

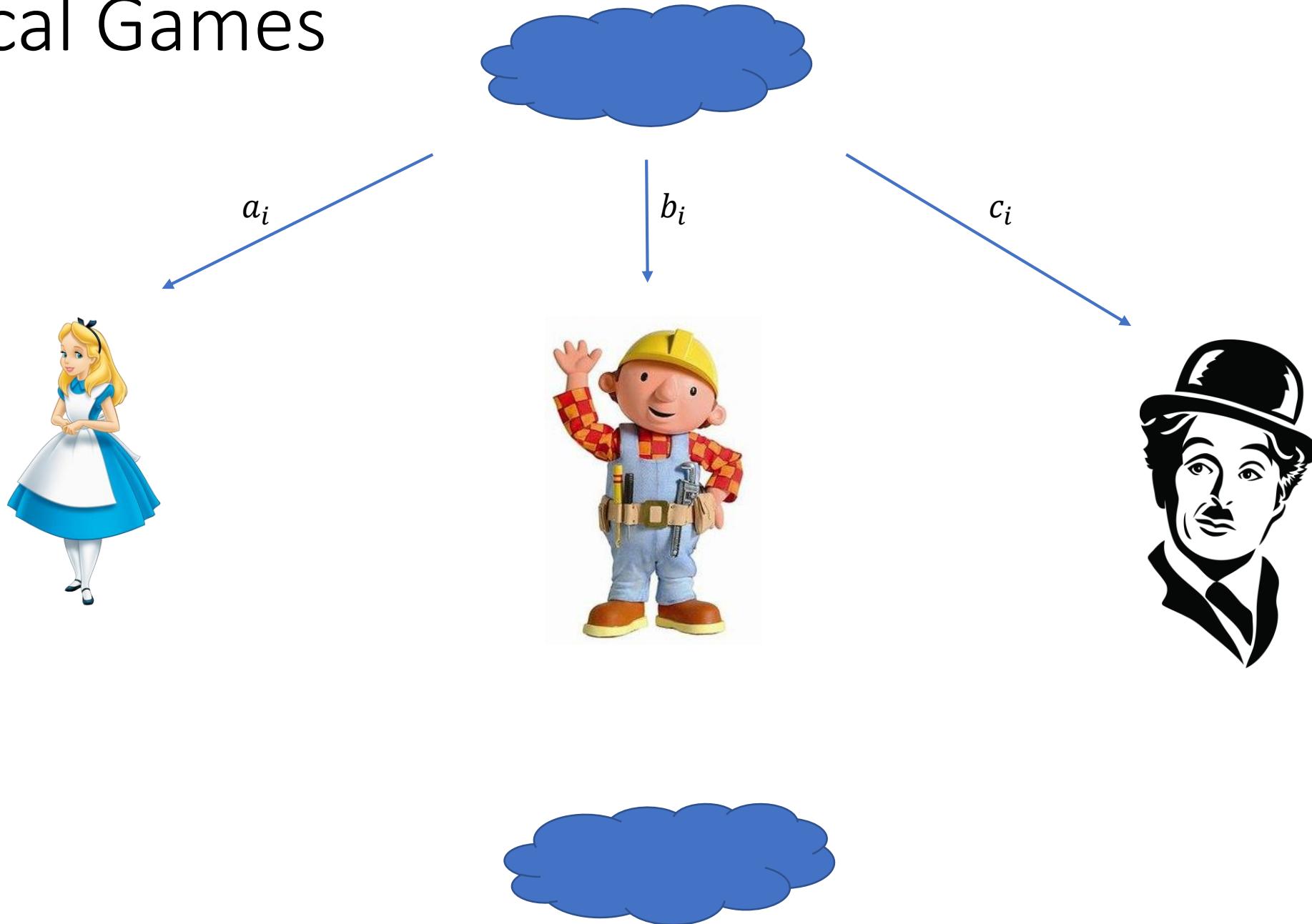
Perfect Value 3XOR Games

Based on work by **Adam Bene Watts, J. William Helton**

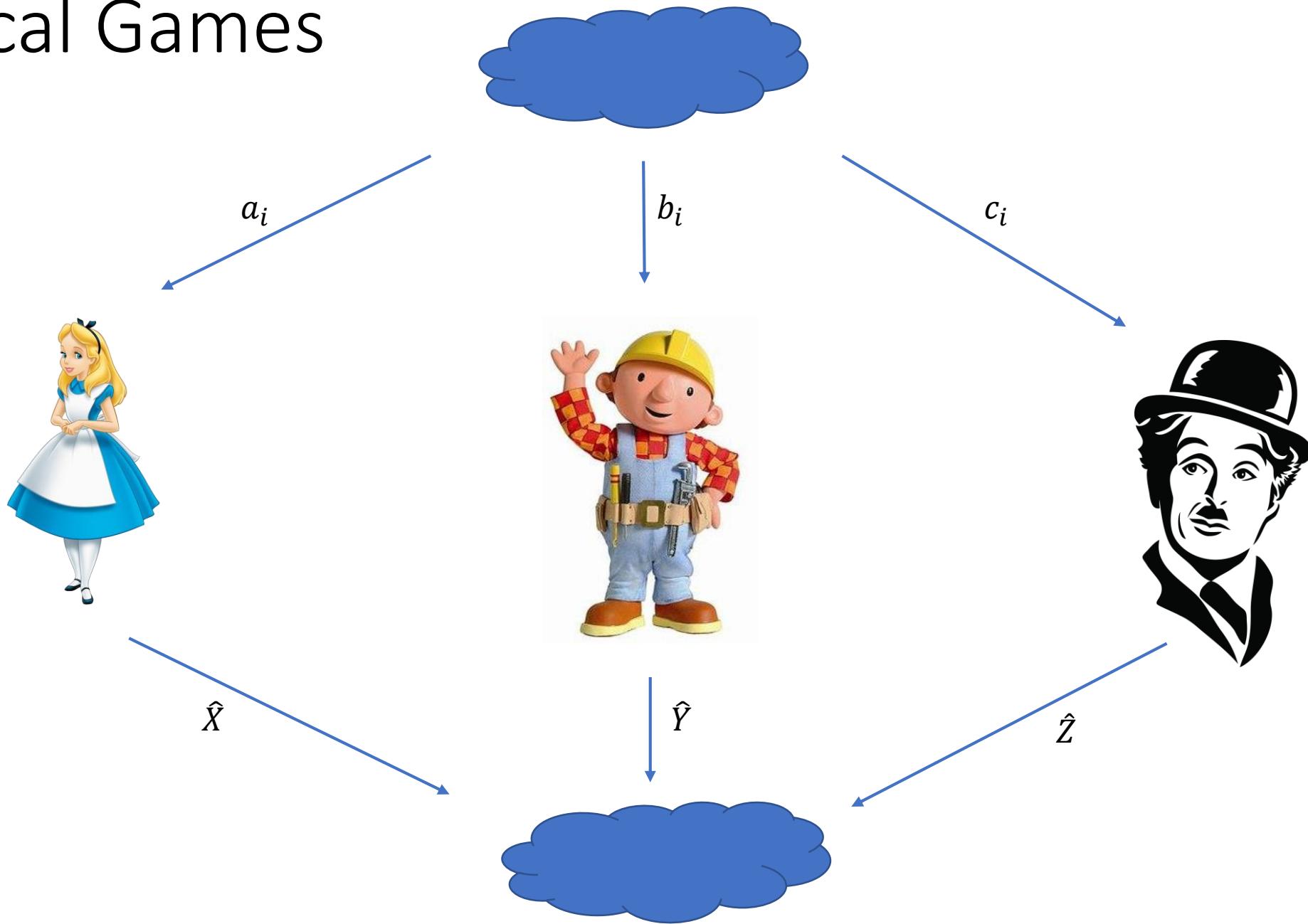
arXiv:2010.16290.

