.

Nonlocal Games. Nonlocal games describe experiments which test the correlations that can be
produced by measurements of quantum systems. A nonlocal game involves a referee (also called
the verifier) and k ≥ 1 players (also called provers). In a round of the game, the verifer selects a
vector of questions q = (q1, q2, ..., qk) randomly from a set S of possible questions, then sends player
i question qi. Each player responds with an answer ai. The players cannot communicate with each
other when choosing their answers. After receiving an answer from each player, the verfier computes
a score V (a1, a2, ..., ak|q1, q2, ..., qk) which depends on the questions selected and answers recieved.
The players know the set of possible questions S and the scoring function V . Their goal is to chose
a strategy for responding to each possible question which maximizes their score in expectation. The
difficulty for the players lies in the fact that in a given round each player only has partial information
about the questions sent to other players.

For a given game G, the supremum of the expected scores achievable by players is called the value
of the game. The value depends on the resources available to the players. If players are restricted to
classical strategies, the value is called the classical value and denoted ω(G). If players can make
measurements on a shared quantum state (but still can’t communicate) the value can be larger and
is called the entangled value. More specifically, if the players shared state lives in a Hilbert space
H = H1 ⊗H2 ⊗ ...⊗Hk and the i-th player makes a measurement on the i-th Hilbert space, the
supremum of the scores the players can obtain is called the tensor product value, denoted ω∗tp. If the
players share an arbitrary state and the only restriction placed on their measurements is that the
measurement operators commute (enforcing no-communication), the supremum of the achievable
scores is called the commuting operator value, denoted ω∗co. When the state shared by the players is
finite dimensional these definitions coincide. In the infinite dimensional case ω∗tp ≤ ω∗co, and there
exist games for which the inequality is strict [19, 26, 13].

Bounds On the Value. The commuting operator and tensor product values of a game are in
general uncomputable [19, 26]. Intuitively, this is because the nonlocal games formalism places no
restriction on the dimension of the state shared by the players, and so a brute force search over
strategies will never terminate. However, such a search can provide a lower bound on the value of a
game. Given a game G, let ω∗d(G) denote the maximum score achievable by players using states
of dimension at most d. This value lower bounds the tensor product (hence, commuting operator)
value, and converges to the tensor product value in the limit as d→∞ [25], so supd<∞ {ω∗d} = ω∗tp.
Given a fixed d, ω∗d can be computed by exhaustive search. Computing ω∗d for an increasing sequence
of d’s produces a sequence of lower bounds that converge to ω∗tp from below.
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It is also possible to bound the commuting operator value of a nonlocal game from above, via a
convergent hierarchy of semidefinite programs known as the NPA hierarchy [22, 12]. When run to a
finite level, this hierarchy gives an upper bound on the commuting operator value of a game. However
there is no guarantee that this bound can be achieved by any commuting operator strategy, hence no
guarantee that the upper bound matches the true commuting operator value. In general all that can
be said is that this hierarchy is complete, meaning that the bound computed necessarily converges
to the commuting operator value of the game. Because of the previously mentioned undecidability
results, no general bounds can be put on this rate of convergence.

XOR Games. XOR games are one family of games for which more concrete results are known.
These are nonlocal games where each question qj is drawn from an alphabet of size n, player’s
responses are single bits ai ∈ {0, 1} and the scoring function checks if the the overall parity of the
responses matches a desired parity sj associated with the question, that is

V (a1, a2, ..., ak|q1, q2, ..., qk) =

{
1 if

∑
i ai = sj (mod 2)

0 otherwise.
(0.1)

We refer to an XOR game with k players as a kXOR Game. It is helpful to think of an kXOR game
as testing satisfiabiliy of a set of clauses:

X̂(1)
q11 + X̂(2)

q12 + ...X̂(k)
q1k

= s1, X̂
(1)
q21 + X̂(2)

q22 + ...X̂(k)
q2k

= s2, ..., X̂
(1)
qm1

+ X̂(2)
qm2

+ ...X̂(k)
qmk

= sm,

where each clause X̂(1)
qj1 + ... + X̂

(k)
qjk = sj corresponds to a question vector (qj1, qj2, ..., qjk) with

associated parity bit sj . If question vectors are chosen uniformly at random, the classical value of
the game corresponds to the maximum fraction of simultaneously satisfiable clauses. The tensor
product and commuting operator values have no such interpretation, and may be larger.

2XOR games are well understood. In 1987, Tsirelson showed the optimal value for any 2XOR
game can always be achieved by a finite dimensional strategy which can be found in polynomial
time [27]. As a consequence ω∗co = ω∗tp for any 2XOR game.

For kXOR games with k > 2 the situation is more opaque. There exist polynomial time
algorithms that can compute ω∗co and ω∗tp in special cases [29, 31]. On the other hand it is NP-hard
to compute the classical value of a 3XOR game [17], and there is no known upper bound on the
runtime required to compute the commuting operator or tensor product value of a kXOR game
when k ≥ 3. Furthermore, the commuting operator and tensor product values of a k-XOR game
are not known to coincide. One natural and efficiently solvable problem involving kXOR games is
identifying games with perfect classical value ω = 1. This is equivalent to asking if the corresponding
set of clauses is exactly solvable, so can be answered in polynomial time using Gaussian elimination.

