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Quantum simulation

Hamiltonian simulation problem

Given Hamiltonian H and time t, perform U s.t. HU — e‘“HH <e

g : H

H(1)

H(0)

. nature isn't classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by
golly it's a wonderful problem, because it
doesn’t look so easy.”

— Richard Feynman
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A class of interacting electrons

Interacting electrons

n—1 n—1
H=T+ V=Y 5 AA+ Y v mNiN,,.

_/,k:O l,m:o
e Jordan-Wigner encoding: on an n-qubit system,
X —iY;

A=2® - 8Za0=5— =58 10|10,
Xy + 1Y)
Ak:ZO®---®Zk_1®kTIk:ZO®"'®Z’<—1®’O><1’<'
| —Z
Ni=AlA =2 =y,

e Represents various systems in physics and chemistry:
o electronic-structure Hamiltonian (plane-wave basis)
o Fermi-Hubbard model
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Crash course on simulation algorithms

e | CH model: Hamiltonian H = > H;, with H; Hermitian and
e~ implementable for arbitrary real t.

o Trotterization (product formulas)
o qDRIFT! (randomized method)

o ...

e LCU model: Hamiltonian H = ZjajUj, with U; unitary and
|0) (0] ® I+ |1) (1| ® U; implementable.
o Taylor-series algorithm?
o Qubitization3

e Interacting electrons can be simulated by many quantum algo-
rithms, but how to further improve their runtime?
1[{Campbell 19]

2[Berry, Childs, Cleve, Kothari, Somma 15]
3[Low, Chuang 19]
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Trotterization

e Also known as product-formula method or splitting method.

* Suffices to consider the two-term decomposition H = T+ V/, as
e T and e~ are implementable by various quantum circuits.

e Can use the first-order Lie-Trotter formula*
A(t) = e itT =itV _ o=ith | (t2>
or the second-order Suzuki formula
F(t) = e itV itT g=izV — o=itH | <t3> '

e Generalizations to arbitrarily high-order formula .%,(t) exist.®

4[Lloyd 96]

®[Suzuki 92] 5 )
Yuan Su Nearly tight Trotterization of interacting electrons 16 y



Hamiltonian commutativity

Commutativity of fermionic operators®

A k=1,
0, k1.

A;r, Jj=m,

AAn A =10 G m

Al Am, Ar] =

e Commutator analysis existed for certain low-order formulas:
. t T ) ) ) ' ‘
,%(t) — e—ltH :/ dTl/ g 0 e—l(t—Tl)He—lTlTeITQT[iT' I-‘/]e_,.,z-re_”.lvv
0 0
i ¢ g T f LT
F(t) = e ™ :/ C|T1/ ' de/ 2d7-3 e~ i(t=T)H =iV
0 0 0

: <e*"73T {—iT, [—iT, —/%H PLELINEPY 24 [I% [I% iTH e V) e mTe i3V,

e Analysis of the general case has remained elusive until recently.”

6[Helgaker, Jgrgensen, Olsen 13]
"[Childs, Su, Tran, Wiebe, Zhu 21]
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Prior knowledge of initial state

Transition amplitude of fermionic operators

‘<¢n| Yo N |wn>‘ < n if states |¢,) and |¢,) are in the n-electron
subspace span{|c, ci, ..., coo1) . #{¢ = 1} = n}.

e Related bounds existed for simple fermionic operators:

n—1
(al T1o| = (6l X 1isAfAclin) | < 17l

k=0

< N2 llmax -

n—1
[0l V)] = [ (0] 3 w1.miM 1)

/,m=0

e To handle the general case, insert n-electron projection [1, and
apply triangle inequality:

1T, [T VN[ < 2[00, T, |- [0, VI, || < 2|7 (| v

3
maxn )
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Commutativity + initial-state knowledge

e So the performance of quantum simulation can be improved
using either:

o Hamiltonian commutativity (complexity depends on n, but
the overall scaling is better when 1 & n);

o initial-state knowledge (complexity depends on 7, but the
overall scaling is worse when 7 ~ n).

“But a great product isn't just a collection of features.
It's how it all works together.”

— Timothy Cook
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Transition amplitude of Trotter error

A pth-order formula .#,(t) can simulate the evolution of an n
spin-orbital interacting-electronic Hamiltonian H with error

—i 1
(@l (L5(2) = ™) )] = O (Il + [Vl e 1) m2?*)
Furthermore, if the interactions are d-sparse,

(0 (58 = ) [9)] = O (17 + [l ¥4

e The result avoids the explicit scaling with n while reducing the
dependence on 7, improving over previous work.:°

e Analysis of Trotter error can sometimes be loose, but...