Nonlocal Games

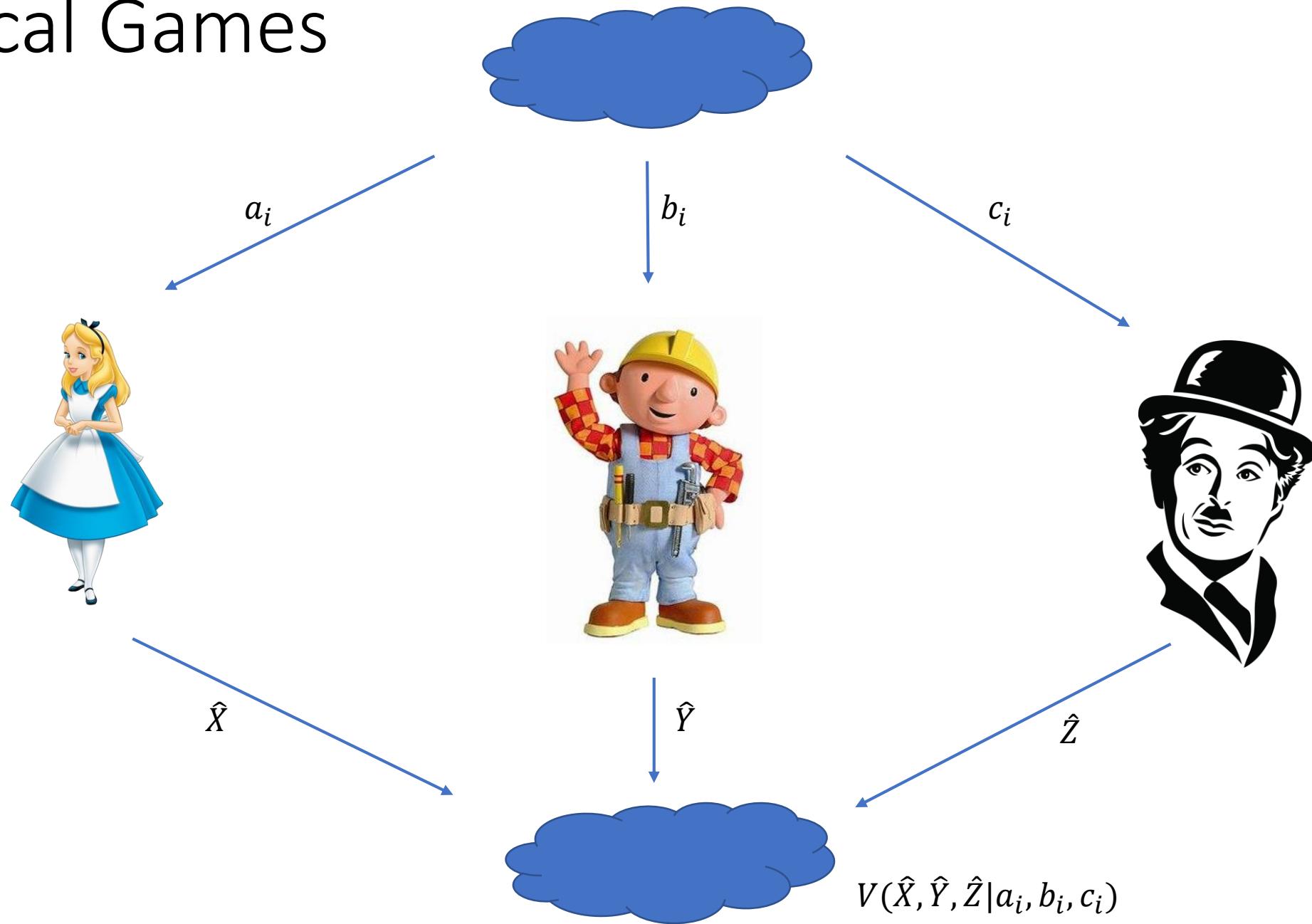
Nonlocal Games



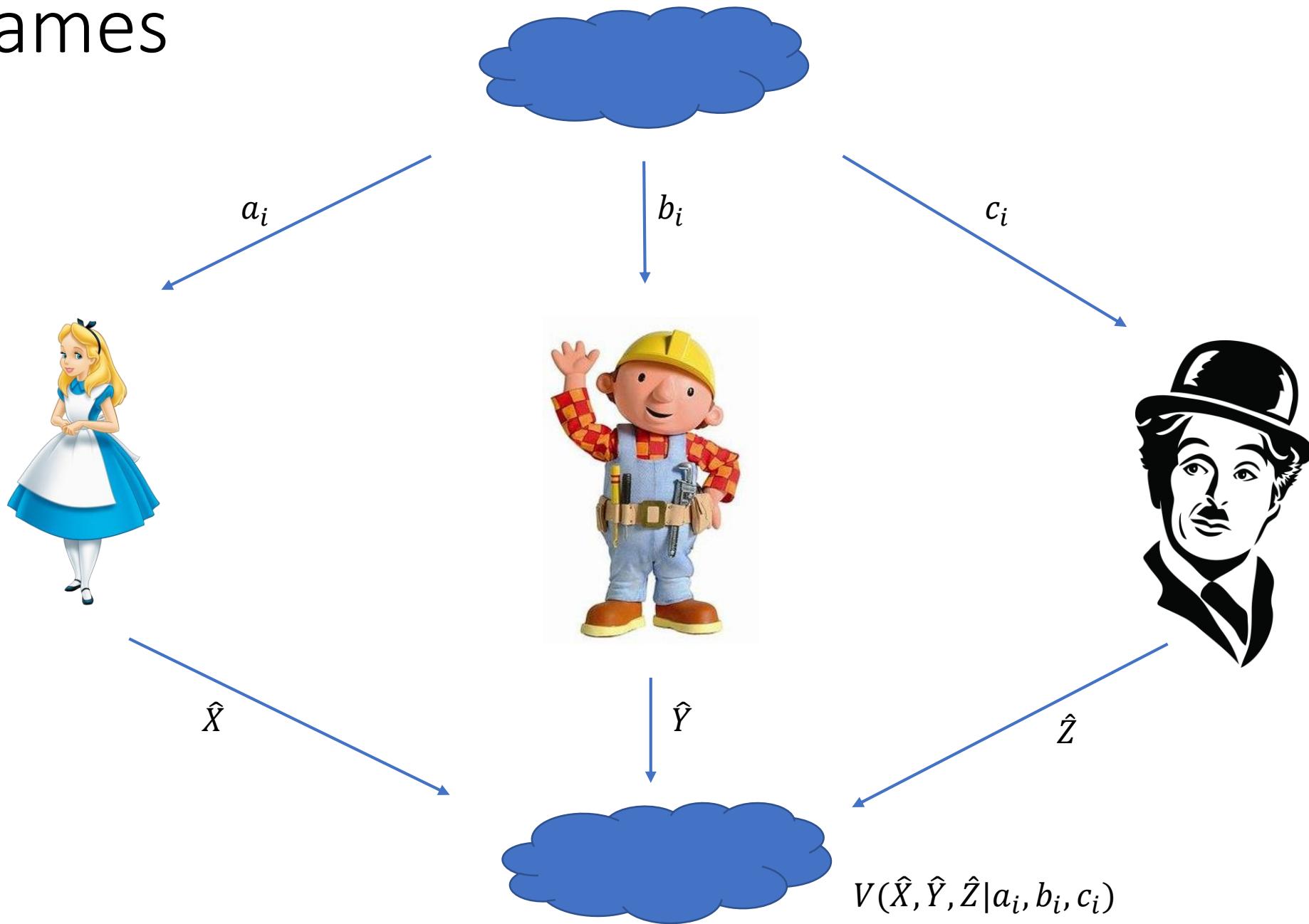
Nonlocal Games



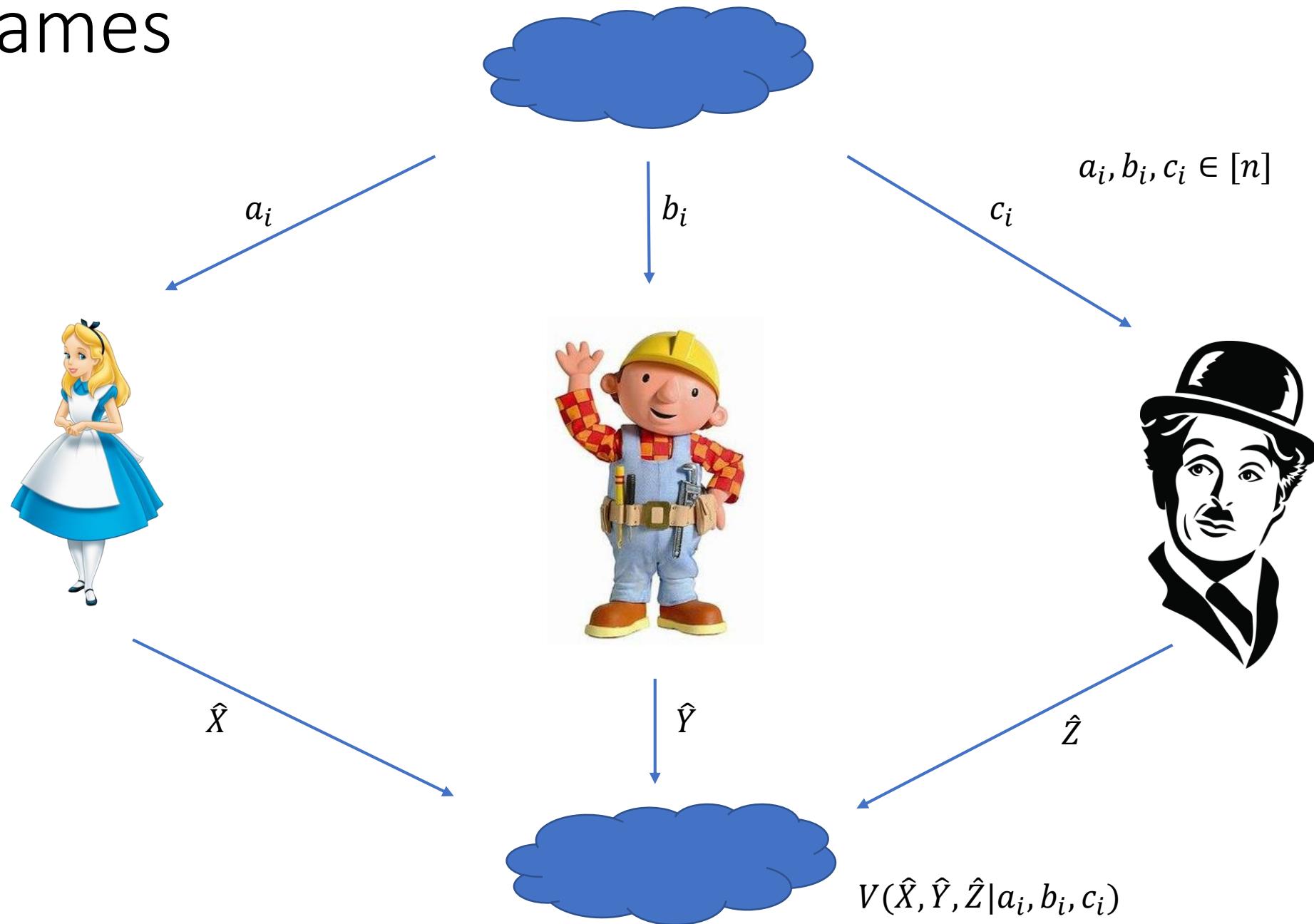
Nonlocal Games



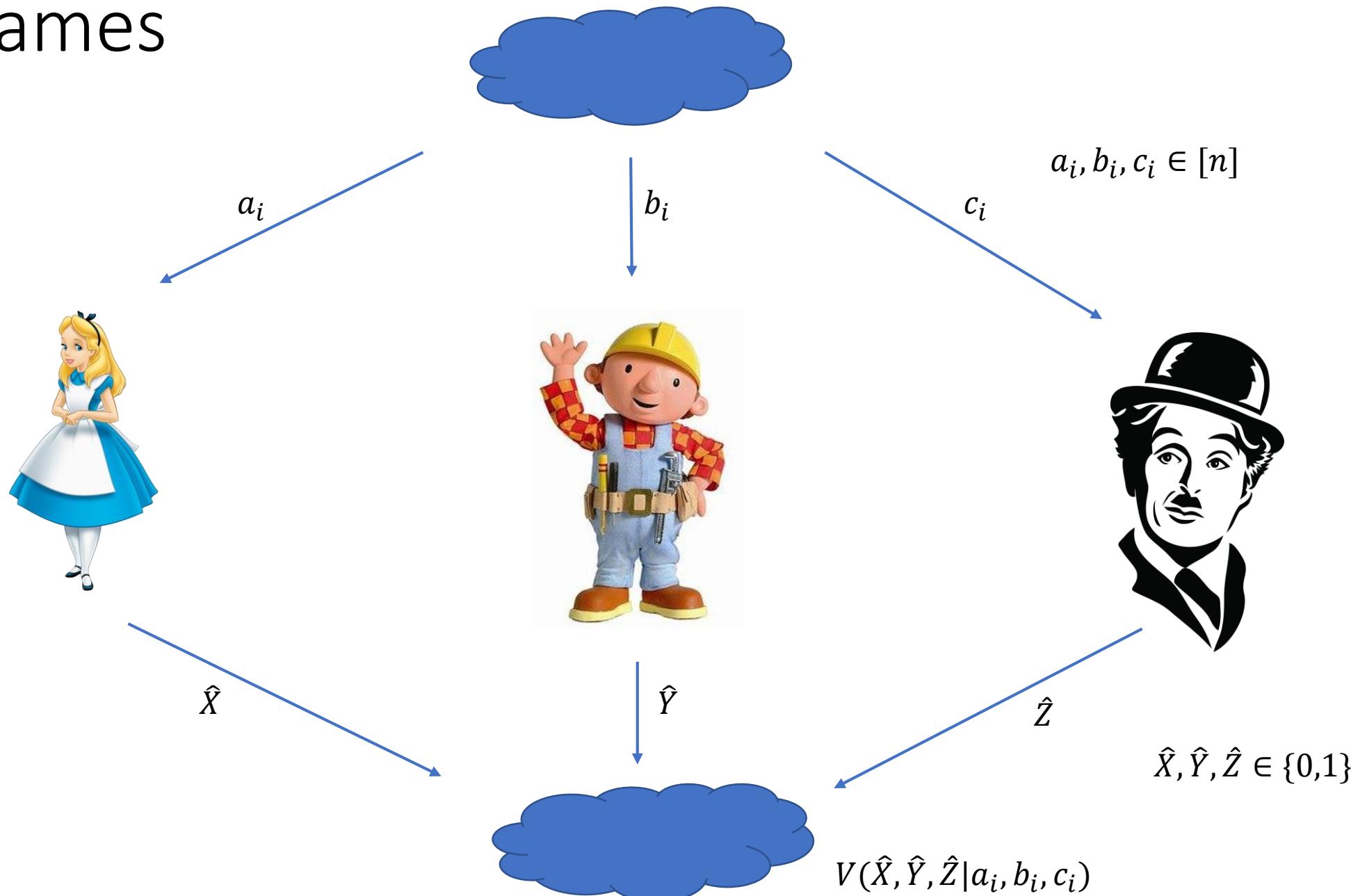
XOR Games



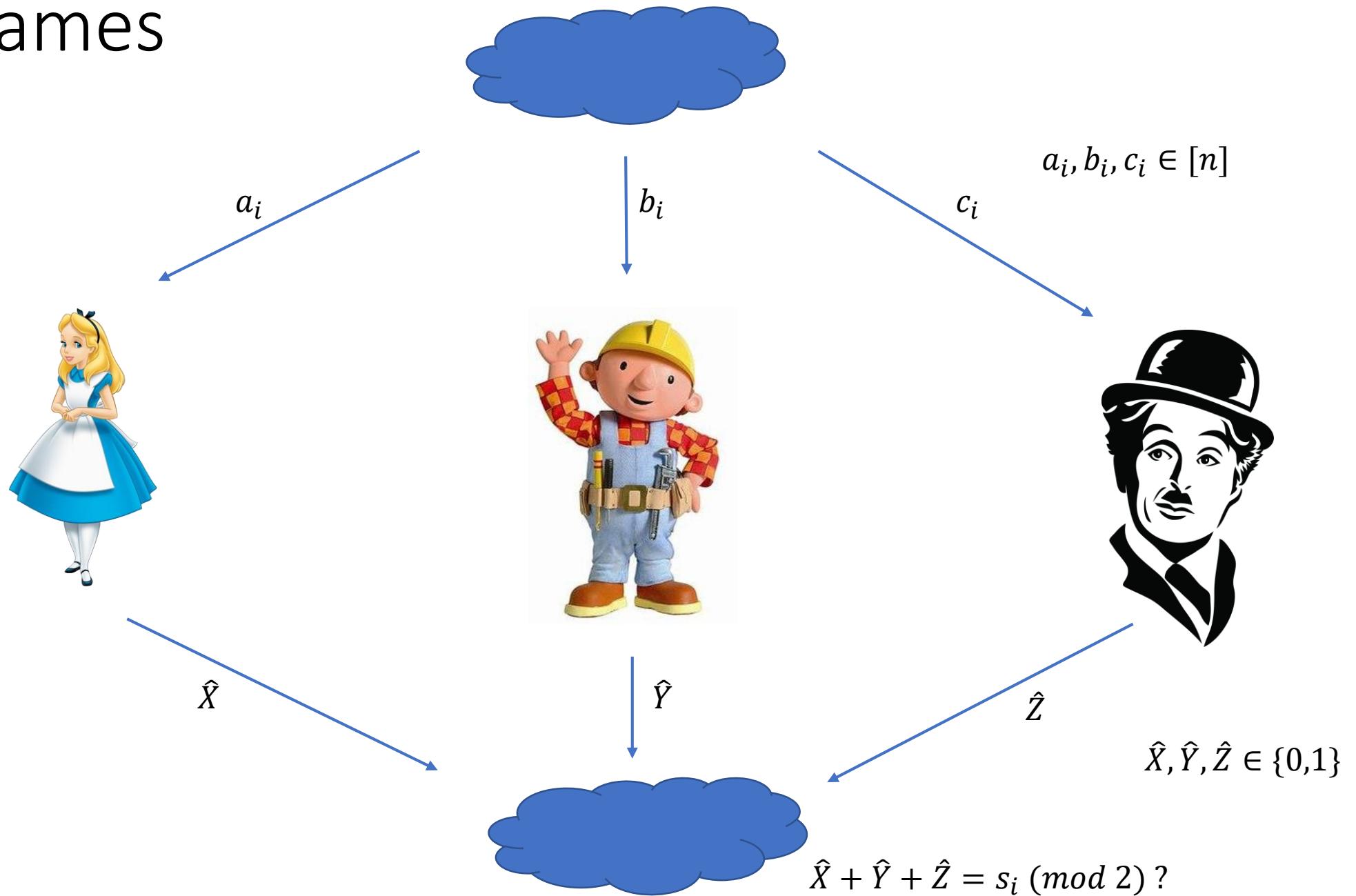
XOR Games



XOR Games

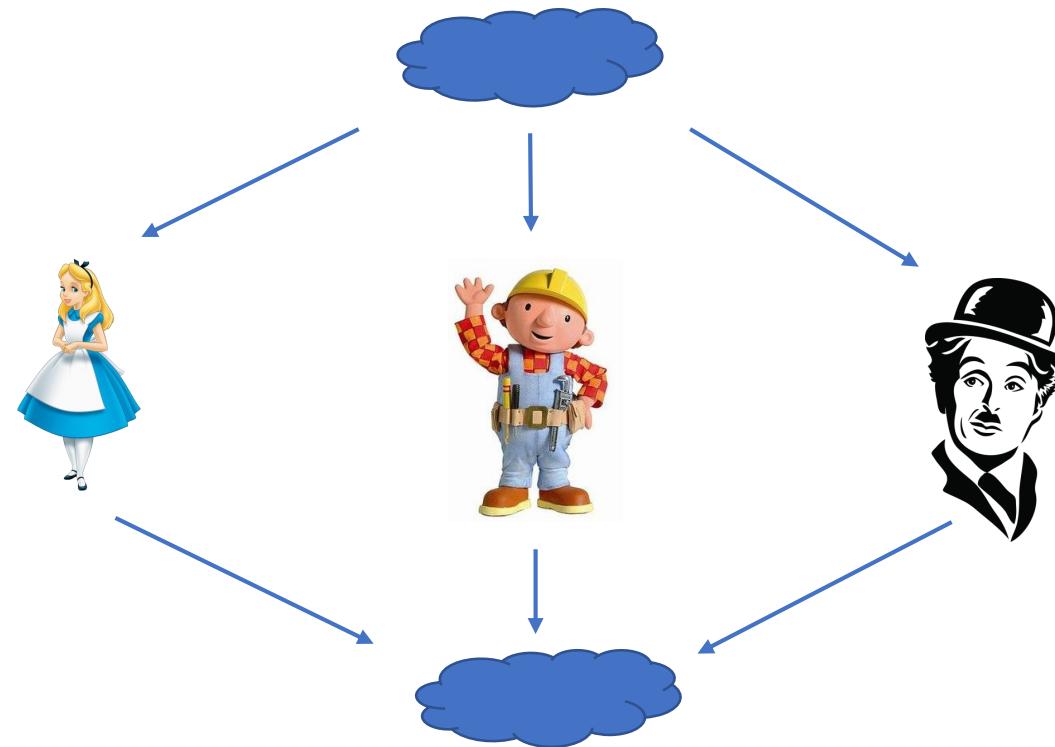


XOR Games



XOR Games – Testing a linear system of equations

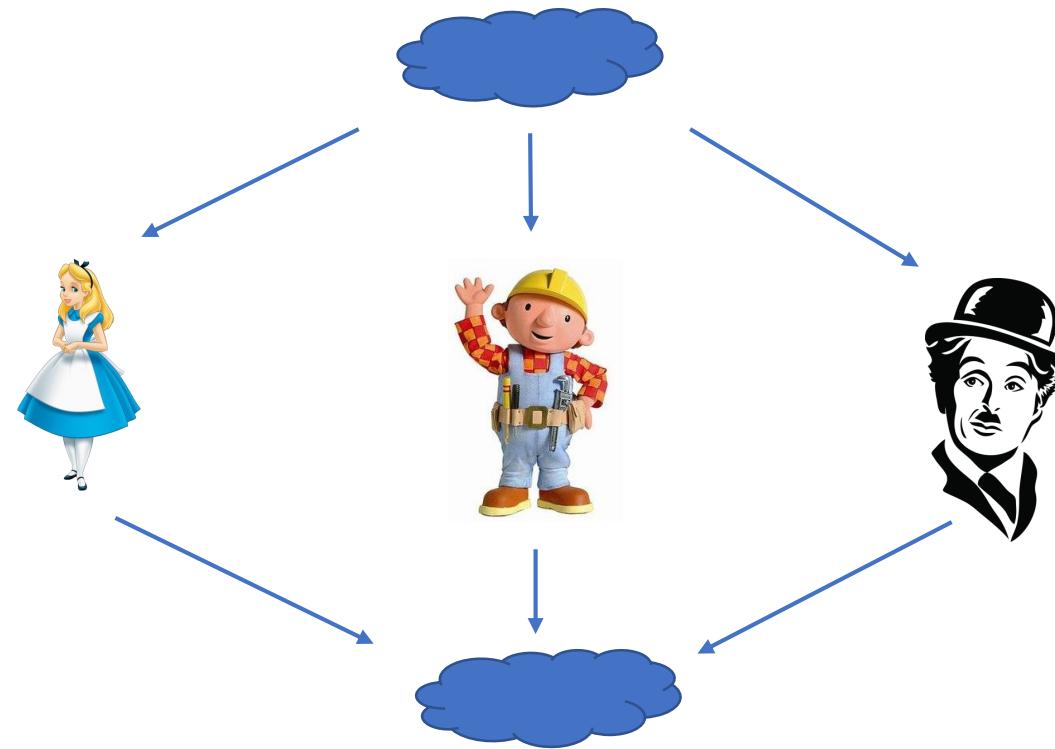
