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Quantum simulation
Hamiltonian simulation problem
Given Hamiltonian H and time t, perform U s.t.

∥∥∥U − e−itH
∥∥∥ ≤ ϵ.

H(0)

H(s)

H(1)

A x = b

“… nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

— Richard Feynman
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A class of interacting electrons
Interacting electrons

H = T + V :=
n−1∑

j,k=0
τj,kA†

j Ak +
n−1∑

l ,m=0
νl ,mNlNm.

• Jordan-Wigner encoding: on an n-qubit system,

A†
j = Z0 ⊗ · · · ⊗ Zj−1 ⊗ Xj − iYj

2 = Z0 ⊗ · · · ⊗ Zj−1 ⊗ |1⟩ ⟨0|j ,

Ak = Z0 ⊗ · · · ⊗ Zk−1 ⊗ Xk + iYk

2 = Z0 ⊗ · · · ⊗ Zk−1 ⊗ |0⟩ ⟨1|k ,

Nl = A†
l Al = I − Zl

2 = |1⟩ ⟨1|l .

• Represents various systems in physics and chemistry:
◦ electronic-structure Hamiltonian (plane-wave basis)
◦ Fermi-Hubbard model
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Crash course on simulation algorithms
• LCH model: Hamiltonian H = ∑

j Hj , with Hj Hermitian and
e−itHj implementable for arbitrary real t.
◦ Trotterization (product formulas)
◦ qDRIFT1 (randomized method)
◦ ...

• LCU model: Hamiltonian H = ∑
j αjUj , with Uj unitary and

|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Uj implementable.
◦ Taylor-series algorithm2

◦ Qubitization3

◦ ...

• Interacting electrons can be simulated by many quantum algo-
rithms, but how to further improve their runtime?
1[Campbell 19]
2[Berry, Childs, Cleve, Kothari, Somma 15]
3[Low, Chuang 19]
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Trotterization
• Also known as product-formula method or splitting method.
• Suffices to consider the two-term decomposition H = T +V , as

e−itT and e−itV are implementable by various quantum circuits.

• Can use the first-order Lie-Trotter formula4

S1(t) := e−itT e−itV = e−itH + O
(
t2
)

or the second-order Suzuki formula

S2(t) := e−i t
2 V e−itT e−i t

2 V = e−itH + O
(
t3
)

.

• Generalizations to arbitrarily high-order formula Sp(t) exist.5

4[Lloyd 96]
5[Suzuki 92]
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Hamiltonian commutativity
Commutativity of fermionic operators6

[
A†

l Am, A†
j

]
=

A†
l , j = m,

0, j ̸= m,
[
A†

l Am, Ak
]

=

−Am, k = l ,
0, k ≠ l .

• Commutator analysis existed for certain low-order formulas:

S1(t) − e−itH =
∫ t

0
dτ1

∫ τ1

0
dτ2 e−i(t−τ1)He−iτ1T e iτ2T [iT , iV ][iT , iV ][iT , iV ]e−iτ2T e−iτ1V ,

S2(t) − e−itH =
∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 e−i(t−τ1)He−i τ1

2 V

·
(

e−iτ3T
[
−iT ,

[
−iT , −i V

2

]][
−iT ,

[
−iT , −i V

2

]][
−iT ,

[
−iT , −i V

2

]]
e iτ3T + e i τ3

2 V
[
i V

2 ,
[
i V

2 , iT
]][

i V
2 ,
[
i V

2 , iT
]][

i V
2 ,
[
i V

2 , iT
]]

e−i τ3
2 V
)

e−iτ1T e−i τ1
2 V .

• Analysis of the general case has remained elusive until recently.7

6[Helgaker, Jørgensen, Olsen 13]
7[Childs, Su, Tran, Wiebe, Zhu 21]
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Prior knowledge of initial state
Transition amplitude of fermionic operators∣∣∣⟨ϕη|∑n−1

j=0 Nj |ψη⟩
∣∣∣ ≤ η if states |ψη⟩ and |ϕη⟩ are in the η-electron

subspace span{|c0, c1, ... , cn−1⟩ , #{cj = 1} = η}.

• Related bounds existed for simple fermionic operators:

|⟨ϕη| T |ψη⟩| =
∣∣∣∣ ⟨ϕη|

n−1∑
j,k=0

τj,kA†
j Ak |ψη⟩

∣∣∣∣ ≤ ∥τ∥ η∥τ∥ η∥τ∥ η,

|⟨ϕη| V |ψη⟩| =
∣∣∣∣ ⟨ϕη|

n−1∑
l ,m=0

νl ,mNlNm |ψη⟩
∣∣∣∣ ≤ ∥ν∥max η

2∥ν∥max η
2∥ν∥max η
2.

