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XOR Games — Testing a linear system of equations

- Xai + Vbi + Zci = s; (mod 2)?



Strategies



Strategies (Classical)



Strategies (Classical)

Minimax Argument — Classical strategies are deterministic.



Strategies (Classical)

Minimax Argument — Classical strategies are deterministic.

Described by variables )?j, ?k»ZAl € {0,1} : “Alice/Bob/Charie’s response to question a;.”



Strategies (Classical)

Minimax Argument — Classical strategies are deterministic.
Described by variables )?j, ?k»ZAl € {0,1} : “Alice/Bob/Charie’s response to question a;.”

Players win round i iff Xai + Vbi + Zci = S;



Strategies (Classical)

Minimax Argument — Classical strategies are deterministic.
Described by variables )?j, ?k»ZAl € {0,1} : “Alice/Bob/Charie’s response to question a;.”
Players win round i iff Xai + Vbi + Zci = S;

Classical Value w (the maximum win probability achievable by classical players) is the maximum fraction of satisfiable
clauses in associated system of equations.
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Strategies (Quantum)

Naimark dilation — measurements are projective.

Described by:
» Shared state |)
* Strategy observables X, , Y., Z,, : “Operator measured by Alice/Bob/Charlie in response to question a;.”

* Described multiplicatively, so eigenvalue 1 corresponds to O response, eigenvalue -1 corresponds to 1
response.

Operator Constraints:
Eigenvalues +1 X Y2 = 22 = 1.

No signaling [ Y] = [ Z] = [ Xj] = 1. (Here and always in this talk [a, b] = aba™1bh™1)
Players win round i with probability 1 iff X, Y, Z. [) = (=1)*[}p) (Win round with prob %(1 + <l,b|Xal.Ybl.ZCi|l,b>))

Entangled value w¢, can be larger than the max fraction of (classically) satisfiable clauses.
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How hard is it to compute a game’s value?

Deciding if an XOR game has classical value 1 (perfect classical value) is easy. [Gaussian Elimination]
Computing the entangled value of a 2 player XOR game is easy. [Tsirelson ’87]
Approximating the classical value of an XOR game is NP-hard. [Hastad ‘97]

3 player XOR Games can have much larger quantum-classical advantage than 2 player XOR games. [Pérez-
Garcia,Wolf, Palazuelos, Villanueva, Junge '08],[Briet, Vidick ‘11]

For linear systems games, whether or not a game has perfect commuting operator value is undecidable.
[Slofstra '16]

Some games require commuting operator strategies to be played optimally [Ji,Natarajan,Vidick,Wright,Yuen ‘20]

This talk: We can decide if a 3XOR game has perfect commuting operator value (w;, = 1) in polynomial
time. All 3XOR games with perfect commuting operator value have a perfect strategy where players share
a 3 qubit GHZ state.
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Groups

Goal: Translate description of clauses and strategy observables to group theoretic language.

The game group gives an algebraic representation of the strategy observables. It is generated by:
* Group elements x;, y;, z which satisfy the same relations as the strategy observables X;, Y}, Zj,.

(xl2 — y]2 - ZI% =1, [xiryj] = [yj;Zk] = [Zkixi] = 1)
 Aformal variable o playing the role of -1 in the group.

(0-2 =1, [O-ixi] = [O',y]] = [O-rzk] = 1)

The clause group H € G encodes the clauses of the game.
* First define clause (words) h;: )?al. + ?bi + Zci =s; = hj=Xx4,Yp2;,0° €EG

* Then define clause group H = <{hi}ie[m]>

If the game has w;, = 1, words in H correspond to products of operators (and -1) which fix [y)
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Theorem 2.1. An XOR game is has commuting operator value w?, = 1 iff o ¢ H, where o, H are

defined relative to the XOR game as described
earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the subgroup
membership problem.

Proof (Sketch):
Onlyif:c € H = w,, < 1.
Assume for contradiction that 0 € H and w,, = 1.

* Since o € H there exists a sequence of clauses h, h,, ...h,, =0 € H.
* Since w,, = 1 all clauses in H correspond to products of operators which fix |).

Then [Y) = h. hy, ... h, |Y) = o|p) = —|P)



Main Theorem 1

Theorem 2.1. An XOR game is has commuting operator value w?, = 1 iff o ¢ H, where o, H are
defined relative to the XOR game as described
earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the subgroup
membership problem.

Proof (Sketch):
If:c € H = w,, = 1.

Construct strategy observables X;, Y;, Z via representations of group elements x;, y;, Z.
Representation is left action of group on (left) cosets of H.

