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Classical Value 𝜔 (the maximum win probability achievable by classical players) is the maximum fraction of satisfiable 
clauses in associated system of equations. 
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Entangled value 𝜔𝑐𝑜
∗ can be larger than the max fraction of (classically) satisfiable clauses. 
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Deciding if an XOR game has classical value 1 (perfect classical value) is easy. [Gaussian Elimination]

Computing the entangled value of a 2 player XOR game is easy. [Tsirelson ’87]

Approximating the classical value of an XOR game is NP-hard. [Håstad ‘97]

3 player XOR Games can have much larger quantum-classical advantage than 2 player XOR games. [Pérez-
García,Wolf, Palazuelos, Villanueva, Junge ’08],[Briet, Vidick ‘11]

For linear systems games, whether or not a game has perfect commuting operator value is undecidable. 
[Slofstra ’16]

Some games require commuting operator strategies to be played optimally [Ji,Natarajan,Vidick,Wright,Yuen ‘20]

This talk: We can decide if a 3XOR game has perfect commuting operator value (𝜔𝑐𝑜
∗ = 1) in polynomial 

time. All 3XOR games with perfect commuting operator value have a perfect strategy where players share 
a 3 qubit GHZ state. 
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Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the subgroup 
membership problem. 

Proof (Sketch):

Only if: 𝜎 ∈ 𝐻 ⇒ 𝜔𝑐𝑜 < 1.

Assume for contradiction that 𝜎 ∈ 𝐻 and 𝜔𝑐𝑜 = 1.
• Since 𝜎 ∈ 𝐻 there exists a sequence of clauses ℎ𝑟1

ℎ𝑟2
… ℎ𝑟𝑡

= 𝜎 ∈ 𝐻.

• Since 𝜔𝑐𝑜 = 1 all clauses in 𝐻 correspond to products of operators which fix | ۧ𝜓 .

Then | ۧ𝜓 = ℎ𝑟1
ℎ𝑟2

… ℎ𝑟𝑡
| ۧ𝜓 = 𝜎| ۧ𝜓 = −| ۧ𝜓
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Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the subgroup 
membership problem. 

Proof (Sketch):

If: 𝜎 ∉ 𝐻 ⇒ 𝜔𝑐𝑜 = 1.

Construct strategy observables 𝑋𝑖 , 𝑌𝑗 , 𝑍𝑘 via representations of group elements 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘.

Representation is left action of group on (left) cosets of 𝐻. 
| ۧ𝜓 = | ۧ𝐻 − | ۧ𝜎𝐻

Check: 𝜎| ۧ𝜓 = −| ۧ𝜓 , ℎ| ۧ𝜓 = | ۧ𝜓 ∀ ℎ ∈ 𝐻.
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Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the subgroup 
membership problem. 

In general, the subgroup membership problem on 𝐺 is undecidable. 

But 𝐻, 𝜎 has a lot of structure – we only care about specific instances of the subgroup membership problem. 

Key Question: Are these instances decidable? 
• For 2 players: YES (Tsirelson)
• For 3 players: YES (coming up)
• For >3 players: Completely open
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• If 𝜎 𝑘 ∈ 𝐻 𝑚𝑜𝑑 𝐾 there is no perfect commuting operator strategy with operators satisfying the additional 

relations imposed by 𝐾 (but we can’t, in general, conclude anything about 𝜔𝑐𝑜
∗ ).

“Dual” picture: instead of searching over all strategy observables, solve subgroup membership problem on the 
smaller group 𝐺/𝐾. 
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Key Idea: K-modding

Instead of asking if 𝜎 ∈ 𝐻, pick a normal subgroup 𝐾 ⊲ 𝐺 and ask if 𝜎 𝑘 ∈ 𝐻 (𝑚𝑜𝑑 𝐾).

This is a weaker condition 𝜎 ∈ 𝐻 ⇒ 𝜎 𝑘 ∈ 𝐻 𝑚𝑜𝑑 𝐾 .

• If 𝜎 𝑘 ∉ 𝐻 𝑚𝑜𝑑 𝐾 ⇒ 𝜎 ∉ 𝐻 so there exists a perfect commuting operator strategy (𝜔𝑐𝑜
∗ = 1) with 

operators satisfying the additional relations imposed by 𝐾.
• If 𝜎 𝑘 ∈ 𝐻 𝑚𝑜𝑑 𝐾 there is no perfect commuting operator strategy with operators satisfying the additional 

relations imposed by 𝐾 (but we can’t, in general, conclude anything about 𝜔𝑐𝑜
∗ ).

“Dual” picture: instead of searching over all strategy observables, solve subgroup membership problem on the 
smaller group 𝐺/𝐾. 