$$\begin{aligned}\hat{X}_{a_1} + \hat{Y}_{b_1} + \hat{Z}_{c_1} &= s_1 \\ \hat{X}_{a_2} + \hat{Y}_{b_2} + \hat{Z}_{c_2} &= s_2 \\ &\vdots \\ \hat{X}_{a_m} + \hat{Y}_{b_m} + \hat{Z}_{c_m} &= s_m\end{aligned}$$



XOR Games – Testing a linear system of equations

$$\begin{aligned}\hat{X}_{a_1} + \hat{Y}_{b_1} + \hat{Z}_{c_1} &= s_1 \\ \hat{X}_{a_2} + \hat{Y}_{b_2} + \hat{Z}_{c_2} &= s_2 \\ &\vdots \\ \hat{X}_{a_m} + \hat{Y}_{b_m} + \hat{Z}_{c_m} &= s_m\end{aligned}$$

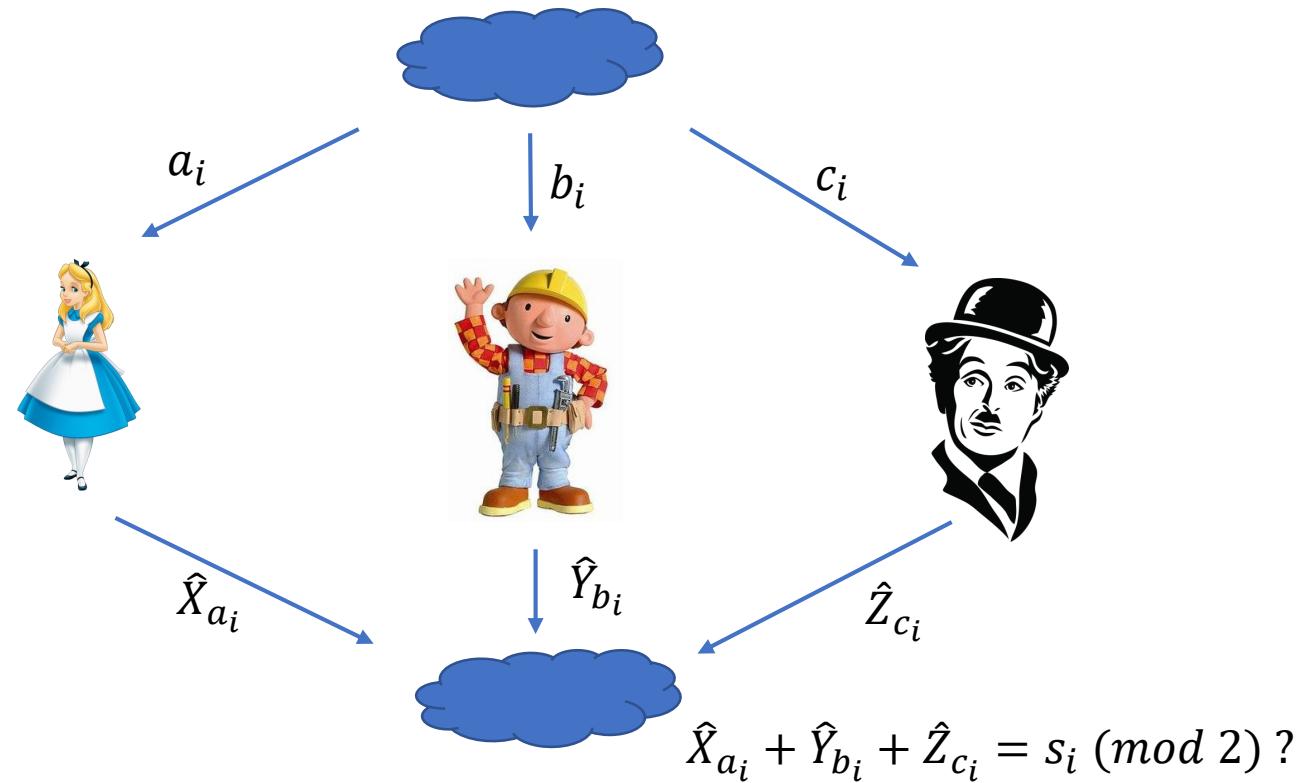