) = |H) — |oH)

Check: a|) = —|), h|) = [Y) ¥ h € H.
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Main Theorem 1

Theorem 2.1. An XOR game is has commuting operator value w?, = 1 iff o ¢ H, where o, H are

defined relative to the XOR game as described
earlier in this talk

Deciding if an XOR game has commuting operator value 1 is equivalent to solving an instance of the subgroup
membership problem.

In general, the subgroup membership problem on G is undecidable.

But H, o has a lot of structure — we only care about specific instances of the subgroup membership problem.
Key Question: Are these instances decidable?

* For 2 players: YES (Tsirelson)

* For 3 players: YES (coming up)
e For >3 players: Completely open
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Key |dea: K-modding

Instead of asking if ¢ € H, pick a normal subgroup K < G and ask if [o];, € H (mod K).
This is a weaker condition (0 € H=|o], € H(mod K)).
* If[o];, € H (mod K) = o & H so there exists a perfect commuting operator strategy (w}, = 1) with
operators satisfying the additional relations imposed by K.
* If [o]x € H (mod K) there is no perfect commuting operator strategy with operators satisfying the additional

relations imposed by K (but we can’t, in general, conclude anything about w;,).

“Dual” picture: instead of searching over all strategy observables, solve subgroup membership problem on the
smaller group G /K.

For nice choices of K, the group G /K has solvable subgroup membership problem.

High-level overview: Ask if there is a strategy where the strategy observables satisfy some additional constraint(s).
Deciding if such a strategy exists can be easier than deciding if a general strategy exists.
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Examples

Ex 1 (warm-up): K = y,(G) = {[G,G]) = {[x,y],[y,z], [z x]})¢ (Kis the commutator subgroup of G)

* (/K is an abelian group = solvable subgroup membership problem.
* Modding out by K restricts to commuting measurement observables = classical strategies.

E
Ex 2 (important): K = y,(G%) = <{lxixi"yjyj'] ‘ lyjyj’ 'Zkzk'] ’ [Z"Zk"xixi’]}>0

* Enforces that “Strategy observables commute in pairs.”

* We use this K for the rest of the talk.

* Sneaky detail: K is not a normal subgroup of G. But it is a normal subgroup of G and we can switch to thinking
about G¥ (even length words) and HE (even length sequences of clauses) without breaking anything.
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Some Theorems (Restatement of results from 1801.00821)

earlier.

Theorem 2.2. Let o, HY, K be defined relative to an XOR game as descm}bedm
Let [0] i be the coset containing o after modding G¥ out by K. Then we can check if [o], ¢ HE

(mod K) in polynomial time.

If we mod out by K, the subgroup membership problem for G becomes decidable.

Theorem 2.4. If a kXOR game corresponds to a subgroup H with [0]x ¢ HY (mod K) then the
game has w, = wy, = 1 with a perfect value MERP strategy. A description of this sirategy can be

found in polynomial time.

If there is a perfect commuting operator strategy satisfying the K relations, then there is a perfect tensor
product strategy where the players share a 3 qubit GHZ state.
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A 3XOR Game has a perfect commuting operator strategy iff it hasa s
Putting everything together for 3XOR games:

wi, =1 0 €H & |[o]x € HE © 1 qubit tensor product strategy
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Main Theorem 2

For 3XOR Games

Theorem 2.6. o is contained in H iff. after modding out by K, the coset containing o is contained
in HY. That is:

o€ H <= [o]x € H¥ (mod K).

Proof:
(=) Clear

(<) Involved!



Intuition: Why K?

Given a system of equations like:
X1V Z1 ) = X, Y, 2, [Y) = X3Y3Z5|Y) = X, Y3 Z,|¢) = )

Combine them to get:
X1X1Y1YZZ122|1/J) — Y1YZZ122|1/J)
X3X4Y3Y3Z3Z4|1/)) — X3X4Z:324|1/J)

)
)

Then combine those to get:
(V1Y2Z17,) (X3 X4 Z32,) (V1Yo 21 25) M (X3 X4 Z3Z,) " )

= (Z12,)(Z32,)(Z12,) " (Z3Z,)™F = )



Intuition: Why K?
= Some elements of K naturally end up as fixing |).

Modding out by K is restricting to a strategy where all elements of K fix ).

You can get close to a proof that this works by repeating the previous slides
construction to show lots of elements of K fix |y).

... but the full proof is a lot more work.



(Some) Open Questions

Can we decide whether w;, = 1 for k-XOR games with k > 3? Mod p games?
* One possible approach — K modding with general K.

More generally, for what games (resp. what classes of correlations) is it easy to

compute w;,? What do the strategies optimizing the value of those games look like?

* Itis known that we can compute the value of symmetric XOR games, 2 question XOR games, and 3 player XOR
games. In all cases the optimal strategy looks the same.

Even if we can’t compute the value, can we easily compute the restricted value
achievable by observables satisfying some relations? Is this restricted value useful?



Thanks!



