
A Compact Fermion to Qubit Mapping

Joel Klassen

QIP 2021

About Phasecraft
Phasecraft is a quantum software company.

Our focus is designing algorithms that incorporate a detailed
scientific understanding of all the moving parts – from the
particular application to the specific hardware platform.

Our main goal is to design viable applications for near-term
quantum computers.

We have partnerships with leading quantum hardware
companies as well as academic institutions and other industry
leaders.

We are hiring full-time post-doc level researchers and PhD level
(or earlier) summer interns.

Come and work with us! www.phasecraft.io

Joint work (arXiv:2003.06939 + arXiv:2101.10735)

Charles Derby
Phasecraft Ltd.

and UCL

Joel Klassen
Phasecraft Ltd.

Motivation

Fermion to qubit mappings are important!

They tell us how to represent fermions on quantum computers.

Many promising applications of quantum computers involve
simulating fermions

Material
Science

Chemistry Atomic Physics
High Energy

Physics

The choice of mapping informs the algorithm design and cost.

Punchline

We introduce a new fermion to qubit mapping – the Compact
Encoding – that is very resource efficient and can be tailored to
various lattices.

Agenda

• fermion to qubit mappings
• general framework for local encodings
• the compact encoding on the square lattice
• relationship to toric code
• other nice lattices
• the cubic lattice

Notation

Fock space on m modes F =
⊕m

n=0
∧n(C2)m

dim(F) = 2m

Fermionic creation and annihilation operators: a†i , ai ∈ L(F)

Majorana operators: γ2j = aj + a†j , γ2j+1 = (aj − a†j)/i

γ2
j = 1, {γj , γk} = 2δjk

A Fermion By Any Other Name

A fermion to qubit mapping is a correspondence between
fermion and qubit states – or equivalently between operators.

e.g. Jordan-Wigner transform:

a†i →
1
2Z1Z2...Zi−1(Xi − Yi)

JW is a one-to-one mapping: |010〉 ↔ |0〉 |1〉 |0〉

JW operators grow with the size of the system!

Higher weight interactions lead to longer depth circuits.

The choice of mapping can have significant consequences for
the overheads of your algorithm.

Why the JW strings?
Fermionic states have non-local structure

b b bc b b bcb

|ψ〉 → −|ψ〉 |ψ〉 → |ψ〉

VS

Nature preserves locality (no-signaling) by parity
superselection.

Observables in nature never mix even and odd fermion states.

a†a 3 , a† 7

Nature is local in the even fermionic algebra : complex sums
of even products of creation/annihilation operators (even
products of Majoranas).

Even Fermionic Algebra
Even fermionic algebra is generated by “edge” and “vertex”
operators: Ejk = −iγ2jγ2k and Vj = −iγ2jγ2j+1

e.g. Hopping: a†i aj + a†j ai ∝ ViEij + EijVj

Hermitian, traceless, self-inverse and Ejk = −Ekj .

Incident Edge and vertex ops anti-commute. All the rest
commute.

b
{Eij , Vj} = 0

j
{Eij , Ejk} = 0

Eij Vj Ejk

Products of edges in a cycle c
yield the identity:

∏
E∈c i E = 1 = 1

Local Fermionic Encoding
Nature is local in the even fermionic algebra – let’s do the same.

Local Fermionic Encodings map privileged elements of the
even fermionic algebra to local qubit operators.

Fermionic states mapped into a stabilized code space.
Non-locality is manifest in the entanglement.

Bravyi-Kitaev Super-Fast

b b

b

b

b

b b

b

b

b

b b

b b b

bb

X

Z
Z

Z

Z
Z

Example Edge Operator

b b

b

b

bb

b

b

b

b

b

b

Y

Y X

X

Z

Z

Example Stabilizer

Verstraete-Cirac-Ball

b b b b b

bbbbb

b b b b b

b b b b b

b

b

b

b

Y X

Y X

Example Edge Operator

b b b b b

bbb b b

XZ

Z
Z Z Z X

Example Stabilizer

b

State of the Art

No prior local encoding uses fewer than 2 qubits per mode .