For nice choices of 𝐾, the group 𝐺/𝐾 has solvable subgroup membership problem. 

High-level overview: Ask if there is a strategy where the strategy observables satisfy some additional constraint(s). 
Deciding if such a strategy exists can be easier than deciding if a general strategy exists.  
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• Modding out by 𝐾 restricts to commuting measurement observables ⟹ classical strategies. 



Examples

Ex 1 (warm-up): 𝐾 = 𝛾2 𝐺 = [𝐺, 𝐺] = 𝑥, 𝑦 , 𝑦, 𝑧 , 𝑧, 𝑥 𝐺 (K is the commutator subgroup of 𝐺)

• 𝐺/𝐾 is an abelian group ⟹ solvable subgroup membership problem.
• Modding out by 𝐾 restricts to commuting measurement observables ⟹ classical strategies. 

Ex 2 (important): 𝐾 = 𝛾2 𝐺𝐸 = 𝑥𝑖𝑥𝑖′ , 𝑦𝑗𝑦𝑗′ , 𝑦𝑗𝑦𝑗′ , 𝑧𝑘𝑧𝑘′ , 𝑧𝑘𝑧𝑘′ , 𝑥𝑖𝑥𝑖′

𝐺𝐸

• Enforces that “Strategy observables commute in pairs.” 
• We use this 𝐾 for the rest of the talk.
• Sneaky detail: 𝐾 is not a normal subgroup of 𝐺. But it is a normal subgroup of 𝐺𝐸 and we can switch to thinking 

about 𝐺𝐸 (even length words) and 𝐻𝐸 (even length sequences of clauses) without breaking anything.  
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Some Theorems (Restatement of results from 1801.00821)

earlier.

If we mod out by K, the subgroup membership problem for G becomes decidable.

If there is a perfect commuting operator strategy satisfying the K relations, then there is a perfect tensor 
product strategy where the players share a 3 qubit GHZ state. 
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Main Theorem 2
For 3XOR Games

A 3XOR Game has a perfect commuting operator strategy iff it has a s

Putting everything together for 3XOR games:

𝜔𝑐𝑜
∗ = 1 ⇔ 𝜎 ∈ 𝐻 ⇔ 𝜎 𝐾 ∈ 𝐻𝐸 ⇔ 1 qubit tensor product strategy



Main Theorem 2
For 3XOR Games

Proof: 
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(⇒) Clear



Main Theorem 2
For 3XOR Games

Proof: 

(⇒) Clear

(⇐) Involved!



Intuition: Why K? 

Given a system of equations like:
𝑋1𝑌1𝑍1 ۧ𝜓 = 𝑋1𝑌2𝑍2 ۧ𝜓 = 𝑋3𝑌3𝑍3 ۧ𝜓 = 𝑋4𝑌3𝑍4 ۧ𝜓 = | ۧ𝜓

Combine them to get: 
𝑋1𝑋1𝑌1𝑌2𝑍1𝑍2 ۧ𝜓 = 𝑌1𝑌2𝑍1𝑍2 ۧ𝜓 = | ۧ𝜓

𝑋3𝑋4𝑌3𝑌3𝑍3𝑍4 ۧ𝜓 = 𝑋3𝑋4𝑍3𝑍4 ۧ𝜓 = | ۧ𝜓

Then combine those to get:
𝑌1𝑌2𝑍1𝑍2 𝑋3𝑋4𝑍3𝑍4 𝑌1𝑌2𝑍1𝑍2

−1 𝑋3𝑋4𝑍3𝑍4
−1| ۧ𝜓

= 𝑍1𝑍2 𝑍3𝑍4 𝑍1𝑍2
−1 𝑍3𝑍4

−1 = | ۧ𝜓



Intuition: Why K? 

⇒ Some elements of K naturally end up as fixing | ۧ𝜓 .

Modding out by K is restricting to a strategy where all elements of K fix | ۧ𝜓 . 

You can get close to a proof that this works by repeating the previous slides 
construction to show lots of elements of K fix | ۧ𝜓 .

… but the full proof is a lot more work. 



(Some) Open Questions 

Can we decide whether 𝜔𝑐𝑜
∗ = 1 for k-XOR games with 𝑘 > 3? Mod p games?

• One possible approach – K modding with general K. 

More generally, for what games (resp. what classes of correlations) is it easy to 
compute 𝜔𝑐𝑜

∗ ? What do the strategies optimizing the value of those games look like?
• It is known that we can compute the value of symmetric XOR games, 2 question XOR games, and 3 player XOR 

games. In all cases the optimal strategy looks the same.

Even if we can’t compute the value, can we easily compute the restricted value 
achievable by observables satisfying some relations? Is this restricted value useful?



Thanks!