Interestingly, there exist XOR games with ω∗tp = 1 and ω < 1; the sets of clauses associated
with these games appear perfectly solvable when the game is played by players sharing an entangled
state, despite the clauses having no actual solution. The most famous of these XOR pseudotelepathy
games [3] is the GHZ game, a 3XOR game with 4 clauses and classical value ω = 3/4. There is
a perfect value tensor product strategy for this game involving measurements of the GHZ state
1√
2

(|000〉+ |111〉) so ω∗tp(GHZ) = ω∗co(GHZ) = 1 [15, 20].
The relative difficulty of computing the classical value of kXOR games compared to the ease of

identifying kXOR games with perfect classical value motivates an analogous question concerning the
entangled values. Does there exist a non-commutative analogue of Gaussian elimination that can
easily identify kXOR games with ω∗co or ω∗tp = 1? How hard is it to identify XOR pseudotelepathy
games?
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Bias. XOR games can also be characterized by their bias β(G), defined by β(G) = 2ω(G)−1.1 The
entangled biases β∗co and β∗tp are defined analogously. A completely random strategy for answering an
XOR game will achieve a score of 1/2, hence ω(G) ≥ 1/2 and β(G) ∈ [0, 1], with identical bounds
holding on the other biases. When comparing classical and entangled biases, the quantity usually
considered is the ratio β∗tp(G)/β(G) (or β∗co(G)/β(G)), called the quantum-classical gap.

For 2XOR games this gap can be related to the Grothendieck inequality, with

β∗co(G)/β(G) = β∗tp(G)/β(G) ≤ KR
G (0.2)

where KR
G is the real Grothendieck constant2. For 3XOR games no such bound holds [23, 6], and

there exist families of games {Gn}n∈N with

lim
n→∞

β∗tp(Gn)/β(Gn) =∞. (0.3)

Our Main Results. This paper considers perfect commuting operator strategies for XOR games.
We first show a link between XOR games and algebraic combinatorics: proving a kXOR game has
value ω∗co = 1 iff an instance of the subgroup membership problem on a group corresponding to the
kXOR game has no for an answer. For kXOR games with k ≥ 3, the corresponding class of groups
has undecidable subgroup membership problem. A priori, it is not clear whether or not the instances
determining if a game has value ω∗co = 1 are decidable. We resolve the 3XOR case by proving an
algebraic result, showing the instances of the subgroup membership problem determining the value
of 3XOR games are equivalent to instances on a simpler group G/K obtained from G by modding
out a particular normal subgroup K. This equivalence lets us construct a polynomial time algorithm
that determines if 3XOR games do or do not have value ω∗co = 1. Previously this problem was not
known to be decidable.

Combining this result with arguments from [29] shows 3XOR games with ω∗co = 1 also have
perfect value tensor product strategies, with the players sharing a three qubit GHZ state. Combining
that observation with the known bounds on the quantum-classical gap for strategies using a GHZ
state [23, 5] shows that 3XOR games with ω∗co = 1 have classical value bounded a constant distance
above 1/2. In other words, when ω∗co = 1, how well quantum bias outperforms classical bias is
bounded. This is in contrast with the behavior, see Equation (0.3), of not perfect games.

These results completely characterize 3XOR correlations, and dramatically simplify our under-
standing of the resources required to generate them. Additionally, the equivalence we show between
perfect value XOR games and the subgroup membership problem allows for new analysis of k player
XOR games and may be extendable to study other nonlocal games.

Comparison with Other Work. Our result shares high-level structure with the work of Cleve
and coauthors [8, 7] and followup work by Slofstra [26] concerning linear systems games, though our
work comes to a very different conclusion than theirs. In both that work and ours, perfect value
commuting operator strategies are shown to exist for a family of nonlocal games iff an algebraic
property is satisfied on a related group. In [26], Slofstra showed that the algebraic property associated
with linear systems games was undecidable, implying existence of a linear systems game whose
only perfect value strategies were incredibly complicated (infinite dimensional). Here we show the
algebraic property associated with perfect value 3XOR games can be checked in polynomial time,
and give a finite dimensional strategy, called a MERP strategy, that achieves value 1 whenever a
perfect value commuting operator strategy exists.

1Some definitions vary by a factor of 2, defining β(G) = ω(G)− 1/2
2Because ω∗

co = ω∗
tp for 2XOR games, we also have β∗

co = β∗
tp
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The MERP strategy is a variant of the GHZ strategy that has been considered before. In [31]
this strategy was shown to be optimal for kXOR games with two questions per player. In [29] this
strategy was shown to be optimal for a restricted class of XOR games (symmetric kXOR games)3

with perfect value. In [18] a quantum circuit closely related to this strategy was used as a subroutine
in short depth circuits.
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