Verstraete-Cirac-Ball has smallest edge ops: worst case
weight-4 edge ops on square lattice

Any improvement on these numbers reduces the cost of
representing fermions on quantum computers.

The compact encoding improves on these numbers –
using 1.5 qubits per mode and weight-3 edge ops

General Recipe for Local Encoding I
Start with an undirected connected graph G = (V, E) – denoting
locality.
• Take the set of vertices and directed edges of G + phases:

sG := {ejk ,ekj , vj ,±i : ∀{j, k} ∈ E ∀j ∈ V}

• Impose all edge and vertex relations of the even fermionic
algebra except the cycle condition – yielding a finitely
presented group:

MG := 〈sG | even algebra - cycle condition〉

• Cycles
(∏

E∈c i E
)

form an abelian normal subgroup
CG /MG and MG/CG = 〈sGCG | even algebra〉

• C[MG/CG] is thus the even fermionic algebra (ejkCG = Ejk)

General Recipe for Local Encoding II
• Now find a representation σ : MG → L(H) where H is a

multi-qubit system.

• A good choice of σ will map the edges and vertices in G to
low weight ops.

• If σ(CG) has a common +1 eigenspace U , then we may
define a representation of MG/CG:

τ(mCG) := ProjU ◦ σ(m)

• Thus τ constitutes a representation of the even fermionic
algebra in the code space stabilized by σ(CG) – with logical
ops given by σ(MG \ CG)

All the local encodings we’ve looked at work this way.

Compact Encoding - Square Lattice
Here we use a square lattice to show how σ is constructed in
the compact encoding

b b

bb

b b b

b

b

Assign a qubit to every vertex, and give every edge in the graph
a carefully chosen orientation.

b b b

bbb

b b b

Start with an ansatz definition of edge and vertex ops:

σ(vi) = Zi , σ(eij) =

{
XiYj if i points to j
−XjYi if j points to i

b b b

bbb

b b

X

X
X

X
X

X
XX

X
X

X

X

Y
Y

Y
Y

Y
Y

Y
YY

Y

Y

Y

b

V = Z

All edges anti-commute with incident vertices.

Incident edges anti-commute when they touch head to tail.

When incident edges don’t touch head to tail – and thus
commute – we add ancillary qubits to resolve the missing
anti-commutation relation.

b b b

bbb

b b

X

X
X

X
X

X
XX

X
X

X

X

Y
Y

Y
Y

Y
Y

Y
YY

Y

Y

Y b b b

b

bbb

b b

X

X
X

X
X

X
XX

X
X

X

X

Y
Y

Y
Y

Y
Y

Y
YY

Y

Y

Y

b
X

X
YY

b
X

X
YY

The choice of edge orientation allows us to resolve 4 missing
anti-commutation relations with only one ancillary qubit!

1.5 qubits per mode, weight-3 edge ops!

What are the stabilizers? ops of form
∏

E∈c i σ(E). On a planar
graph cycles are generated by boundaries of faces:

Y X
Y

YX
Y

X

Y
X

X

Y
X =

Z

Z

Z

Z

Y

Y

X X

Non-trivial stabilizers around “even” faces (no qubit on the face)

Problem on “odd” faces (faces with a qubit)

Y X
Y

YX
Y

Y

X
X

Y

X
X = −I

This is not allowed since σ(CG) must have a common +1
eigenspace!

Consistently flipping a sign on one edge fixes this (−I→ I).

The compact encoding is the only local encoding we know for
which CG ∩ ker(σ) 6= 0.

What is the dimension of the stabilized code space U?

log2(dim(U)) = qubits − stabilizer generators

= modes + odd faces − even faces

The “disparity” between code space and Fock space:

∆ := log2(dim(U))− log2(dim(F)) = odd faces− even faces

b b b

b

bbb

b b

b

b

∆ = 0
b b b

b

bbb

b b

b

b

b b b

bb b

b

b

b

b

b

b

b

b b

bb

b b

b

b b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

∆ = −1 ∆ = +1

Fock space even or odd Fock space Fock space + a qubit??