• To handle the general case, insert η-electron projection Πη and
apply triangle inequality:
∥Πη [T , V ]Πη∥ ≤ 2 ∥ΠηTΠη∥ · ∥ΠηVΠη∥ ≤ 2 ∥τ∥ ∥ν∥max η

3.
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Commutativity + initial-state knowledge
• So the performance of quantum simulation can be improved

using either:
◦ Hamiltonian commutativity (complexity depends on n, but

the overall scaling is better when η ≈ n);
◦ initial-state knowledge (complexity depends on η, but the

overall scaling is worse when η ≈ n).

“But a great product isn’t just a collection of features.
It’s how it all works together.”

— Timothy Cook
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Transition amplitude of Trotter error
Transition amplitude of Trotter error
A pth-order formula Sp(t) can simulate the evolution of an n
spin-orbital interacting-electronic Hamiltonian H with error∣∣∣⟨ϕη|

(
Sp(t) − e−itH

)
|ψη⟩

∣∣∣ = O
(
(∥τ∥ + ∥ν∥max η)p+1 ηtp+1

)
.

Furthermore, if the interactions are d-sparse,∣∣∣⟨ϕη|
(
Sp(t) − e−itH

)
|ψη⟩

∣∣∣ = O
(
(∥τ∥max + ∥ν∥max)

p+1 dp+1ηtp+1
)

.

• The result avoids the explicit scaling with n while reducing the
dependence on η, improving over previous work.8, 9

• Analysis of Trotter error can sometimes be loose, but...
8[Childs, Su, Tran, Wiebe, Zhu 21]
9[Babbush, Wiebe, McClean, McClain, Neven, Chan 18]
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Tightness
Tightness
For s, w > 0 and positive integer η ≤ n

2 , there exists an n
spin-orbital interacting-electronic Hamiltonian with ∥τ∥ = s and
∥ν∥max = w such that10∥∥∥ [T , ... [T︸ ︷︷ ︸

p

, V ]]
∥∥∥

η
= Ω (spwη) ,

∥∥∥ [V , ... [V︸ ︷︷ ︸
p

, T ]]
∥∥∥

η
= Ω ((wη)p s/n) .

In addition, for u, w > 0 and positive integer d ≤ η ≤ n
2 , there

exists a d-sparse n spin-orbital interacting-electronic Hamiltonian
with ∥τ∥max = u and ∥ν∥max = w such that∥∥∥ [T , ... [T︸ ︷︷ ︸

p

, V ]]
∥∥∥

η
= Ω ((ud)p wd) ,

∥∥∥ [V , ... [V︸ ︷︷ ︸
p

, T ]]
∥∥∥

η
= Ω ((wd)p u) .

10∥·∥η = max|ψη⟩,|ϕη⟩ |⟨ϕη| · |ψη⟩| is the maximum transition amplitude.
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Electronic structure
Second-quantized plane-wave electronic structure
H = 1

2n
∑
j,k,ν

κ2
ν cos[κν · rk−j ]A†

j Ak︸ ︷︷ ︸
T

−4π
ω

∑
l ,ι,ν ̸=0

ζι cos[κν · (r̃ι − rj)]
κ2

ν

Nl + 2π
ω

∑
l ̸=m
ν ̸=0

cos[κν · rl−m]
κ2

ν

NlNm

︸ ︷︷ ︸
V

.

Simulation Algorithm n, η η = Θ(n)
Interaction-picture (first quantization)11 Õ

(
n1/3η8/3

)
Õ (n3)

Qubitization (first quantization)11 Õ
(
n2/3η4/3 + n1/3η8/3

)
Õ (n3)

Interaction-picture (second quantization)12 Õ
(

n8/3

η2/3

)
Õ (n2)

Trotterization (second quantization)13
(
n5/3η1/3 + n4/3η5/3

)
no(1) n3+o(1)

Trotterization (second quantization)14
(

n7/3

η1/3

)
no(1) n2+o(1)

Trotterization (second quantization)
(

n5/3

η2/3 + n4/3η2/3
)

no(1)
(

n5/3

η2/3 + n4/3η2/3
)

no(1)
(

n5/3

η2/3 + n4/3η2/3
)

no(1) n2+o(1)n2+o(1)n2+o(1)

11[Babbush, Berry, McClean, Neven 19]
12[Low, Wiebe 18]
13[Babbush, Wiebe, McClean, McClain, Neven, Chan 18]
14[Childs, Su, Tran, Wiebe, Zhu 21]
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Fermi-Hubbard model
Fermi-Hubbard model

H = −s
∑

⟨j,k⟩,σ

(
A†

j,σAk,σ + A†
k,σAj,σ

)
+ v

∑
j

Nj,0Nj,1,

where ⟨j , k⟩ ranges over nearest-neighbor lattice sites and σ ∈
{0, 1} labels the spin degree of freedom.