$i \in [m]$



XOR Games – Testing a linear system of equations

$$\begin{aligned}\hat{X}_{a_1} + \hat{Y}_{b_1} + \hat{Z}_{c_1} &= s_1 \\ \hat{X}_{a_2} + \hat{Y}_{b_2} + \hat{Z}_{c_2} &= s_2 \\ &\vdots \\ \hat{X}_{a_m} + \hat{Y}_{b_m} + \hat{Z}_{c_m} &= s_m\end{aligned}$$

$i \in [m]$



Strategies

Strategies (Classical)

Strategies (Classical)

Minimax Argument – Classical strategies are deterministic.

Strategies (Classical)

Minimax Argument – Classical strategies are deterministic.

Described by variables $\hat{X}_j, \hat{Y}_k, \hat{Z}_l \in \{0,1\}$: “Alice/Bob/Charlie’s response to question a_i .”

Strategies (Classical)

Minimax Argument – Classical strategies are deterministic.

Described by variables $\hat{X}_j, \hat{Y}_k, \hat{Z}_l \in \{0,1\}$: “Alice/Bob/Charlie’s response to question a_i .”

Players win round i iff $\hat{X}_{a_i} + \hat{Y}_{b_i} + \hat{Z}_{c_i} = s_i$

Strategies (Classical)

Minimax Argument – Classical strategies are deterministic.

