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Exact Solutions for Spin Models

I Mapping to free-fermions is a
workhorse method

I Mathematically elegant
I Starting point for perturbation

theory

I Rich connection to complexity

I Matchgate circuits1−4

I FKT algorithm5−8

I Sensitivity conjecture9,10

I Graph theory plays a central role
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Free Fermions

The following model is exactly solvable

Hsolv =

n/2∑
j=1

(X2j−1X2j + Y2jY2j+1) +

n∑
j=1

Zj

Jordan-Wigner Transformation11{
γ2j−1 = Z⊗(j−1) ⊗Xj ⊗ I⊗(n−j)

γ2j = Z⊗(j−1) ⊗ Yj ⊗ I⊗(n−j)

{γµ, γν} = 2δµνI

Hsolv = −iγ · h · γT
(
h = −hT

)
Majoranas transform covariantly

γ(t) = e−4h · γ
(
e−4h ∈ SO(2n)

)

Exact solution

e4w · h · e−4w = ⊕nj=1

(
0 −λj
λj 0

)
e−γ·w·γ

T

Hsolve
γ·w·γT

= 2
∑
j

λjZj

Ex = 2
∑
j

(−1)xjλj

[11] P. Jordan and E. Wigner, Zeitschrift f ur Physik 47, 631 (1928).
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Another Example: Kitaev Honeycomb Model

HKHM = −Jx
∑

x−links

XjXk − Jy
∑

y−links

YjYk − Jz
∑

z−links

ZjZk

I Compass model on honeycomb
lattice.

I Bonds on cycles multiply to
constants of motion.

I For an Lx × Ly lattice, the effective
Hilbert space contains O(LxLy)
qubits in a mutual eigenspace of the
cycles.

I A free-fermion mapping is needed to
complete the solution.

[12] A. Kitaev Ann. Phys. 321, 2 (2006).
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Kitaev Honeycomb Model
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x−links
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∑

z−links

ZjZk

I Map each qubit to four fermions

σαk = ibαk ck

with a new symmetry at each vertex

Dj ≡ bxj b
y
j b
z
jcj

I New “bond” constants of motion

uj,j+α̂ ≡ ibαj bj+α̂α

I Solve a free-fermion Hamiltonian in
each sector

[12] A. Kitaev Ann. Phys. 321, 2 (2006).
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How to unify these approaches?

A. Chapman and S. T. Flammia Quantum 4, 278 (2020); arXiv:2003.05465 QIP 2021, February 5, 2021 6 / 21



Graphs from Hamiltonians

Definition (Frustration Graph)

Given a Hamiltonian H written in a specified Pauli basis, its frustration graph,
G(H) ≡ (V,E), has vertices corresponding to the Pauli terms in H. Vertices are
neighboring in G(H) if and only if their corresponding Paulis anticommute.

Hsolv =
∑n/2
j=1 (X2j−1X2j + Y2jY2j+1) +

∑n
j=1 Zj

→→

A. Chapman and S. T. Flammia Quantum 4, 278 (2020); arXiv:2003.05465 QIP 2021, February 5, 2021 7 / 21



When is a mapping to free fermions possible?

Given a general Hamiltonian in the Pauli basis

H =
∑
j

hjPj

when can we define distinct quadratic fermion operators such that commutation
relations are respected?

Pj 7→ iγj1γj2 such that PjPk = (−1)|(j1,j2)∩(k1,k2)|PkPj

In graph theoretic terms...

When can we label vertices of the frustration graph G(H) by subsets of size at
most two, such that neighboring vertices intersect in exactly one element?

A. Chapman and S. T. Flammia Quantum 4, 278 (2020); arXiv:2003.05465 QIP 2021, February 5, 2021 8 / 21
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Line graphs!

Definition

The line graph of a root graph R ≡ (V,E) is a graph L(R) ≡ (E,F ) whose
vertices correspond to the edges of R such that two vertices are neighboring in
L(R) if the corresponding edges of R share a vertex.

R

Definition (Krausz decomposition13)

A graph is a line graph iff there exists an edge partition into cliques such that
every vertex belongs to at most two cliques.

[13] J. Krausz, Mat. Fis. Lapok 50 (1943), 75-85
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Fundamental Theorem

Theorem (Existence of free-fermion solution)

Given a Hamiltonian in the Pauli basis

H =
∑
j

hjPj

an injective mapping

Pj 7→ iγj1γj2 such that PjPk = (−1)|(j1,j2)∩(k1,k2)|PkPj

exists iff the frustration graph of H is the line graph L(R) for some root graph R.
The root graph R is the hopping graph of the fermions.

Proof sketch

⇒ (Definitions coincide)

⇐ If G(H) is a line graph, associate a fermion to each clique in its
Krausz decomposition, and give each Pauli the fermions
corresponding to its cliques.