• We show that a pth-order Trotterization has gate complexity
O
(
nη1/p

)
, improving over previous work.15, 16

• This improvement is not as much dramatic since the physically
relevant regime is close to half filling.

15[Childs, Su 19]
16[Clinton, Bausch, Cubitt 20]
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Bounding the transition amplitude
• For number-preserving operator X , bound |⟨ϕη| X |ψη⟩|.
• Examples:

◦ |⟨ϕη| T |ψη⟩| =
∣∣∣⟨ϕη|∑n−1

j,k=0 τj,kA†
j Ak |ψη⟩

∣∣∣ ≤ ∥τ∥ η
◦ |⟨ϕη| V |ψη⟩| =

∣∣∣⟨ϕη|∑n−1
l ,m=0 νl ,mNlNm |ψη⟩

∣∣∣ ≤ ∥ν∥max η
2

• But what about more complicated fermionic operators?
X =

∑
jjj,kkk
τj2,k2δk2,j1τj1,k1A

†
j2C2,1B1,1Ak1 ,

C2,1 = νk2,k2 ,
B1,1 =

∑
jjj′,kkk′

β1,2τj′
2,k′

2
δk′

2,j′
1
τj′

1,k′
1
A†

j′
2
B ′

2,1C ′
2,1Ak′

1
,

β1,2 = νj′
2,j1 ,

B ′
2,1 =

∑
l ′
νl ′,j′

2
Nl ′ ,

C ′
2,1 =

∑
m′
νk′

2,m′Nm′ .

j2 k2 j1 k1

j ′
2 k ′

2 j ′
1 k ′

1

l ′ m′

τ δ τ

ν

ν

τ δ τ

ν ν

Yuan Su Nearly tight Trotterization of interacting electrons 13/16
13/16



Bounding the transition amplitude
• Recursive approach: for number-preserving operator X ,

|⟨ϕη| X |ψη⟩| =
√

⟨ψη| X † |ϕη⟩ ⟨ϕη| X |ψη⟩ ≤
√

⟨ψη| X †X |ψη⟩.

◦ Contract the indices in X †X by using either diagonalization
or an operator Cauchy-Schwarz inequality.17

◦ Apply a Hölder-type inequality to recursively bound X †X .
• Path-counting approach: for number-preserving operator X ,

|⟨ϕη| X |ψη⟩| ≤ 2 |⟨ψη| X |ψη⟩| .

◦ Expand X , |ψη⟩ and combinatorially count “paths” with nonzero
contribution to the expectation.

• Full details in arXiv:2012.09194.
17[Otte 10]
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Summary
• Improved quantum simulation by simultaneously exploiting the

Hamiltonian commutativity, the sparsity of interactions, and the
initial-state knowledge.

• New techniques for bounding the transition amplitude and ex-
pectation of fermionic operators.

• Simulating electronic structure in the plane-wave basis with(
n5/3

η2/3 + n4/3η2/3
)

no(1) gates, currently the fastest in second quan-
tization while conditionally better than first-quantized results.

• Improved simulation of the Fermi-Hubbard model.

• Concrete example Hamiltonians for which the bound is almost
saturated.
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Outlook
• Low-energy quantum simulation:

◦ [Şahinoğlu, Somma, arXiv:2006.02660]

• Faster simulation using Hamiltonian symmetry:
◦ [Tran et al., arXiv:2006.16248]

• Quantum chemistry with more compact basis:
◦ [von Burg, Low et al., arXiv:2007.14460]
◦ [Lee, Berry et al., arXiv:2011.03494]

• Simulation algorithms for estimating expectation values:
◦ [Chen, Huang, Kueng, Tropp, arXiv:2008.11751]
◦ [Faehrmann, Steudtner et al., arXiv:2101.07808]

• Simulation algorithms under different cost metric:
◦ [Clinton, Bausch, Cubitt, arXiv:2003.06886]

• See Andrew’s tutorial for other related work (and much more!)
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