8[Childs, Su, Tran, Wiebe, Zhu 21]
°[Babbush, Wiebe, McClean, McClain, Neven, Chan 18]
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Tightness

Tightness

n

For s,w > 0 and positive integer n < 5 there exists an n

spin-orbital interacting-electronic Hamiltonian with ||7|| = s and
|v]l,,., = w such that'®
| [T AT VI, = (sPwn), [V IV, TN = Q((wn)®s/n).
W_/ %,_/
p p

In addition, for u, w > 0 and positive integer d < n < g there
exists a d-sparse n spin-orbital interacting-electronic Hamiltonian

with ||7|| ... = v and |||, .. = w such that
|[T...[T, V]]H = Q((ud)’wd), |[V,..[V, T]])L7 = Q((wd)? ).
e ——

0111 = max|y 116,y [{Py| - |1y)] is the maximum transition amplitude.
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Electronic structure

Second-quantized plane-wave electronic structure

H= L > K2 coslk, - rij] Al A A M G coslr, - (7 = )] .2(& )] Ny + n 3 coslry - fi-m] NNy, .

2njvkv,/ w le,v#£0 Ky w I#m ’{12/
v#£0
Y
1
Simulation Algorithm _ny n= ©(n)

Interaction-picture (first quantization)? 0 (nl/3778/3) O (n?)
Qubitization (first quantization)!? 0 <n2/37]4/3 + n1/3n8/3) O (n®)
Interaction-picture (second quantization)!? o f;% O (n?)
Trotterization (second quantization)*3 (n5/3771/3 + n4/3n5/3) not) - pite(d)
Trotterization (second quantization)* 272) ) p?te)
Trotterization (second quantization) (:;%; + n4/3n2f[3) n°() n?te()

H[Babbush, Berry, McClean, Neven 19]

12[Low, Wiebe 18]

13[Babbush, Wiebe, McClean, McClain, Neven, Chan 18]
14[Childs, Su, Tran, Wiebe, Zhu 21]
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Fermi-Hubbard model

Fermi-Hubbard model
H=-s Y (Al A +AL AL+ Z
U, k),o

where (j, k) ranges over nearest-neighbor Iattlce sites and o €
{0, 1} labels the spin degree of freedom.

e We show that a pth-order Trotterization has gate complexity
(@) (nnl/p), improving over previous work.!°:1®

e This improvement is not as much dramatic since the physically
relevant regime is close to half filling.

15[Childs, Su 19]
18[Clinton, Bausch, Cubitt 20]
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Bounding the transition amplitude

 For number-preserving operator X, bound [(¢,| X [1,)|.

o Examples
o |l T won)] = [(60] ZJiko Tia Al Ar [tn)| < Il
o [l V o) = |( ¢n|z,m 0 V1NN [109)]| < [V o 72

e But what about more compllcated fermionic operators?

_ T
X = Z/rj?vkzakﬁjl/rjlvklAjz C1B11A,
Jk

Cz 1 = Vg, ko

t pr 7
Bi1= Z BraTjs ks Okyjy Tt b Ay Bo1 G Ak
ik

O]
v e T % 0
,61,2 = Vit ju» v v
Bé,l = Z VI’,jé N[f, 0
I3

!
C2,1 = Z Vké,m’Nm"
m/
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Bounding the transition amplitude

e Recursive approach: for number-preserving operator X,

[l X )] = /Wy XT () (| X [) < 1/ 2y XTX [0,

o Contract the indices in XTX by using either diagonalization
or an operator Cauchy-Schwarz inequality. !’
o Apply a Holder-type inequality to recursively bound XTX.

e Path-counting approach: for number-preserving operator X,

[{Dul X )] < 2[(sbn] X [1hp)] -

o Expand X, |1,) and combinatorially count “paths” with nonzero
contribution to the expectation.

e Full details in arXiv:2012.09194.

710tte 10
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Summary

e Improved quantum simulation by simultaneously exploiting the
Hamiltonian commutativity, the sparsity of interactions, and the
initial-state knowledge.

e New techniques for bounding the transition amplitude and ex-
pectation of fermionic operators.

e Simulating electronic structure in the plane-wave basis with
(Zz—g + n4/3772/3) n°(Y) gates, currently the fastest in second quan-
tization while conditionally better than first-quantized results.

e Improved simulation of the Fermi-Hubbard model.

e Concrete example Hamiltonians for which the bound is almost
saturated.
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Outlook

e Low-energy quantum simulation:
o [Sahinoglu, Somma, arXiv:2006.02660]

Faster simulation using Hamiltonian symmetry:
o [Tran et al., arXiv:2006.16248]

Quantum chemistry with more compact basis:
o [von Burg, Low et al., arXiv:2007.14460]
o [Lee, Berry et al., arXiv:2011.03494]

Simulation algorithms for estimating expectation values:
o [Chen, Huang, Kueng, Tropp, arXiv:2008.11751]
o [Faehrmann, Steudtner et al., arXiv:2101.07808]

Simulation algorithms under different cost metric:
o [Clinton, Bausch, Cubitt, arXiv:2003.06886]

e See Andrew's tutorial for other related work (and much more!
16/16‘
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