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1 Overview

Preparing the ground state of a given Hamiltonian and estimating its ground energy are important but
computationally hard tasks. However, given some additional information, these problems can be solved
efficiently on a quantum computer. We assume that an initial state with non-trivial overlap with the ground
state can be efficiently prepared, and the spectral gap between the ground energy and the first excited
energy is bounded from below. With these assumptions we design an algorithm that prepares the ground
state when an upper bound of the ground energy is known, whose runtime has a logarithmic dependence on
the inverse error. When such an upper bound is not known, we propose a hybrid quantum-classical algorithm
to estimate the ground energy, where the dependence of the number of queries to the initial state on the
desired precision is exponentially improved compared to the current state-of-the-art algorithm proposed in
[Ge et al. 2019]. These two algorithms can then be combined to prepare a ground state without knowing an
upper bound of the ground energy. We also prove that our algorithms reach the complexity lower bounds
by applying it to the unstructured search problem and the quantum approximate counting problem.

2 Background

Estimating ground energy and obtaining information on the ground state of a given quantum Hamiltonian
are of immense importance in condensed matter physics, quantum chemistry, and quantum information.
Classical methods suffer from the exponential growth of the size of Hilbert space, and therefore quantum
computers are expected to be used to overcome this difficulty. However even for quantum computer, esti-
mating the ground energy is a hard problem: deciding whether the smallest eigenvalue of a generic local
Hamiltonian is greater than b or smaller than a for some a < b is QMA-complete [1, 8, 9, 14].

Therefore to make the problem efficiently solvable we need more assumptions. We denote the Hamiltonian
we are dealing with by H, and consider its spectral decomposition H = >, i [1r) (| where Ay < Apq1.
The key assumption is that we have an initial state |¢o) which can be efficiently prepared by an oracle Uy,
and has some overlap with the ground state |¢p) lower bounded by «. This is a reasonable assumption in
many practical scenarios. For instance, even for strongly-correlated molecules in quantum chemistry, there
is often a considerable overlap between the true ground state and the Hartree-Fock state. The latter can be
trivially prepared in the molecular orbital basis, and efficiently prepared in other basis [10]. For the moment
we also assume the spectral gap is bounded from below: A\; — Ag > A.

With these assumptions we can already use phase estimation coupled with amplitude amplification [5]
to prepare the ground state, if we further know the ground energy to high precision. To our knowledge, the
most comprehensive work on ground state preparation and ground state energy estimation was done by Ge
et al. [6], which provided detailed complexity estimates for well-known methods such as phase estimation,
and proposed new methods based on the recently developed linear combination of unitaries (LCU) technique.
As analyzed in [6, Appendix A], in order to prepare the ground state to fidelity! 1 — ¢, the runtime of the
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controlled-time-evolution of the Hamiltonian is O(1/(y2Ae)) 2 , and the number of queries to Uy is O(1/7),
assuming the spectral norm of H is bounded by a constant. This is however far from optimal. Poulin and
Wocjan [15] proposed a method that, by executing the inverse of phase estimation to filter out the unwanted
components in the initial state, can prepare a state whose energy is in a certain given range. A different
choice of parameters yields a way to prepare the ground state to fidelity 1— e by running the controlled-time-
evolution of the Hamiltonian with O(1/(vA)log(1/¢)) runtime, and using O(1/+) queries to U; [6, Appendix
C]. Using LCU, Ge et al. proposed a new method to filter the initial state by applying a linear combination
of time-evolutions of different time length [6], which achieves the same complexity, up to logarithmic factors,
as the modified version of Poulin and Wocjan’s method discussed above.

All of the above methods prepare the ground state assuming the ground energy is known to high precision.
When the ground energy is unknown, Ge et al. proposed a method to estimate the ground energy using a
search method called minimum label finding [6]. This method can estimate the ground energy to precision h
by running the controlled-time-evolution of the Hamiltonian for O(1/(yh3/2)) 3, and querying U; O(1/(yv/h))
times. It is worth noting that their method requires h = (5(A)7 and therefore is very expensive when the
gap is extremely small. When the ground energy is not known a priori , Ge et al. proposed a method to
first estimate the ground energy and then apply the LCU approach.

3 Main results

Below we discuss our main results regarding estimating the ground energy and preparing the ground state of
a Hamiltonian H = >, Ay [¢x) (¢] € CV*N | where Ay < Agy1, given through its (a, m,0)-block-encoding
Up (the definition of block-encoding will be provided later). Also suppose we have an initial state |¢o)
prepared by circuit Uy. We will selectively assume that we are given one or more of the following promises
in different settings:

(P1) Lower bound for the overlap: |{¢o|®o) | > 7,

(P2) Bounds for the ground energy and spectral gap: A\g < u—A/2 < p+ A/2 < A
(P2’) Bound for the spectral gap: Ay — \g > A.

The following are our main results:

Ground state preparation with a priori ground energy bound (Theorem 4): Suppose we are given
promises (P1) and (P2). Then the ground state [1y) can be prepared to fidelity 1 — e with O(;% log(1))

queries to Uy and (5(%) queries to Uj.