Described by variables $\hat{X}_j, \hat{Y}_k, \hat{Z}_l \in \{0,1\}$: “Alice/Bob/Charlie’s response to question a_i .”

Players win round i iff $\hat{X}_{a_i} + \hat{Y}_{b_i} + \hat{Z}_{c_i} = s_i$

Classical Value ω (the maximum win probability achievable by classical players) is the maximum fraction of satisfiable clauses in associated system of equations.

Strategies (Quantum)

Strategies (Quantum)

Naimark dilation – measurements are projective.

Strategies (Quantum)

Naimark dilation – measurements are projective.

Described by:

- Shared state $|\psi\rangle$
- Strategy observables $X_{a_i}, Y_{a_i}, Z_{a_i}$: “Operator measured by Alice/Bob/Charlie in response to question a_i .”
 - Described multiplicatively, so eigenvalue 1 corresponds to 0 response, eigenvalue -1 corresponds to 1 response.

Strategies (Quantum)

Naimark dilation – measurements are projective.

Described by:

- Shared state $|\psi\rangle$
- Strategy observables $X_{a_i}, Y_{a_i}, Z_{a_i}$: “Operator measured by Alice/Bob/Charlie in response to question a_i .”
 - Described multiplicatively, so eigenvalue 1 corresponds to 0 response, eigenvalue -1 corresponds to 1 response.

Operator Constraints:

Eigenvalues ± 1 $X_j^2 = Y_j^2 = Z_j^2 = 1$.

No signaling $[X_j, Y_j] = [Y_j, Z_j] = [Z_j, X_j] = 1$. (Here and always in this talk $[a, b] = aba^{-1}b^{-1}$)

Strategies (Quantum)

Naimark dilation – measurements are projective.

Described by:

- Shared state $|\psi\rangle$
- Strategy observables $X_{a_i}, Y_{a_i}, Z_{a_i}$: “Operator measured by Alice/Bob/Charlie in response to question a_i .”
 - Described multiplicatively, so eigenvalue 1 corresponds to 0 response, eigenvalue -1 corresponds to 1 response.

Operator Constraints:

$$\text{Eigenvalues } \pm 1 \quad X_j^2 = Y_j^2 = Z_j^2 = 1.$$

$$\text{No signaling} \quad [X_j, Y_j] = [Y_j, Z_j] = [Z_j, X_j] = 1. \text{ (Here and always in this talk } [a, b] = aba^{-1}b^{-1}\text{)}$$

Players win round i with probability 1 iff $X_{a_i}Y_{b_i}Z_{c_i}|\psi\rangle = (-1)^{s_i}|\psi\rangle$ (Win round with prob $\frac{1}{2}\left(1 + \langle\psi|X_{a_i}Y_{b_i}Z_{c_i}|\psi\rangle\right)$)

Strategies (Quantum)

Naimark dilation – measurements are projective.

Described by:

- Shared state $|\psi\rangle$
- Strategy observables $X_{a_i}, Y_{a_i}, Z_{a_i}$: “Operator measured by Alice/Bob/Charlie in response to question a_i .”
 - Described multiplicatively, so eigenvalue 1 corresponds to 0 response, eigenvalue -1 corresponds to 1 response.

Operator Constraints:

$$\text{Eigenvalues } \pm 1 \quad X_j^2 = Y_j^2 = Z_j^2 = 1.$$

$$\text{No signaling} \quad [X_j, Y_j] = [Y_j, Z_j] = [Z_j, X_j] = 1. \text{ (Here and always in this talk } [a, b] = aba^{-1}b^{-1})$$

Players win round i with probability 1 iff $X_{a_i}Y_{b_i}Z_{c_i}|\psi\rangle = (-1)^{s_i}|\psi\rangle$ (Win round with prob $\frac{1}{2}\left(1 + \langle\psi|X_{a_i}Y_{b_i}Z_{c_i}|\psi\rangle\right)$)

Entangled value ω_{co}^* can be larger than the max fraction of (classically) satisfiable clauses.

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is [easy](#). [Gaussian Elimination]

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is [easy](#). [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is [easy](#). [Tsirelson '87]

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is **easy**. [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is **easy**. [Tsirelson '87]

Approximating the classical value of an XOR game is **NP-hard**. [Håstad '97]

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is **easy**. [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is **easy**. [Tsirelson '87]

Approximating the classical value of an XOR game is **NP-hard**. [Håstad '97]

3 player XOR Games can have **much larger quantum-classical advantage** than 2 player XOR games. [Pérez-García, Wolf, Palazuelos, Villanueva, Junge '08],[Briet, Vidick '11]

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is **easy**. [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is **easy**. [Tsirelson '87]

Approximating the classical value of an XOR game is **NP-hard**. [Håstad '97]

3 player XOR Games can have **much larger quantum-classical advantage** than 2 player XOR games. [Pérez-García, Wolf, Palazuelos, Villanueva, Junge '08],[Briet, Vidick '11]

For linear systems games, whether or not a game has perfect commuting operator value is **undecidable**. [Slofstra '16]

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is **easy**. [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is **easy**. [Tsirelson '87]

Approximating the classical value of an XOR game is **NP-hard**. [Håstad '97]

3 player XOR Games can have **much larger quantum-classical advantage** than 2 player XOR games. [Pérez-García, Wolf, Palazuelos, Villanueva, Junge '08],[Briet, Vidick '11]

For linear systems games, whether or not a game has perfect commuting operator value is **undecidable**. [Slofstra '16]

Some games **require commuting operator strategies** to be played optimally [Ji, Natarajan, Vidick, Wright, Yuen '20]

How hard is it to compute a game's value?

Deciding if an XOR game has classical value 1 (perfect classical value) is **easy**. [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is **easy**. [Tsirelson '87]

Approximating the classical value of an XOR game is **NP-hard**. [Håstad '97]

3 player XOR Games can have **much larger quantum-classical advantage** than 2 player XOR games. [Pérez-García, Wolf, Palazuelos, Villanueva, Junge '08], [Briet, Vidick '11]

For linear systems games, whether or not a game has perfect commuting operator value is **undecidable**. [Slofstra '16]

Some games **require commuting operator strategies** to be played optimally [Ji, Natarajan, Vidick, Wright, Yuen '20]

This talk: We can decide if a 3XOR game has perfect commuting operator value ($\omega_{co}^* = 1$) in **polynomial time**. All 3XOR games with perfect commuting operator value have a perfect strategy where players share a **3 qubit GHZ state**.

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The **game group** gives an algebraic representation of the strategy observables. It is generated by:

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The **game group** gives an algebraic representation of the strategy observables. It is generated by:

- Group elements x_i, y_j, z_k which satisfy the same relations as the strategy observables X_i, Y_j, Z_k .
$$(x_i^2 = y_j^2 = z_k^2 = 1, [x_i, y_j] = [y_j, z_k] = [z_k, x_i] = 1)$$

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The **game group** gives an algebraic representation of the strategy observables. It is generated by:

- Group elements x_i, y_j, z_k which satisfy the same relations as the strategy observables X_i, Y_j, Z_k .
 $(x_i^2 = y_j^2 = z_k^2 = 1, [x_i, y_j] = [y_j, z_k] = [z_k, x_i] = 1)$
- A formal variable σ playing the role of -1 in the group.
 $(\sigma^2 = 1, [\sigma, x_i] = [\sigma, y_j] = [\sigma, z_k] = 1)$

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The **game group** gives an algebraic representation of the strategy observables. It is generated by:

- Group elements x_i, y_j, z_k which satisfy the same relations as the strategy observables X_i, Y_j, Z_k .
 $(x_i^2 = y_j^2 = z_k^2 = 1, [x_i, y_j] = [y_j, z_k] = [z_k, x_i] = 1)$
- A formal variable σ playing the role of -1 in the group.
 $(\sigma^2 = 1, [\sigma, x_i] = [\sigma, y_j] = [\sigma, z_k] = 1)$

The **clause group** $H \subseteq G$ encodes the clauses of the game.