When ∆ = 0 the whole fermionic algebra is represented.

Majorana ops must admit a representation
(γ2i anti-commutes w/ incident edge and vertex ops).

bb

b b

b b

b

b bb

b

b

X
X

γ = Y

V = Z

Inject γ2i at one “odd” corner and generate others by multiplying
by edge and vertex ops.

Opposite corner is a Majorana hole: h2k := γ2k
∏

j Vj

When ∆ = +1 there are four places (A,B,C,D) to “inject”
Majoranas!

b b b b

bbbb

b b b b

bbbb

b b

b

b b

A B

CD

Ai

Cj

Bj

Dk Ai = γ2i ⊗ I

Bi = h2i ⊗ X̃
Ci = h2i ⊗ Ỹ
Di = h2i ⊗ Z̃

Pauli ops on the extra qubit are formed by annihilating holes
from different corners.

Extra logical qubit is topologically protected...

Surprise toric code!
Stabilizers are toric code stabilizers on face qubits coupled to a
parity check on vertex qubits.

Z Z

Z Z

Z
Y

Y

X X

Z Z

Z Z

Z
Y

Y

X
X

Paired magnetic (m) and electric (e) excitations of toric code act
like fermions. The compact encoding de-penalizes the energy
cost of these pairs – pulling them into the code space.

Y
Y

Z
Y

Z
Y

X

Other Planar Graphs

The design strategy of the compact encoding can be applied to
other graphs.

X

Y X

YX

Y

Y

XX
Y

X X

XY

Y

X

YX

∆ = 0 ∆ = 0 (in the bulk) ∆ = 0 (in the bulk)

∆ > 0 in the bulk. Disparity grows with system size.

One nice lattice is the 4.8.8 regular tiling.

Can be used to represent spinful-fermions on a square lattice

↑ ↓↓ ↑

↑ ↓ ↑ ↓

↑↓

↑ ↓

weight 4 hopping terms and fewer than 1.25 qubits per mode

fits naturally on planar hardware layout

3D Cubic Encoding
We can extend our square encoding into the third dimension –
every 2d slice looks like the square encoding.

∆ = odd corners/2− 1

Proof is non-trivial because ker(σ) and CG are more
complicated.

Uses 2.5 qubits per mode and edges are weight 4.

Compare to VC: 3 qubits per mode and weight 4 edge ops.

Some questions:

• Is our construction the best one can do by these metrics?
• The toric code is hidden in the ancillary qubits of the 2d

encoding – how should we understand its counterpart in
the 3D version?
• Can we encode other types of particles in a similar fashion

– by condensing the excitations of existing codes back into
the code-space.
• Is there a larger framework for constructing local encodings

that subsumes the general framework outlined here?

Thanks!

Please come and say hi to me after the talk :)

(arXiv:2003.06939 + arXiv:2101.10735)

www.phasecraft.io

More details about the cubic encoding
Non-trivial stabilizers of cubic encoding

YY

X

X

=

(a) (b)

YY
X

X

ZZ

ZZ

Y Y

X

X

Y
Y

X

X

Cycles in the kernel:

Rank(ker(σ) ∩ CG) = Isolated Odd Faces + 2* Odd Cells

rank(stab) = rank(CG)− rank(CG ∩ ker(σ))

rank(ker(σ) ∩ CG) = Isolated Odd Faces + 2Odd Cells

rank(CG) = edges - vertices + 1 = faces− cells

∆ = (qubits− rank(stab))− vertices

iso. odd faces = odd faces− 6 ∗ odd cells

cells = odd cells + even cells

∆ = odd faces− even faces− 3 ∗ odd cells + even cells

Per vertex disparity:

∆v = OFv/4− EFv/4− 3 ∗OCv/8 + ECv/8

Only certain possible corner configurations

odd corner
even corner

e

e

e o

e

e o

e

o o

o

o

∴ ∆ = odd corners/2− 1

Clearly a topological feature – a better proof is likely possible.