Ground energy (Theorem 6): Suppose we are given the promise (P1). Then the ground energy can be
estimated to precision h with probability 1 — with O (f‘—h log (%)) queries to Uy and O (% log (%) log (%))
queries to Uy.

Ground state preparation without a priori bound (Corollary 7): Suppose we are given the promises
(P1) and (P2’). Then the ground state can be can be prepared to fidelity 1 — e with probability 1 —« with

9] (7% log (i)) queries to Uy and O (% log (&) log (%)) queries to Uj.

The main improvements in our approach are in ground energy estimation. Compared to the phase esti-
mation algorithm, whose complexity is analyzed in [6, Appendix A], our algorithm improved the dependence
in the number of queries to Uy on the overlap v from =2 to y~'. Compared to the algorithm proposed
by Ge et al. [6, Theorem 4], our algorithm the dependence in the number of queries to Uy and U; on
the precision h, from h=3/2 and h='/2, to h~' and log(h~') respectively. These improvements result in

corresponding improvements in the algorithm to prepare the ground state without a priori ground energy

2In this work the notation O(f) means O(f poly log(f)) unless otherwise stated.

3In [6], the meaning of the notation O(-) is different from that in our work. In particular, O(-) in [6] hides all factors that
are poly-logarithmic in 1/h, 1/€, 1/, and 1/A, regardless of what is inside the parentheses. We preserve their notation when
citing their results since these factors do not play an important role when comparing the complexities of our methods.



bound. A side-by-side comparison of the query complexities of the algorithms in our work and those in
Ref. [6] is provided in Table 1 in our work. It is also worth noting that [6, Theorem 4] assumes the precision
h= @(A), while in our algorithm no such assumption is needed. This makes our algorithm far more efficient
when the spectral gap A is small but we only need to estimate the ground energy to precision h much larger
than A. Moreover, our algorithms also use significantly fewer ancilla qubits outside of those needed for

block-encoding than both the phase estimation algorithm and the algorithms in Ref. [6].

Optimality of our algorithms (Theorems 8 and 9): Besides the complexity upper bound above we also
provided lower bounds in our work to show our ground state preparation algorithms achieve essentially the
optimal dependence on v and A (Theorem 8) in the number of queries to both Uy and U;. For the ground
energy estimation problem our result is less complete. We proved that the dependence on the precision A in
the number of queries to Uy is near-optimal (Theorem 9). This result can also be derived from the proof of
the optimality of the phase estimation algorithm [4].

4 Methodology

The basic tools we use to perform non-unitary operations are block-encoding [3, 7, 12] and quantum signal
processing (QSP) [7, 11]. We briefly discuss them below.

Block-encoding and quantum signal processing: A matrix A € C¥*¥ where N = 27 can be encoded
in the upper-left corner of an (m + n)-qubit unitary matrix if ||[A — «({(0™| @ HU(]0™) @ I)|| < €. In this
case we say U is an (a,m,€)-block-encoding of A. Many matrices of practical interests can be efficiently
block-encoded. In particular we discuss the block-encoding of Hamiltonians of physical systems in Section 7.
With the block-encoding of a Hermitian matrix we can implement polynomial eigenvalue transformations of
this matrix through QSP, which is also known as quantum singular value transformation.

With these tools we can solve the ground energy estimation and ground state preparation problems
through the following procedure.

Implementation of the reflection and projection operators: Since we assume the block-encoding of
the Hamiltonian H is given, we use QSP to implement the reflection and projection operators associated
with the low-energy subspace (Lemma 3). This requires a polynomial approximation of the sign function
(Lemma 2). The application of the projction operator directly enables us the prepare the ground state under
assumptions (P1) and (P2), which leads to Theorem 4.

The binary search procedure: With the projection, and using amplitude estimation, for any x we can
output either Ay > z —h or A\g < =+ h correctly with high probability. The success probability can be made
at least 1 — & with only log(6~!) query complexity overhead using a procedure we call binary amplitude
estimation (Lemma 5). This enables us to perform a binary search to locate the ground energy Ay as shown
in Algorithm 1. The above procedure enables us to estimate the ground energy under assumption (P1),
which leads to Theorem 6. We can couple the ground energy estimation algorithm with the ground state
preparation algorithm to obtain the ground state without knowing an upper bound for the ground energy,
which gives us Corollary 7.

The unstructured search problem and the approximate counting problem: In order to show the
optimality of our algorithms we consider the unstructured search problem and the approximate counting
problem, whose complexity lower bounds have been extensively studied [2, 13]. We convert the unstruc-
tured search problem to several different ground state preparation problems, creating trade-offs between
the spectral gap and the overlap, and in this way prove the optimality of the dependence on the spectral
gap A and the overlap v in our ground state preparation algorithm (Theorem 8). Similarly we convert the
approximate counting problem into a ground energy estimation problem and prove the optimal dependence
on the precision (Theorem 9).
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