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The **game group** gives an algebraic representation of the strategy observables. It is generated by:

- Group elements x_i, y_j, z_k which satisfy the same relations as the strategy observables X_i, Y_j, Z_k .
 $(x_i^2 = y_j^2 = z_k^2 = 1, [x_i, y_j] = [y_j, z_k] = [z_k, x_i] = 1)$
- A formal variable σ playing the role of -1 in the group.
 $(\sigma^2 = 1, [\sigma, x_i] = [\sigma, y_j] = [\sigma, z_k] = 1)$

The **clause group** $H \subseteq G$ encodes the clauses of the game.

- First define clause (words) h_i : $\hat{X}_{a_i} + \hat{Y}_{b_i} + \hat{Z}_{c_i} = s_i \implies h_i = x_{a_i} y_{b_i} z_{c_i} \sigma^{s_i} \in G$
- Then define clause group $H = \langle \{h_i\}_{i \in [m]} \rangle$

Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The **game group** gives an algebraic representation of the strategy observables. It is generated by:

- Group elements x_i, y_j, z_k which satisfy the same relations as the strategy observables X_i, Y_j, Z_k .
 $(x_i^2 = y_j^2 = z_k^2 = 1, [x_i, y_j] = [y_j, z_k] = [z_k, x_i] = 1)$
- A formal variable σ playing the role of -1 in the group.
 $(\sigma^2 = 1, [\sigma, x_i] = [\sigma, y_j] = [\sigma, z_k] = 1)$

The **clause group** $H \subseteq G$ encodes the clauses of the game.

- First define clause (words) h_i : $\hat{X}_{a_i} + \hat{Y}_{b_i} + \hat{Z}_{c_i} = s_i \implies h_i = x_{a_i} y_{b_i} z_{c_i} \sigma^{s_i} \in G$
- Then define clause group $H = \langle \{h_i\}_{i \in [m]} \rangle$

If the game has $\omega_{co}^* = 1$, words in H correspond to products of operators (and -1) which fix $|\psi\rangle$

Main Theorem 1

Main Theorem 1

Theorem 2.1. *An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described .*

earlier in this talk

Main Theorem 1

Theorem 2.1. An XOR game *is has* commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described ~~in the notes~~.

earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

Proof (Sketch):

Main Theorem 1

Theorem 2.1. An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described ~~in the previous slide~~.
earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

Proof (Sketch):

Only if: $\sigma \in H \Rightarrow \omega_{co} < 1$.

Assume for contradiction that $\sigma \in H$ and $\omega_{co} = 1$.

- Since $\sigma \in H$ there exists a sequence of clauses $h_{r_1} h_{r_2} \dots h_{r_t} = \sigma \in H$.
- Since $\omega_{co} = 1$ all clauses in H correspond to products of operators which fix $|\psi\rangle$.

Then $|\psi\rangle = h_{r_1} h_{r_2} \dots h_{r_t} |\psi\rangle = \sigma |\psi\rangle = -|\psi\rangle$

Main Theorem 1

Theorem 2.1. An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described ~~in [some notes]~~ earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

Proof (Sketch):

If: $\sigma \notin H \Rightarrow \omega_{co} = 1$.

Construct strategy observables X_i, Y_j, Z_k via representations of group elements x_i, y_j, z_k .

Representation is left action of group on (left) cosets of H .

$$|\psi\rangle = |H\rangle - |\sigma H\rangle$$

Check: $\sigma|\psi\rangle = -|\psi\rangle, h|\psi\rangle = |\psi\rangle \forall h \in H$.

Main Theorem 1

Theorem 2.1. *An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described .*

earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

Main Theorem 1

Theorem 2.1. *An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described .*

earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

In general, the subgroup membership problem on G is undecidable.

Main Theorem 1

Theorem 2.1. *An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described ~~in the notes~~.*

earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

In general, the subgroup membership problem on G is undecidable.

But H, σ has a lot of structure – we only care about specific instances of the subgroup membership problem.

Main Theorem 1

Theorem 2.1. *An XOR game is has commuting operator value $\omega_{co}^* = 1$ iff $\sigma \notin H$, where σ, H are defined relative to the XOR game as described [REDACTED].*

earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the **subgroup membership problem**.

In general, the subgroup membership problem on G is undecidable.

But H, σ has a lot of structure – we only care about specific instances of the subgroup membership problem.

Key Question: Are these instances decidable?

- For 2 players: YES (Tsirelson)
- For 3 players: YES (coming up)
- For >3 players: Completely open

Key Idea: K-modding

Instead of asking if $\sigma \in H$, pick a normal subgroup $K \triangleleft G$ and ask if $[\sigma]_k \in H \text{ (mod } K)$.

Key Idea: K-modding

Instead of asking if $\sigma \in H$, pick a normal subgroup $K \triangleleft G$ and ask if $[\sigma]_k \in H \text{ (mod } K)$.

This is a weaker condition ($\sigma \in H \Rightarrow [\sigma]_k \in H \text{ (mod } K)$).

- If $[\sigma]_k \notin H \text{ (mod } K) \Rightarrow \sigma \notin H$ so there exists a perfect commuting operator strategy ($\omega_{co}^* = 1$) with operators satisfying the additional relations imposed by K .
- If $[\sigma]_k \in H \text{ (mod } K)$ there is no perfect commuting operator strategy with operators satisfying the additional relations imposed by K (but we can't, in general, conclude anything about ω_{co}^*).

Key Idea: K-modding

Instead of asking if $\sigma \in H$, pick a normal subgroup $K \triangleleft G$ and ask if $[\sigma]_k \in H \text{ (mod } K)$.

This is a weaker condition ($\sigma \in H \Rightarrow [\sigma]_k \in H \text{ (mod } K)$).

- If $[\sigma]_k \notin H \text{ (mod } K) \Rightarrow \sigma \notin H$ so there exists a perfect commuting operator strategy ($\omega_{co}^* = 1$) with operators satisfying the additional relations imposed by K .
- If $[\sigma]_k \in H \text{ (mod } K)$ there is no perfect commuting operator strategy with operators satisfying the additional relations imposed by K (but we can't, in general, conclude anything about ω_{co}^*).

“Dual” picture: instead of searching over all strategy observables, solve subgroup membership problem on the smaller group G/K .

Key Idea: K-modding

Instead of asking if $\sigma \in H$, pick a normal subgroup $K \triangleleft G$ and ask if $[\sigma]_k \in H \text{ (mod } K)$.

This is a weaker condition ($\sigma \in H \Rightarrow [\sigma]_k \in H \text{ (mod } K)$).

- If $[\sigma]_k \notin H \text{ (mod } K) \Rightarrow \sigma \notin H$ so there exists a perfect commuting operator strategy ($\omega_{co}^* = 1$) with operators satisfying the additional relations imposed by K .
- If $[\sigma]_k \in H \text{ (mod } K)$ there is no perfect commuting operator strategy with operators satisfying the additional relations imposed by K (but we can't, in general, conclude anything about ω_{co}^*).

“Dual” picture: instead of searching over all strategy observables, solve subgroup membership problem on the smaller group G/K .