A. Chapman and S. T. Flammia Quantum 4, 278 (2020); arXiv:2003.05465 QIP 2021, February 5, 2021 10 / 21



Characterization

I A graph is a line graph iff no subset of its vertices induces one of the
following nine forbidden subgraphs14.

I These nine anticommutation structures obstruct a free-fermion solution.

I Line graphs can be recognized efficiently15−17.

[14] L. W. Beineke, J. Comb. Theory, 9 (2): 129-135 (1970).

[15] N. D. Roussopoulos Info. Proc. Lett., 2(4):108-112, 1973.
[16] P. G. H. Lehot. ACM, 21(4):569-575, 1974.
[17] D. G. Degiorgi and K. Simon, Lecture Notes in Computer Science, 1017, Berlin: Springer 37-48 (1995).
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Twin Vertices

I If vertices have the same neighbors, then their product commutes with every
term in the Hamiltonian, and they can be removed by fixing a symmetry.
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Uniqueness

I Except for K3, the root graph of any line graph is unique.

L−→

I This implies the single qubit has a non-unique fermionization, and this is the
only such case.

I If two connected graphs are edge-isomorphic with more than four vertices,
then they are also vertex-isomorphic, and the vertex isomorphism is unique.

L−→

I This implies that for free-fermion Hamiltonians of more than four modes, any
Clifford symmetry of the Hamiltonian is also a symmetry of the single-particle
Hamiltonian.

[18] H. Whitney, Am. J. Math. 54(1): 150–168 (1932).
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Root-Graph Symmetries

Given the Hamiltonian in the Pauli basis

H =
∑
j

hjPj

what are products that commute with every term in the Hamiltonian?

[
∏
j∈S

Pj , Pk] = 0 ∀k

These products correspond to elements in the binary kernel of the adjacency
matrix of G(H)

(i) Twin vertices

(ii) Cycles in the root graph

(iii) Fermionic parity operator (P = γ1γ2 . . . γ|V |)
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Cycles and Parity

The adjacency matrix of a line graph L(R) ≡ (E,F ) with root R ≡ (V,E) can be
factorized as

A = BBT (mod 2)

B is the root-graph incidence matrix

Bij =

{
1 if vertex j ∈ V belongs to edge i ∈ E

0 otherwise

Graphical symmetries are vectors v ∈ {0, 1}×|E| in the binary kernel of A

A · v = 0 (mod 2)

There are two cases

(i) BT · v = 0 ⇒ v is a subgraphs of even-degree (a cycle)

(ii) B ·
(
BT · v

)
= 0 ⇒ BT · v = 1 (fermionic parity operator)
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Incorporating Symmetries

I The sign of a given term is changed by exchanging j1 ↔ j2 in the mapping

Pj 7→ iγj1γj2

I This corresponds to an orientation of the root graph, but is not fixed by the
commutation relations between the Paulis.

I We choose this orientation when we fix the cycle-symmetry eigenvalues.

1. Choose a spanning tree of the root graph
2. Orient the edges of the tree arbitrarily
3. For each edge not in the spanning tree, choose the orientation according to

the sign of the uniquely associated independent cycle.

I If the parity operator is proportional to the identity (up to a product of
cycles) in the spin model, we may need to fix a parity symmetry of the
free-fermion Hamiltonian.
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Nearest-Neighbor 1-d Model

H =

n−1∑
j=1

∑
α,β∈{x,y}

µjαβσ
α
j ⊗ σ

β
j+1 +

n∑
j=1

νjZj
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Kitaev Honeycomb Model

I The frustration graph is the line graph of the honeycomb graph.

I Orientation of edges outside of the spanning tree specifies a symmetry sector
of the plaquettes.
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Frustrated Hexagonal Gauge 3D Color Code

[19] T. Jochym-O’Connor, S. Roberts, S. Bartlett, and J. Preskill, QEC 2019
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Sierpinski-Hanoi Model

I Frustration graph describes allowed
transitions in the Towers of Hanoi.

I Model encodes logical qubits at a
constant asymptotic rate of 11

18 .

I An excited-state degeneracy
emerges upon introducing a local
field.
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Summary

I We give a graph-theoretic
characterization of a wide class of
fermion-solvable models.
I Solvable when the frustration

graph is a line graph.
I Graphical symmetries correspond

to cycles and parity.

I Still not completely characterized
I Beyond generator-to-generator

mappings
I Cases where solvability depends

on the Hamiltonian coefficients.

Thanks!
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[11] P. Jordan and E. Wigner, “Über das Paulische Äquivalenzverbot,” Zeitschrift für Physik 47, 631 (1928).

[12] A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics 321, 2 (2006), january Special Issue.
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