For nice choices of K , the group G/K has solvable subgroup membership problem.

Key Idea: K-modding

Instead of asking if $\sigma \in H$, pick a normal subgroup $K \triangleleft G$ and ask if $[\sigma]_k \in H \pmod{K}$.

This is a weaker condition ($\sigma \in H \Rightarrow [\sigma]_k \in H \pmod{K}$).

- If $[\sigma]_k \notin H \pmod{K} \Rightarrow \sigma \notin H$ so there exists a perfect commuting operator strategy ($\omega_{co}^* = 1$) with operators satisfying the additional relations imposed by K .
- If $[\sigma]_k \in H \pmod{K}$ there is no perfect commuting operator strategy with operators satisfying the additional relations imposed by K (but we can't, in general, conclude anything about ω_{co}^*).

“Dual” picture: instead of searching over all strategy observables, solve subgroup membership problem on the smaller group G/K .

For nice choices of K , the group G/K has solvable subgroup membership problem.

High-level overview: Ask if there is a strategy where the strategy observables satisfy some additional constraint(s). Deciding if such a strategy exists can be **easier** than deciding if a general strategy exists.

Examples

Examples

Ex 1 (warm-up): $K = \gamma_2(G) = \langle [G, G] \rangle = \langle \{[x, y], [y, z], [z, x]\} \rangle^G$ (K is the commutator subgroup of G)

- G/K is an abelian group \Rightarrow solvable subgroup membership problem.
- Modding out by K restricts to commuting measurement observables \Rightarrow classical strategies.

Examples

Ex 1 (warm-up): $K = \gamma_2(G) = \langle [G, G] \rangle = \langle \{[x, y], [y, z], [z, x]\} \rangle^G$ (K is the commutator subgroup of G)

- G/K is an abelian group \Rightarrow solvable subgroup membership problem.
- Modding out by K restricts to commuting measurement observables \Rightarrow classical strategies.

Ex 2 (important): $K = \gamma_2(G^E) = \left\langle \left\{ [x_i x_{i'}, y_j y_{j'}], [y_j y_{j'}, z_k z_{k'}], [z_k z_{k'}, x_i x_{i'}] \right\} \right\rangle^{G^E}$

- **Enforces that “Strategy observables commute in pairs.”**
- We use this K for the rest of the talk.
- Sneaky detail: K is not a normal subgroup of G . But it is a normal subgroup of G^E and we can switch to thinking about G^E (even length words) and H^E (even length sequences of clauses) without breaking anything.

Some Theorems (Restatement of results from 1801.00821)

Some Theorems (Restatement of results from 1801.00821)

earlier.

Theorem 2.2. Let σ, H^E, K be defined relative to an XOR game as described [REDACTED]. Let $[\sigma]_K$ be the coset containing σ after modding G^E out by K . Then we can check if $[\sigma]_K \notin H^E \pmod{K}$ in polynomial time.

If we mod out by K , the subgroup membership problem for G becomes decidable.

Some Theorems (Restatement of results from 1801.00821)

earlier.

Theorem 2.2. Let σ, H^E, K be defined relative to an XOR game as described [REDACTED]. Let $[\sigma]_K$ be the coset containing σ after modding G^E out by K . Then we can check if $[\sigma]_K \notin H^E \pmod{K}$ in polynomial time.

If we mod out by K , the subgroup membership problem for G becomes decidable.

Theorem 2.4. If a k XOR game corresponds to a subgroup H with $[\sigma]_K \notin H^E \pmod{K}$ then the game has $\omega_{co}^* = \omega_{tp}^* = 1$ with a perfect value MERP strategy. A description of this strategy can be found in polynomial time.

If there is a perfect commuting operator strategy satisfying the K relations, then there is a perfect tensor product strategy where the players share a 3 qubit GHZ state.

Main Theorem 2

Main Theorem 2

For 3XOR Games

Theorem 2.6. σ is contained in H iff, after modding out by K , the coset containing σ is contained in H^E . That is:

$$\sigma \in H \iff [\sigma]_K \in H^E \pmod{K}.$$

Main Theorem 2

For 3XOR Games

Theorem 2.6. σ is contained in H iff, after modding out by K , the coset containing σ is contained in H^E . That is:

$$\sigma \in H \iff [\sigma]_K \in H^E \pmod{K}.$$

A 3XOR Game has a perfect commuting operator strategy iff it has a s

Putting everything together for 3XOR games:

$$\omega_{co}^* = 1 \Leftrightarrow \sigma \in H \Leftrightarrow [\sigma]_K \in H^E \Leftrightarrow \text{1 qubit tensor product strategy}$$

Main Theorem 2

For 3XOR Games

Theorem 2.6. σ is contained in H iff, after modding out by K , the coset containing σ is contained in H^E . That is:

$$\sigma \in H \iff [\sigma]_K \in H^E \pmod{K}.$$

Proof:

Main Theorem 2

For 3XOR Games

Theorem 2.6. σ is contained in H iff, after modding out by K , the coset containing σ is contained in H^E . That is:

$$\sigma \in H \iff [\sigma]_K \in H^E \pmod{K}.$$

Proof:

(\Rightarrow) Clear

Main Theorem 2

For 3XOR Games

Theorem 2.6. σ is contained in H iff, after modding out by K , the coset containing σ is contained in H^E . That is:

$$\sigma \in H \iff [\sigma]_K \in H^E \pmod{K}.$$

Proof:

(\Rightarrow) Clear

(\Leftarrow) Involved!

Intuition: Why K?

Given a system of equations like:

$$X_1 Y_1 Z_1 |\psi\rangle = X_1 Y_2 Z_2 |\psi\rangle = X_3 Y_3 Z_3 |\psi\rangle = X_4 Y_3 Z_4 |\psi\rangle = |\psi\rangle$$

Combine them to get:

$$\begin{aligned} X_1 X_1 Y_1 Y_2 Z_1 Z_2 |\psi\rangle &= Y_1 Y_2 Z_1 Z_2 |\psi\rangle = |\psi\rangle \\ X_3 X_4 Y_3 Y_3 Z_3 Z_4 |\psi\rangle &= X_3 X_4 Z_3 Z_4 |\psi\rangle = |\psi\rangle \end{aligned}$$

Then combine those to get:

$$\begin{aligned} (Y_1 Y_2 Z_1 Z_2) (X_3 X_4 Z_3 Z_4) (Y_1 Y_2 Z_1 Z_2)^{-1} (X_3 X_4 Z_3 Z_4)^{-1} |\psi\rangle \\ = (Z_1 Z_2) (Z_3 Z_4) (Z_1 Z_2)^{-1} (Z_3 Z_4)^{-1} = |\psi\rangle \end{aligned}$$

Intuition: Why K?

⇒ Some elements of K naturally end up as fixing $|\psi\rangle$.

Modding out by K is restricting to a strategy where *all* elements of K fix $|\psi\rangle$.

You can get close to a proof that this works by repeating the previous slides construction to show lots of elements of K fix $|\psi\rangle$.

... but the full proof is a lot more work.

(Some) Open Questions

Can we decide whether $\omega_{co}^* = 1$ for k-XOR games with $k > 3$? Mod p games?

- One possible approach – K modding with general K.

More generally, for what games (resp. what classes of correlations) is it easy to compute ω_{co}^* ? What do the strategies optimizing the value of those games look like?

- It is known that we can compute the value of symmetric XOR games, 2 question XOR games, and 3 player XOR games. *In all cases the optimal strategy looks the same.*

Even if we can't compute the value, can we easily compute the restricted value achievable by observables satisfying some relations? Is this restricted value useful?

Thanks!